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1 Introduction

1.1 Derivation of PDEs

Many partial differential equations originate from physical models. Understanding these models pro-
vides valuable insight into the intuition underlying the equations. In this section, we demonstrate the
derivation of several common PDEs from fundamental physical principles.

1.1.1 Transport equation

Let u(t, x) : R+ × R → R be the unknown function. The variable t is the time coordinate, and x is
the space coordinate. The variable u can be the density of something, the velocity field, etc.

For illustration, suppose that we are modeling the traffic flow and u(t, x) is the density of cars
at (t, x). Let a < b. We first have the conservation of mass equation

d

dt

(∫ b

a
u(t, x) dx

)
= J(t, a)− J(t, b). (1.1)

Here, the LHS is the rate of change of the total number of cars, and J(t, x) is the flux at (t, x): the
number of cars moving from the left of x to the right of x in unit time.

Assume that u and J is smooth enough, so that we can differentiation and interchange the order
of differentiation and integration. Taking the t-derivative in (1.1) yields∫ b

a
∂tu(t, x) dx = J(t, a)− J(t, b) = −

∫ b

a
∂xJ(t, x) dx.

Then ∫ b

a

[
∂tu(t, x) + ∂xJ(t, x)

]
dx = 0.

Since a and b are arbitrary, and the integrand is a continuous function, we must have the relation

∂tu(t, x) + ∂xJ(t, x) = 0. (1.2)

This is the differential form of (1.1).
Next, we need to relate J to u to eliminate the unknown J in order to close the equation for u.

Since u is the density, by the physical meaning of flux we have

J(t, x) = u · V (t, x),

where V (t, x) is the velocity field. It remains to determine how the velocity depends on the density;
this may differ from one model from another. Here are some examples.
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• V (t, x) = const. Then (1.2) reduces to

∂tu+ c∂xu = 0.

One can check that the general solution is given by u(t, x) = ϕ(x − ct), that is, the initial density
profile ϕ(·) moves with constant speed c.

• V (t, x) = 1 − u. This is a more realistic model for the traffic jam: the velocity is decreasing
as the density increases, and at maximum density u = 1 the traffic flow completely stops. The
resulting equation is

∂tu+ ∂x
(
u(1− u)

)
= 0 = ∂tu+ ∂xu− 2u · ∂xu = 0.

Although this equation seems simple, it is a nonlinear PDE and exhibits nontrivial behaviors
such as formation of shocks.

We have the general form of the transport equation

∂tu+ ∂x
(
uV (u)

)
= 0, (1.3)

where V : R → R is a function that depends on the model.
We can further generalize (1.3) to dimension d > 1. We first guess the form of the equation by

matching the dimension, and then we will derive it rigourously using the conservation of mass.
Since u is the density, it is a multi-variate function

u(t, x) : R+ × Rd → R.

Since V gives the velocity, so V and J = u · V must be vector functions:

V (x) : Rd → Rd, J(t, x) = u · V : R+ × R → Rd.

Looking the LHS of (1.3), ∂tu takes value in R, so the differential operator must turn J(t, x) into a
function that maps Rd to R. The only such operator is the divergence operator ∇· acting on a vector
function f = (f1, . . . , fd)

∇ · f = ∇ · (f1, . . . , fd) :=
d∑

i=1

∂

∂xi
fi.

Hence, we obtain a reasonable guess of the generalization of (1.3) in an arbitrary dimension d > 1:

∂tu+∇ ·
(
uV (u)

)
= 0, (1.4)

where u : R+ × Rd → R is the unknown function and V : R → Rd is a given function depending on
the model.

Next, we give a rigourous derivation using the conservation of mass. The key tool is the Divergence
Theorem.

Theorem 1.1 Let Ω ⊂ Rd be a domain with piecewise C1-boundary. Let F : Ω̄ → Rd be C1. Then∫
∂Ω
F · n⃗ dS =

∫
Ω
∇ · F dx, (1.5)

where dS denotes the surface element on ∂Ω, and n⃗ is the outer unit normal vector on ∂Ω.
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(1.5) is also refered to as the Stokes formula, or simply integration by parts, since from right to
left a differential operator is removed.

Now let Ω be an arbitrary C1-domain in Rd. The total mass in Ω is given by
∫
Ω u(t, x) dx. By the

conservation of mass, the rate of change of the total mass is a conseqeunce of the flux of mass across
of the boundary. Thus we have

d

dt

∫
Ω
u(t, x) dx = −

∫
Ω
J · n⃗ dS.

To double check the RHS: if the direction of the flux is tangent to the boundary at some point, that
is J · n⃗ = 0, then there is no mass escaping from this point, justifying the form of the integrand. Also,
if the flux J is point outwards and has the same direction as n⃗, this will result in a decrease of the
mass, and hence the minus sign on the RHS.

Assuming u is smooth enough so that the order of differentiation and integration can be exchanged
on the LHS, and using Theorem 1.1 on the RHS, we obtain∫

Ω
(∂tu+∇ · J) dx = 0.

Since this holds for an arbitrary C1-domain, we have pointwise

∂tu+∇ · J = 0. (1.6)

Plugging in J = uV (u) we obtain (1.4).
For the last step we use the following simple result.

Lemma 1.2 • If f ∈ C(Rd) and
∫
Ω f(x) dx = 0 for any rectangle Ω ⊂ Rd, then f ≡ 0.

• If f ∈ L1
loc(R) and

∫
Ω f(x) dx = 0 for any rectangle Ω ⊂ Rd, then f = 0 almost everywhere.

As we will see, the transport equation may develop singularity no matter how smooth the initial
condition is, so (1.4) may not hold for every point, but it is at least safe to say that it holds almost
everywhere.

1.1.2 Heat equation

In (1.6), we may interpret u as the temperature and J as the heat flux; then (1.6) follows from the
conservation of energy, as confirmed by Joule’s experiment. To close the equation, we need to relate J
to u. Fourier’s law states that the heat flux is proportional to the negative gradient of the temperature
field, expressed as

J = −c∇u,

where the constant c denotes the thermal conductivity. Here, the gradient operator ∇ is defined by

(∇f)(x1, . . . , xd) =
(
∂x1f(x1, . . . , xd), . . . , ∂xd

f(x1, . . . , xd)
)
.

Combined with (1.6), we obtain

∂tu = −∇ · (−c∇u) =
d∑

i=1

∂xixiu =: c∆u. (1.7)

The operator ∆ is called the Laplacian operator. (1.7) is called the heat equation. Usually we set c = 1.
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The heat equation also models the phenomenon of diffusion. Let u represent the concentration of
a substance within the fluid, analogous to the density. Particles of this substance may move under
external forces, but even in the absence of such external forces, diffusion causes particles to move from
regions of higher concentration to lower concentration. Specifically, Fick’s law states that the flux J
is proportional to the negative gradient of u, and hence the diffusion is modeled by the heat equation
as well.

The heat equation is a second-order PDE since it involves second partial derivatives. It is classified
as a parabolic equation since the time derivative is only first order, analogous to the parabola equation
t = x2.

1.1.3 Wave equation

The wave equation models the wave phenomena in elastic media. Let Ω be a domain representing an
elastic object, such as a string, a rod, or membrane. For simplicity, we take Ω = (a, b) as an example.
The unknown function u(t, x) : R×Ω → R under consideration is the displacement of the object from
its equilibrium position. By Newton’s second law, we have

∂ttu(t, x) = F (t, x),

where F (t, x) is the force acting at position x. To determine this force, we invoke Hooke’s law, which
states that the elastic force is negatively proportional to the displacement

F = −k∆L.

We imagine there are two small springs on the intervals (x −∆x, x) and (x, x + ∆x). The net force
at (t, x) results from the combination of the elastic forces from these springs. Applying the Hooke’s
law gives

F (t, x) ≈ F1 + F2 = −k
(
u(t, x)− u(t, x−∆x)

)
− k

(
u(t, x)− u(t, x+∆x)

)
≈ k(∆x)2∂xxu(t, x).

Combining all these and assuming k(∆x)2 → c as ∆x→ 0, we obtain the wave equation

∂ttu = c∂xxu.

The wave equation in dimensions d > 1 can be derived analogously or postulated as

∂ttu = c∆u.

This equation is classified as the hyperbolic equation since both the time and space derivatives are of
second order and have the opposite signs, which resembles the hyperbola equation t2 = x2.

1.1.4 Laplace equation

Consider the heat equation in a domain Ω, with boundary condition u
∣∣
∂Ω

= φ and initial condi-

tion u
∣∣
t=0

= u0. From a physical perspective, if the temperature is fixed at the boundary, eventually the
temperature field will reach an equilibrium state, that is, there is u∗ : Ω → R such that u(t, x) → u∗(x)
as t→ ∞, where u∗ may or may not depend on u0. Since v(t, x) = u∗(x) also satisfies the heat equation
as it is the equilibrium, we obtain

∆u∗ = 0, u∗
∣∣
∂Ω

= φ. (1.8)
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This is known as the Laplace equation. It is classified as an elliptic equation since all second derivatives
have the same sign, resembling the ellipse equation ax2 + by2 = 1.

We now derive the Laplace equation using the calculus of variation, a powerful tool to obtain
PDEs. We consider the following minimization problem:

inf
u
∣∣
∂Ω

=φ

∫
Ω
|∇u|2(x) dx =: inf

u
∣∣
∂Ω

=φ

I[u]. (1.9)

The square bracket [·] stresses that I is a functional, that is, a “function” of functions. Assume that u∗
achieves the minimum of (1.9), that is,

I[u∗] = min
u
∣∣
∂Ω

=φ

I[u].

Intuitively, I[u] is the L2-norm of the heat flow corresponding to the temperature field u, and if
the L2-norm is minimized, the temperature field is at the equilibrium state.

Assuming u∗ is the minimum function, let us derive conditions that u∗ must satisfy. Let v ∈ C∞
0 (Ω)

be arbitrary. We introduce perturbation of u∗ as

uε = u∗ + εv, ε ∈ R

Since v vanishes at ∂Ω, the function uε satisfies the boundary condition. Let f(ε) = I[uε]. Since f
achieves minimum at ε = 0, we must have f ′(0) = 0 provided that the derivative exist. We do not
know if f is actually differentiable, but assuming that all functions are nice, this is indeed the case
and we have:

0 = f ′(0) =
d

dε

∣∣∣
ε=0

∫
Ω
|∇u∗ + ε∇v|2 dx = 2

∫
Ω
∇u∗ · ∇v dx = 0. (1.10)

To proceed, we use the following useful integration-by-part formula.

Lemma 1.3 Let Ω be a C1-domain and u, v ∈ C1(Ω̄) ∩ C2(Ω). Then∫
Ω
∇u · ∇v dx = −

∫
Ω
u∆v dx+

∫
∂Ω
u
∂v

∂n
dS, (1.11)∫

Ω
∇u · ∇v dx = −

∫
Ω
v∆u dx+

∫
∂Ω
v
∂u

∂n
dS, (1.12)∫

Ω
u∆v − v∆u dx =

∫
∂Ω
u
∂v

∂n
− v

∂u

∂n
dS. (1.13)

Proof: The last identity follows from taking difference of the first two. Since the roles of u and v
are symmetric, it suffices to prove (1.11). Indeed, consider the vector function F = u∇v : Ω → Rd.
Then ∇·F = ∇u·∇v+u∆v and F ·n⃗ = u ∂v

∂n . Applying Theorem 1.1 to F yields the desired conclusion.
□

Using Lemma 1.3, we can continue with (1.10) to obtain

0 =

∫
Ω
∇u∗ · ∇v dx = −

∫
Ω
v∆u∗ dx, ∀v ∈ C∞

0 (Ω). (1.14)

There is no boundary term after integration by parts since v vanishes at the boundary. Since (1.14)
holds for arbitrary v ∈ C∞

0 (Ω), a variant of Lemma 1.2 implies that ∆u∗ = 0 pointwise assuming its
continuity. Hence we derive the Laplace equation again.

As another example, the variational problem

inf
u
∣∣
∂Ω

=φ

∫
Ω

√
1 + |∇u|2 dx

gives rise the minimal surface equation. This will be left as an exercise.
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1.1.5 *Viscous Burgers equation and fluid equation

Let us consider the velocity field u(t, x) of particles moving on R. By Newton’s law, we have

acceleration of particles at (t0, x0) = friction + external force. (1.15)

First, let us express the acceleration field from the velocity field. The naive guess ∂tu is wrong,
since the particles at position x are not the same for different t. To get the correct form of the
acceleration, we must follow a fixed particle. Let x(t) be the trajectory of the particle passing (t0, x0)
(that is, x(t0) = x0). Then by definition

ẋ(t) = u
(
t, x(t)

)
.

Hence,

ẍ(t) =
d

dt
u
(
t, x(t)

)
= ∂tu+ ẋ · ∂xu = ∂tu+ u · ∂xu. (1.16)

This gives the LHS of (1.15).
For the RHS, first, the friction force is modeled by ∂xxu. To understand why second derivative

appears, it suffices to note that if ∂xxu = 0, then u is linear and there is no friction in the sheer
transform. Last, the external force is modeled by an arbitrary function f(t, x). Combining all these,
we obtain the full viscous Burgers equation:

∂tu+ u∂xu = ∂xxu+ f(t, x).

Its multi-dimensional analogue is

∂tu+ u · ∇u = ∆u+ f(t, x), u : R+ × Rd → R.

The Burgers equation is a mixture of the “transport term” u∂xu and the “diffusion term” ∂xxu.
The Burgers equation is a toy model for fluid dynamics. Here we also mention the celebrated

Navier-Stokes equation, and by now we can understand the physical meaning of all the terms in the
equation. Assuming the fluid is incompressible (meaning the density is constant), the Navier-Stokes
equation reduced to an equation of the velocity field: u(t, x) : R+ × Rd, d = 2, 3,{

∂tu+ u · ∇u+∇p = ∆u+ f,

∇ · u = 0.

Here, we recognize the material derivative term ∂tu + u · ∇u, which is the acceleration field. All
the other are forcing terms: the pressure term ∇p, the friction ∆u, and the external force f . The
divergence-free constraint comes from conservation of mass:

∂ρ

∂t
+∇ · (ρu) = 0 =⇒ ∇ · u = 0.

Although the pressure p is also unknown and first equation seems under-determined, the divergence-
free constraint can in fact eliminate the pressure term in the first equation.

1.1.6 *Maxwell equation

In this section we briefly look at the Maxwell’s equation that models the electro-magnetic field. The
unknowns are the electric field E and the magnetic field B, both are vector functions on R3. All of
the four equations can be written down in the differential form and in the integral form.
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• Gauss’s law:

∇ · E =
ρ

ε0
,

∫
∂Ω
E · n⃗ dS =

1

ε0

∫
Ω
ρ dx.

Here, ρ is the electric charge density, ε0 is a physical constant, and Ω is an arbitrary domain.

• Gauss’s law for magnetism:

∇ ·B = 0,

∫
∂Ω
B · n⃗ dS.

• Faraday’s equation (electric generated from a changing magnetic field):

∇× E = −∂B
∂t
,

∮
∂Σ
E · dℓ = −

∫
Σ

∂B

∂t
· dA,

where Σ is any surface.

• Ampère’s circuital law (magnetic field generated by currents):

∇×B = µ0(J + ε0
∂E

∂t
),

∮
∂Σ
B · dℓ =

∫
Σ
µ0

(
J + ε0

∂E

∂t

)
· dA,

where J is the current.

It is well-known that electro-magnetic field related to waves. To see this from the equation, we
consider the vacuum case where ρ = J ≡ 0. Then we have

∇× (∇× E) = ∇(∇ · E)−∆E = −∆E = − ∂

∂t
(∇×B) = −µ0ε0

∂2E

∂2t
,

so E satisfies the wave equation, where the wave speed (i.e., the light speed) is c =
√
µ0ε0. A similar

calculation yields a wave equation for B.

1.2 key questions in this course

This course will focus on four elementary partial differential equations (PDEs), which model funda-
mental physical phenomena and serve as foundational components for more complex PDEs:

• the transport equation: ∂tu+ ∂xV (u) = f ;

• the Laplace equation: ∆u = f ;

• the heat equation: ∂tu = ∆u;

• the wave equation: ∂ttu = ∆u.

One part of the course is devoted to how to write down solutions of the PDEs, using techniques like
Fourier analysis, separation of variables and etc. A more important part is to develop well-posedness
theory without an explicit form of the solution. The well-posedness theory is three-fold:

• existence of solution, including suitable conditions on the boundary and initial condition, regu-
larity requirement;

• uniqueness of solution

• stability: how sensitive the solution is to initial and boundary data.
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For a rigorous well-posedness theory we must be accurate about the solution space. A key concept
is the classical solution, where all the derivatives appearing in the PDE are continuous function so
that the PDEs make sense pointwise. When there are both time and space derivative, we use Cα,β to
indicate the space of functions that has α-th order continuous derivative in t and β-th order continuous
derivative in space. For example, classical solutions of the first order transport equation live in C1,1,
for the heat equation C1,2, and for the wave equation C2,2. We may also spend some time discussing
how to define weak solutions, solutions that have a lower regularity requirement.

2 First-order transport equation

In this section we study the first-order transport equation:{
∂tu+ b(t, x, u) · ∂xu = f(t, x, u),

u(0, x) = ϕ(x),
u(t, x) : R+ × R → R. (2.1)

2.1 Method of characteristics

2.1.1 Constant b

Suppose b(t, x, u) = V is a constant and f ≡ 0. The equation becomes

∂tu+ V ∂xu = 0, u(0, x) = ϕ(x).

We introduce U(t) = u(t, x0 + V t) where u is a solution and x0 ∈ R is fixed. Then

U̇(t) = ∂tu(t, x0 + V t) + V ∂xu(t, x0 + V t) = 0.

Hence,
U(t) ≡ U(0) = u(0, x0) = ϕ(x0),

and we have
u(t, x) = ϕ(x− V t).

The curves η(t) = x0+V t are called characteristics. Intuitively, the initial data ϕ is propagating along
these curves.

As a remark, if ϕ ∈ C1, then u = ϕ(x− V t) ∈ C1,1 is a classical solution. But even if ϕ ̸∈ C1, this
is still the only plausible solution to the PDE, despite being non-classical. From this example, we see
that dealing with non-classical solutions is already inevitable even for very simple PDE,

2.2 A non-homogeneous example

We consider the following equation: {
∂tu+ x∂xu = u+ x,

u(0, x) = ϕ(x).
(2.2)

We are seeking characteristics η(t) so that

U(t) = u
(
t, η(t)

)
solves a simple ODE. We clearly have

η̇(t) = η =⇒ η(t) = C1e
t.
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Plugging into U , we have
U̇(t) = U(t) + C1e

t.

The general solution for this ODE is

U(t) = C1te
t + C2e

t.

Finally, we need to determine the constants C1 and C2. We have

η(t) = C1e
t = x, U(0) = C2 = ϕ(C1) =⇒ C1 = xe−t, C2 = ϕ(xe−t).

Hence, the solution to the PDE is
u = xt+ ϕ(xe−t)et.

One can check by direct computation that it indeed solves the original PDE.

2.3 General linear case

We consider the general linear case{
∂tu+ b(t, x)∂xu = f(t, x, u),

u(0, x) = ϕ(x).
(2.3)

We state a well-posedness result.

Theorem 2.1 Assume that b ∈ C0,1, ϕ ∈ C1 and f ∈ C0,1,1. Then there exists a unique solution to
(2.3).

Proof: We consider the characteristic ODE

η̇(t) = b
(
t, η(t)

)
, η(0) = x0.

Since b is Lipschitz in x, by standard ODE theory, there is a unique solution for every initial condi-
tion x0. Moreover, the solution map

Φt : x0 7→ η(t;x0)

is a C1-diffeomorphism of R, that is, both Φt and Φ−1
t are in C1. Indeed, Φ′

t satisfies the ODE

d

dt

(
Φ′
t

)
= ∂xb

(
t,Φ(t)

)
Φ′
t, Φ′

0 = 1.

Let u1 and u2 be two C1,1-solutions of the PDE and let

wi(t) = ui
(
t, η(t)

)
, i = 1, 2. (2.4)

Then wi solves the ODE

ẇi(t) = f
(
t, η(t), wi(t)

)
, wi(0) = ϕ

(
η(0)

)
. (2.5)

Since the above ODE has unique solution, we have w1 = w2. Hence the PDE has unique solution.
For the existence of the solution, let w(t;w0) be the solution to the ODE (2.5) with initial condi-

tion w0. Then one can check that

u(t, x) = w
(
t;ϕ

(
Φ−1
t (x)

))
is a C1,1-function that solves the PDE. The detailed computation will be omitted. For concrete
equations, the justification will be more straightforward. □
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2.4 Nonlinear equation

In nonlinear transport equations, the function b = b(t, x, u) also depends on u. In this case, we have
to solve the ODEs of η and w together: {

η̇(t) = b(t, η, w),

ẇ(t) = f(t, η, w).

2.4.1 Burgers equation

The Burgers equation is one of the simplest nonlinear PDEs. We start from the homogeneous equation
(f ≡ 0).

∂tu+ u∂xu = 0, u(0, x) = ϕ(x).

The characteristic ODE system is

η̇(t) = w, ẇ(t) = 0.

The second equation indicates that w is constant, implying that η is a linear function: η(t) = x0 +
tϕ(x0) = x. Physically, this corresponds to particles moving at constant velocity due to the absence of
external forcing f . The characteristics, representing particle trajectories, are therefore straight lines.
To determine the velocity field at (t, x), one may identify the origin of the particle arriving at the
point (t, x), and retrieve its velocity.

In nonlinear scenarios, however, characteristics may intersect, causing the correspondence x 7→ x0
to cease being one-to-one. If multiple characteristics pass through a point (t, x), it implies that particles
carrying different velocity meet at (t, x), causing the velocity field at (t, x) is undetermined. On the
other hand, one can check that a necessary and sufficient condition to avoid intersection is that ϕ is
increasing, but in such case, certain points (t, x) may lack any passing characteristics, again leaving
the velocity field undetermined.

Through two examples we will illustrate how to resolve these issues.

Rarefaction solution Suppose the initial condition is given by

ϕ(x) =

{
0, x ≤ 0,

1, x > 0.

By looking at the characteristics, we have

u(t, x) =

{
0, x ≤ 0

1, x ≥ t.

There is no characteristic in the region 0 < x < t, leaving the solution undetermined. Let us try to
construct a reasonable solution. We notice that the initial condition ϕ is already discontinuous. We
cannot expect our constructed solutions to be continuous, but we should make the discontinuous point
as few as possible. One possible choice is

u(t, x) =

{
0, x ≤ kt,

1, x > kt,

where k ∈ (0, 1). The solution is only discontinuous along the line x = kt.
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Are these solutions reasonable? From the point of view of differentiability it seems yes: apart from
the curve x = kt, the function is continuously differentiable and satisfies the PDE. But it turns out
that these are non-physical solution.

To obtain a physical solution, we note that the root issue is that the initial condition is not C1.
Nonsmooth function is merely a pure mathematical object; we should think of the discontinuous
function ϕ as an idealization of another function that has an abrupt near 0:

ϕε(x) =


0, x ≤ 0,

x/ε, 0 ≤ x ≤ ε,

1, x ≥ ε,

where ε is so small that make ϕε look like discontinuous. With the initial condition ϕε(x) one can
check that characteristics fill the whole space, as by letting ε → 0, we obtain another solution to the
original PDE

u(x) =


0, x ≤ 0,

x/t, , 0 < x < t,

1, x ≥ t.

This is the so-called rarefaction solution.

Shocks Now we assume the initial condition takes the form

ϕ(x) =

{
1, x < 0,

0, x ≥ 0.

Since ϕ(x) is not increasing, characteristics will intersect. It is not hard to see that for any fixed k ∈
(0, 1), the following function

u(t, x) =

{
1, x < kt,

0, x ≥ kt.

is a solution, with singularity only on the curve x = kt.
Again, not all k corresponds to physical solution. The previous trick of smoothing ϕ no longer

help. To determine the correct value of k, we need to understand the effect of collision, which is not
quite modeled by this equation.

We will not dive deep into the theory at this moment, but we will mention two things.
First, the correct way of smoothing the PDE is to introduce the viscous term:

∂tu+ u · ∂xu = ε∂xxu.

As we will see, the appearance of ε∂xxu will make possible the existence of classical solution. The
added term ∂xxu represents the friction force, a term ignored when deriving the Burgers equation but
correctly handles the intersection of characteristics, the collision. By letting ε → 0, one may get the
unique physical solution.

Second, the correct answer is k = 1/2. The interface x = kt is called shocks, where particle of
velocity of 0 and 1 meet and stick together. Essentially by conservation of momentum, the shock will
travel at velocity 1

2(1 + 0) = 1/2, which gives the physically correct value of k.
A comprehensive study of the first-order transport equation needs a good understanding of the

second-order diffusion equation. This should be a good motivation for the next section.
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3 Heat equation

The heat equation takes the form {
∂tu = ∆u, t > 0, x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω,

plus some boundary condition. We will take this opportunity to introduce three basic types of bound-
ary condition in the PDE theory. In the context of the heat equation, all these boundary conditions
have concrete physical meaning.

Dirichlet boundary condition
u
∣∣
∂Ω

= µ.

This means that the temperature at the boundary is fixed, like a thermal bath or in the ice water.
Neumann boundary condition

∂u

∂n

∣∣
∂Ω

= 0.

This models the insulation, where there is no heat flux across the boundary.
Mixed (Robin) boundary condition

−k∂u
∂n

= H
(
u(t, x)− µ(t, x)

)
, x ∈ Ω, t > 0.

Physically the parameter k and H should be positive: the LHS is the heat flux across the boundary,
the RHS is difference of the internal temperature and the surrounding temperature. In the limit k ↓ 0,
this converges to the Dirichlet boundary condition, where the heat transfer is instant and the internal
and external temperature is identical. In the limit H ↓ 0, there is no heat flux at the boundary and
this is the Neumann boundary condition. A more general way to write the mixed boundary condition
is

αu+ β
∂u

∂n
= µ,

where α, β ∈ R.
Take the Dirichlet boundary condition as an example, we will present the definition of a classical

solution.

Definition 3.1 Let Ω ⊂ Rd be a domain with continuous boundary. A classical solution to the PDE
∂tu = ∆u, t > 0, x ∈ Ω,

u(t, x) = µ(t, x), t ≥ 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω

is a function u ∈ C([0,∞)× Ω̄) ∩ C1,2((0,∞)× Ω) that satisfies the equation and the boundary/initial
condition.

For Neumann and mixed boundary conditions, the domain should have C1-boundary in order to
define the normal derivative ∂u/∂n.

In this section we will focus on the following aspects of the heat equations, each of which will lead
to a set of tools to study the equation:

• linear equation,

• Fourier transform,

• smoothing effect of ∆,

• maximum principle/energy method.
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3.1 Energy method: first proof of uniqueness

Consider the heat equation 
∂tu = ∆u+ f, t > 0, x ∈ Ω,

u(t, x) = g(x), t > 0, x ∈ ∂Ω,

u(0, x) = h(x), x ∈ Ω.

(3.1)

Using linearity, we have the principle of superposition.

Theorem 3.1 If ui ∈ C([0,∞) × Ω̄) ∩ C1,2((0,∞) × Ω), i = 1, 2, are classical solutions to (3.1) with
data (fi, gi, hi), then αu1+βu2 is a classical solution to (3.1) with data

(
αf1+βf2, αg1+βg2, αh1+βh2

)
.

Proof: It follows from the linearity of the operators ∂t and ∆:

∂t(αu1 + βu2) = α∂tu1 + β∂tu2,

∆(αu1 + βu2) = α∆u1 + β∆u2.

□

Next, we will give a proof of the uniqueness of the heat equation solution via the energy method.

Theorem 3.2 Let Ω be a bounded C1 domain. Then (3.1) has a unique classical solution.

Proof: By Theorem 3.1, it suffices to show that the only classical solution to{
∂tu = ∆u,

u(0, x) = 0, u
∣∣
∂Ω

= 0,
(3.2)

is u ≡ 0. Indeed, if u1 and u2 are classical solutions to (3.1), then u = u1 − u2 is a classical solution
to (3.2).

Let u ∈ C1,2((0,∞)× Ω) ∩ C([0,∞)× Ω̄) solve (3.2). Let

f(t) =

∫
Ω
|∇u|2(t, x) dx.

Since Ω is bounded, f(t) is finite and well-defined. Then

f ′(t) = 2

∫
Ω
∇(∂tu) · ∇u dx

= 2

∫
Ω
(−∂tu)∆u+

∫
∂Ω
∂tu · ∂u

∂n
dS

= −2

∫
Ω
|∂tu|2 ≤ 0.

But f(0) = 0 and f(t) ≥ 0 by definition. Hence, f(t) ≡ 0 for t ≥ 0. This implies ∇u(t, x) ≡ 0 for
all (t, x). Since Ω is connected, u(t, ·) must be constant in Ω. Since u(t, ·) ∈ C(Ω̄) and u

∣∣
∂Ω

= 0, we
have u ≡ 0. This completes the proof. □

If the domain Ω is unbounded, additional conditions need to be imposed to guarantee the unique-
ness. Let us consider Ω = Rd. The question is whether u = 0 is the unique solution to the PDE{

∂tu = ∆u, t > 0, x ∈ Rd,

u(0, x) = 0, x ∈ Rd.

13



For the energy method to go through, one needs ∇u ∈ L2(Rd). A weaker condition is that

|u(t, x)| ≤ ec|x|
2
, ∀t > 0,

for some c > 0. This growth condition is optional since the so-called Tychonov solution will be a
counter-example in the absence of the growth condition. But the proof can not be done with the
energy method.

3.2 Heat equation on the whole space and Fourier transform

In this section we will demostrate how to use Fourier transform to solve the heat equation on the
whole space. See also [Zho05, Chap. 3.1.1] or [Eva98, 4.3.1.a] and Section 3.2.7.

We recall that the operator ∆ is a linear operator on functions:

∆(αf + βg) = α∆f + β∆g, ∀f, g ∈ D(∆).

Let us compare the heat equation ∂tu = ∆u with the linear ODE system with constant coefficients:

ẋ(t) = Ax(t), A ∈ Rd×d. (3.3)

Assume that the matrix A can be diagonalized:

A = P−1ΛP, P ∈ O(d), Λ = diag{λ1, . . . , λd}.

Then y(t) = Px(t) solves ẏ(t) = Λy(t), whose solution is given by

y(t) =
(
eλ1ty1(0), . . . , e

λdtyd(0)
)T
.

For the heat equation, the Laplacian ∆ can be diagonalized by the Fourier transform F and its
inverse F−1.

Definition 3.2 Let f ∈ L1(Rd). Its Fourier transform f̂ = Ff and inverse Fourier transform f̌ =
F−1f are

f̂(ξ) =

∫
Rd

e−2πiξ·xf(x) dx

f̌(ξ) =

∫
Rd

e2πiξ·xf(x) dx.

3.2.1 Properties of Fourier transform

Linearity:
(αf + βg)∧ = αf̂ + βĝ, ∀f, g ∈ L1(Rd), α, β ∈ C.

Translation: for k ∈ Rd, (
f(· − k)

)∧
= e−2πiξ·kf̂(ξ).

Proof: Denote the LHS by ĝ(ξ). We have

ĝ(ξ) =

∫
e2πiξ·xf(x− k) dx

=

∫
e−2πiξ·(y+k)f(y) dy

= e−2πiξ·k
∫
e−2πiξ·yf(y) dy = e−2πiξ·kf̂(ξ),
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as desired. □

Dilation: for k ∈ Rd \ {0}, (
f(k·)

)∧
=

1

|k|d
f̂
( ξ

|k|

)
.

Proof: Denote the LHS by ĝ(ξ). We have

ĝ(ξ) =

∫
Rd

e
−2πi ξ

|k| ·|k|xf(|k|x) dx

=
1

|k|d

∫
Rd

e
−2πi ξ

|k| ·yf(y) dy

=
1

|k|d
f̂(ξ/|k|).

□

Symmetry:
(
f(x)

)∨
= f̂(−ξ).

Derivative: (d = 1) if f ′, f ∈ L1(R) and f ′ ∈ C(R), then

(f ′)∧ = (2πiξ)f̂(ξ).

Proof: For N > 0, using integration by parts we have∫ N

−N
e−2πiξxf ′(x) dx = (2πiξ)

∫ N

−N
e−2πiξxf(x) dx+ e−2πiξf(x)

∣∣∣N
−N

.

Since f ′ ∈ C(R) ∩ L1(R), the limits lim
x→±∞

f(x) exists. Since f(x) ∈ L1(R) ∩ C(R), it follows

that lim
|x|→∞

f(x) = 0, and hence the last term in the last display goes to zero as N → ∞. The

desired conclusion follows. □

For d > 1, a similar argument shows that

(∂xjf)
∧ = (2πiξj)f̂(ξ).

We can generalize such results to higher-order derivatives. For this purpose we introduce the multi-
index notation. Let α = (α1, . . . , αd) ∈ Nd. We define

|α| := α1 + . . .+ αd, xα := xα1
1 · · ·xαd

d , Dαf := ∂α1
x1

· · · ∂αd
xd
f.

Then for all f ∈ C∞
c (Rd) (smooth with compact supports),

(Dαf)∧ = (2πi)|α|ξαf̂(ξ).

Convolution: for all f, g ∈ L1(Rd),

(f ∗ g)∧ = f̂(ξ)ĝ(ξ), (3.4)

where the convolution f ∗ g is defined as

(f ∗ g)(x) :=
∫
Rd

f(x− y)g(y) dy =

∫
Rd

f(y)g(x− y) dy.

First, if f, g ∈ L1(Rd), then f ∗ g ∈ L1(Rd), as the following lemma shows.
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Lemma 3.3 (Special case of Young’s inequality) Let f, g ∈ L1(Rd). Then

∥f ∗ g∥L1 ≤ ∥f∥L1∥g∥L1 .

Proof: By Fubini, we have∫
Rd

|f ∗ g(x)| dx ≤
∫
Rd

dx

∫
Rd

|f(x− y)||g(y)| dy

≤
∫
Rd

|g(y)| ·
∫
Rd

|f(x− y)|

=

∫
Rd

dy |g(y)| · ∥f∥L1 = ∥g∥L1∥f∥L1 .

□

Proof of (3.4): We have

(f ∗ g)∧(ξ) =
∫
Rd

e−2πiξ·x dx

∫
Rd

f(x− y)g(y) dy

=

∫
Rd

e−2πiξ·(x−y)f(x− y) dx ·
∫
Rd

e−2πiξ·yg(y) dy

= f̂(ξ) · ĝ(ξ).

□

3.2.2 Fourier transform of Gaussians

We can explicitly compute the Fourier transform of some functions. Below is an important example.( 1√
4π
e−

x2

4

)∧
= e−4π2ξ2 . (3.5)

More generally, for a > 0, ( 1√
4πa

e−
x2

4a

)∧
= e−4π2a2ξ2 .

We recall that the density of the normal distribution N (0,
√
2) is (4π)−1/2e−x2/4, and hence∫

R

1√
4π
e−x2/4 dx = 1. (3.6)

To prove (3.5), we have ∫
R

1√
4π
e−

x2

4
−2πixξ dx =

∫
R

1√
4π
e−

1
4
(x+4πiξ)2−4π2ξ2 .

It suffices to show that ∫
R

1√
4π
e−

1
4
(x+b)2 dx = 1 (3.7)

for b = 4πiξ.
If b ∈ R, then (3.7) follows from (3.6) by a change of variable y = x+ b. For a complex number b,

we need to use some complex analysis to justify this identity.
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Let

g(z) =
1√
4π
e−z2/4, z ∈ C.

Then g(z) is an analytic function on the complex plane. We consider the closed contour

γL = γ1 ∪ γ2 ∪ γ3 ∪ γ4,

where

γ1 = {x : x ∈ [−L,L]}, γ2 = {L+ iy : y ∈ [0, 4πξ]},
γ3 = {x+ 4πξi : x ∈ [−L,L]}, γ4 = {−L+ iy : y ∈ [0, 4πξ]}.

By Cauchy Theorem,
∫
γL g(z) dz for all L. Letting L→ ∞, we have∫

γ1

g(z) dz →
∫ ∞

−∞

1√
4π
e−x2/4 dx = 1,∫

γ3

g(z) dz → −
∫ ∞

−∞

1√
4π
e−(x+4πiξ)2/4 dx,

and ∫
γ2

g(z) dz,

∫
γ4

g(z) dz → 0.

This proves (3.7).
We have the following corollary in dimension d > 1.

Lemma 3.4 For a > 0, ( 1

(4πa)d/2
e−

|x|2
4

)∧
= e−4π2|ξ|2a.

Proof: We have ∫
Rd

1

(4πa)d/2
e−|x|2/4e−2πix·ξ dx =

d∏
j=1

∫
R

1√
4πa

e−x2
j/4e−2πixjξj dxj

=
d∏

j=1

e−4π2ξ2j a

= e−4π2|ξ|2a.

□

3.2.3 Cauchy problem of the heat equation

To solve the heat equation on the whole space

∂tu = ∆u, u(0, x) = ϕ(x),

we consider the Fourier transform of the solution in the x-variable

û(t, ξ) = F[u(t, ·)].
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Then û solves {
∂tû(t, ξ) = −4π2|ξ|2û(t, ξ),
û(0, ξ) = ϕ̂(ξ).

For a fixed ξ, û(t, ξ) solves a linear ODE, whose solution is given by

û(t, ξ) = ϕ̂(ξ)e−4π2|ξ|2t.

Hence,
u(t, ·) = Gt ∗ ϕ,

where

Gt(x) =
1

(4πt)d/2
e−|x|2/4t.

The function Gt(x) is called the fundamental solution of the heat equation.
Consider the Cauchy problem of the heat equation on the whole space:{

∂tu = ∆u, t > 0, x ∈ Rd,

u(0, x) = ϕ(x), x ∈ Rd.
(3.8)

Using Fourier transform, with some extra effort we can show that Gt∗ϕ solves (3.8), provided that ϕ ∈
L1(R). Since Gt(·) decays very fast at ∞, this still holds for more general ϕ. Below is an example of
such result, for which we will give a direct proof.

Theorem 3.5 Assume ϕ ∈ C(Rd) ∩ L∞(Rd). Let u(t, x) = (Gt ∗ ϕ)(x). Then

1. u ∈ C∞(
(0,∞)× Rd

)
and ∂tu = ∆u for t > 0 and x ∈ Rd.

2. For all x0 ∈ Rd,
lim

t↓0,x→x0
u(t, x) = ϕ(x0). (3.9)

We will cite the following result from real analysis without proof.

Lemma 3.6 (Dominated Convergence Theorem) Let fn ∈ L1(Rd) satisfying |fn| ≤ g for some g ∈
L1(Rd). If fn → f a.e., then

lim
n→∞

∫
Rd

fn(x) dx =

∫
Rd

lim
n→∞

fn(x) dx =

∫
Rd

f(x) dx.

Lemma 3.7 Let f, g ∈ L1(Rd). If ∂xjf ∈ C(Rd) ∩ L1(Rd) ∩ L∞(Rd), then ∂xj (g ∗ f) = g ∗ (∂xjf).

Proof: Let ej be the unit vector in the j-th coordinate. We have

(f ∗ g)(x+ hej)− (f ∗ g)(x)
h

=

∫
Rd

1

h
[f(x+ hej − y)− f(x− y)]g(y) dy.

By Mean Value Theorem, The integrand is bounded by

sup|∂xjf | · g(y) ∈ L1(Rd).
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Then by Lemma 3.6, we have

∂xj (f ∗ g)(x) = lim
h→0

(f ∗ g)(x+ hej)− (f ∗ g)(x)
h

=

∫
Rd

lim
h→0

1

h
[f(x+ hej − y)− f(x− y)]g(y)

= (∂xjf) ∗ g(x),

as desired. □

By direct computation one can check f = DαGt satisfies the condition in Lemma 3.7, and
hence Dαu = (DαGt) ∗ g. This implies u ∈ C∞.

To show that ∂tu = ∆u, by Lemma 3.7, it suffices to show that (∂t −∆)G = 0. Indeed,

∂tGt(x) =
(
−d
2
t+

|x|2

4t2
)
Gt(x),

∂xjGt(x) = −xj
2t

·Gt(x),

∂xjxjGt(x) =
[
− 1

2t
+
x2j
4t2

]
Gt(x),

so Gt(x) satisfies the heat equation.
Finally, let us show that u = Gt ∗ ϕ satisfies the initial condition in the sense of (3.9). Noting

that
∫
Rd Gt(x) dx = 1, we have∣∣∣u(t, x)− ϕ(x0)

∣∣∣ = ∣∣∣ ∫
Rd

Gt(y)
(
ϕ(x− y)− ϕ(x0)

)
dy

∣∣∣∫
|y|≥ε

Gt(y)(|ϕ(x− y)|+ |ϕ(x0)|) dy +
∫
{|y|≤ε}

Gt(y)|ϕ(x− y)− ϕ(x0)| dy

≤ 2 sup|ϕ| ·
∫
|y|≥ε

Gt(y) dy + sup
|y|≤ε

|ϕ(x− y)− ϕ(x0)|.

Since Gt(y) = t−d/2G1(y/
√
t), we have∫
|y|≥ε

Gt(y) dy =

∫
|z|≥ε/

√
t
G1(z) dz → 0, t ↓ 0.

Therefore,
lim sup
t↓0, x→x0

|u(t, x)− ϕ(x0)| ≤ sup
|y|≤ε

|ϕ(x0 − y)− ϕ(x0)|.

Since ε is arbitrary and ϕ is continuous, the LHS limit must be zero. This completes the proof.
In fact, we have use a general result about the approximate identity in the proof above.

Lemma 3.8 Let {kn(x)} be non-negative and continuous functions. Assume that

1.
∫
Rd kn(x) dx = 1 for all n;

2. limn→∞
∫
|x|≥ε kn(x) dx = 0 for all ε > 0.

Then for all g bounded and continuous, we have

lim
n→∞

∫
Rd

kn(x)g(x) dx = g(0).
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We call such {kn(x)} an approximate identity, which gives a mathematical meaning to the Dirac δ-
function. The two conditions are also in fact necessary conditions; see also [Lax02, Chap 11.1]
and [Eva98, Appendix C.4]
Proof: Assume that |g(x)| ≤M . We have∣∣∣ ∫

Rd

kn(x)g(x) dx− g(0)
∣∣∣ = ∣∣∣ ∫

Rd

kn(x)
(
g(x)− g(0)

)
dx

∣∣∣
≤

∫
|x|≤ε

kn(x)|g(x)− g(0)| dx+

∫
|x|>ε

kn(x)
(
|g(x)|+ |g(0)|

)
dx

≤ sup
|x|≤ε

|g(x)− g(0)|+ 2M

∫
|x|>ε

kn(x) dx.

Using the second condition and taking lim sup, we have

lim sup
n→∞

LHS ≤ sup
|x|≤ε

|g(x)− g(0)|.

Since ε is arbitrary, and g is continuous at 0, the limit at LHS must be 0. □

The heat kernel {Gt(x)}t>0 gives an approximate identity as t ↓ 0.

3.2.4 Fundamental solution and derivation from scaling symmetry

This part follows the presentation in [Eva98, 2.3.1.a].
The fundamental solution G(t, x) = Gt(x) solves the following Cauchy problem{

∂tG = ∆G,

G(0, x) = δ(x),
(3.10)

where δ is a generalized function that satisfies

δ ∗ ϕ = ϕ, ∀ϕ ∈ C(R).

Physists usually think of the function δ(x) as

δ(x) =

{
∞, x = 0,

0, x ̸= 0,

so that
∫
Rd δ(x) dx = 1. For us, we could think of δ(x) as the limit of an approximate identity. Indeed,

lim
t↓0

Gt(x) =

{
∞, x = 0,

0, x ̸= 0.

We will give a second derivation of the solution to (3.10), using scaling symmetry of the heat
equation. For simplicity let us assume d = 1.

We seek a solution to (3.10) invariant under the transform

u(t, x) 7→ uλ := λαu(λt, λβx).

Letting u = uλ, we obtain

u(t, x) =
1

tα
v(
x

tβ
), v(y) = u(1, y).
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Using the expression, we have

∂tu = −αt−α−1v(xt−β)− βt−αxt−βv′(xt−β), ∂xxu = t−α · t−2βv′′(xt−β).

From the heat equation ∂tu = ∂xxu, the power in t must agree, so we have

α+ 1 = α+ 2β =⇒ β = 1/2.

and the function v must solve
−αv(r)− βrv′(r) = v′′(r).

To fix α, we assume the initial condition is also invariant, that is

uλ(0, x) = λαu(0, x) = λαδ(λ1/2x) = δ(x).

Using the fact that
∫
δ(x) dx = 1, we obtain α = 1/2.

So v solves
1

2
v +

1

2
rv′ + v′′ = 0.

Integrating once, we obtain
1

2
rv + v′ = const = 0,

where we fix the constant assuming

lim
r→∞

v(r) = lim
r→∞

v′(r) = 0.

Finally, from v′ = −1
2rv, we obtain

v = Ce−
r2

4 .

3.2.5 Understand the fundamental solution

The solution to the heat equation on the R can be written as

u(t, x) =

∫
Gt(x− y)ϕ(y) dy.

Let Γ(t, x; s, y) = Gt−s(x− y). For fixed (s, y), Γ(·, ·; s, y) solves{
∂tΓ−∆Γ = 0, t > s, x ∈ R,

lim
t↓s

Γ(t, x; s, y) = δ(x− y).

The solution Γ(·, ·; s, y) can be thought of as the HE solution of placing a heat source at location y at
time s. Γ(t, x; s, y) is called the fundamental solution.

We can also understand the role of Γ from the principle of superposition. If the heat equation has
initial condition

ϕ(x) =

∫
δ(x− y)ϕ(y) dy,

that is, a “linear combination” of δ-functions with weights given by ϕ, then the solution is also a linear
combination of Γ with the same weights:

u(t, x) =

∫
Γ(t, x; s, y)ϕ(y) dy.
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We can compare this terminology with the same one from the ODE theory. Recall that for a
constant coefficient linear ODE

ẋ(t) = Ax(t),

its fundamental solution is

Φ(t) = eAt =
∞∑
n=0

(At)n

n!
,

so that for any initial condition x0, the solution is given by Φ(t)x0.
From the explicit form of the solution, we have a few more observations. First, for all ϕ ≥ 0, we

have
(Gt ∗ ϕ)(x) > 0, ∀x, ∀t > 0.

This indicates that diffusion has infinite speed of propagation: consider ϕ(x) representing the density
of particles, and ϕ(x) = 1(−∞,0](x); then at t > 0, the particles immediately spread to the whole real
line.

Second, the heat equation has a smoothing effect on the initial condition. For a general function f ,
the decay in its Fourier transform f̂ implies differentiability in f , since

Dαf =
[
(2πξ)αf̂

]∨
.

The heat equation, in the Fourier space, turns any function ϕ̂ into

ϕ̂(ξ) 7→ e−4π2|ξ|2tϕ̂(ξ),

which has super-exponential decay as long as t > 0. In other words, the heat equation solution
becomes smooth at any positive time.

3.2.6 Duhamel’s principle

We consider the non-homogeneous problem{
∂tu = ∆u+ f, t > 0, x ∈ Rd,

u(0, x) = ϕ(x), x = 0.
(3.11)

Again, we look at the analogous linear ODE system first.
To solve the non-homogeneous ODE system

ẋ(t) = Ax(t) + f(t), x(0) = x0,

we use variation of constant, writing the candidate solution as

x(t) = Φ(t)c(t), (3.12)

where c(t) is a function to be determined, and Φ(t) = eAt is the fundamental solution, which solves
the matrix equation

dΦ(t) = AΦ = ΦA.

Differentiating the expression (3.12), we obtain

ẋ(t) = Φ̇(t)c(t) + Φ(t)ċ(t) = AΦ(t)c(t) + Φ(t)ċ(t),
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so c solves
ċ(t) =

[
Φ(t)

]−1
f(t) = Φ(−t)f(t).

Therefore,

c(t) =

∫ t

0
Φ(−s)f(s) ds+ c(0),

and hence

x(t) = Φ(t)x0 +Φ(t)

∫ t

0
Φ(−s)f(s) ds = Φ(t)x0 +

∫ t

0
Φ(t− s)f(s) ds.

That is, the final solution is a combination of the effect of the non-homogeneous terms f(s) from all
times, where the source at time s evolves for a duration of t− s. This form of solution holds for much
more general linear systems, and is refereed to as the Duhamel’s principle.

For (3.11) we can formulate the following result.

Theorem 3.9 Let f ∈ C1,2
(
(0,∞)× Rd

)
∩ Cc([0,∞)× Rd) and ϕ ∈ Cc(Rd). Then

u(t, x) =

∫
Rd

Γ(t, x; 0, y)ϕ(y) dy +

∫ t

0
Γ(t, x; s, y)f(s, y) dyds ∈ C1,2

(
(0,∞)× Rd

)
,

solves (3.11) with
lim

(t,x)→(0,x0)
u(t, x) = 0, ∀x0 ∈ Rd.

Proof: Without loss of generality we can assume ϕ = 0. Since Γ(t, x; s, y) = Gt−s(x − y), using a
change of variable s 7→ t− s, y 7→ x− y, we can write

u(t, x) =

∫ t

0

∫ d

R
Gs(y)f(t− s, x− y) dsdy.

Therefore, ∂t, ∂xixj can be passed to f under the integral, and hence u ∈ C1,2
(
(0,∞)× Rd

)
.

We have

∂tu−∆u =

∫
Rd

Gt(y)f(0, x− y) dy +

∫ t

0

∫
Rd

Gs(y)(∂t −∆x)f(t− s, x− y) dsdy

= K +

∫ t

ε
. . .+

∫ ε

0
. . . = K + I1 + I2.

For I2, we have
|I2| ≤ ε

(
∥∂tf∥L∞ + ∥D2f∥L∞

)
≤ Cε.

For I1, using integration by parts we have

I1 =

∫ t

ε

∫
Rd

Gs(y)(−∂s −∆y)f(t− s, x− y) dsdy

=

∫ t

ε

∫
Rd

[
∂sGs(y)−∆yGs(y)

]
f(t− s, x− y) dsdy −K +

∫
Rd

Gε(y)f(t− ε, x− y) dy.

The first term is 0 since Gs(y) solves the HE for s > 0. The last term can be written as (Gε ∗ f(t −
ε, ·))(x), and we have

∥(Gε ∗ f(t, ·))− f(t, ·)∥L∞ → 0,

∥Gε ∗ f(t− ε, ·)−Gε ∗ f(t, ·)∥L∞ ≤ ∥f(t− ε, ·)− f(t, ·)∥L∞∥Gε∥L1

→ 0, ε ↓ 0.
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Here, the first line is due to that {Gε} is an approximate identity, the second line is by the Young’s
inequality, and the last line follows from the f is a continuous function with compact support.

Therefore,
lim
ε→0

(Gε ∗ f(t− ε, ·))(x) = f(t, x),

uniformly in x, and ∂tu = ∆u+ f for t > 0, x ∈ Rd.
Finally,

∥u(t, ·)∥L∞ ≤ t∥f∥L∞ → 0,

so the initial condition is satisfies. □

We can vaguely formulate the Duhamel’s principle as follows.

Theorem 3.10 Suppose that x(t) = Φ(t)x0 solves the equation

x′(t) = Ax(t), x(0) = x0,

where Φ(t) and A are linear operators. Then

x(t) = Φ(t)x0 +

∫ t

0
Φ(t− s)f(s) ds (3.13)

solves the non-homogeneous equation

x′(t) = Ax(t) + f(t), t > 0.

Proof: Let x(t) be defined by (3.13). Differentiating in t yields

x′(t) = AΦ(t)x0 +Φ(0)f(t) +

∫ t

0
Φ′(t− s)f(s) ds.

Since Φ(t)x0 solves the homogeneous equation, we have Φ(0) = Id and

Φ′(t) = AΦ(t).

Hence,

x′(t) = AΦ(t)x0+ f(t)+

∫ t

0
AΦ(t− s)f(s) ds = AΦ(t)x0+ f(t)+A

∫ t

0
Φ(t− s)f(s) ds = Ax(t)+ f(t),

as desired. □

We can also apply Duhamel’s principle in the Fourier space. Again assume ϕ = 0. Let û(t, ξ) =
[Fu(t, ·)](ξ) and f̂(t, ξ) = [Ff(t, ·)](ξ). Then û solves

∂tû(t, ξ) = −4π2|ξ|2t · û(t, ξ) + f̂(t, ξ), û(t, 0) = 0.

Then we have

û(t, ξ) =

∫ t

0
e−4π2|ξ|2(t−s)f̂(s, ξ) ds,

so

u(t, x) =

∫ t

0

[
Gt−s ∗ f(s, ·)

]
(x) ds.
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Let

Γ(t, x; s, y) =

{
Gt−s(y − x), t > s,

0, t ≤ s.

Then Γ(·, ·; s, y) solves {
(∂t −∆)Γ = δ(t− s, x− y),

Γ(0, ·;x, y) = 0.

And u(t, x) =
∫∞
0 ds

∫
Rd dy Γ(t, x; s, y)f(s, y) solves

(∂t −∆)u(t, x) =

∫ ∞

0
ds

∫
Rd

dy
([

(∂t −∆)Γ
]
(t, x; s, y)f(s, y) =

∫
δ(t− s, x− y)f(s, y) = f(t, x).

The readers can find more on Duhamel’s principle in [Eva98, 2.3.1.c]

3.2.7 Note on Fourier transform

This section will sketch the Fourier transform theory involving generalized functions.
Fourier transform is first defined for functions. The Fourier transform of a function g ∈ L1(R) is

defined by

(Fg)(ξ) :=
∫
eiξxg(x) dx. (3.14)

The integrability condition g ∈ L1(R) is to ensure the integral in (3.14) to be defined.
In general, one needs to decide where to put constants and plus/minus signs in defining the Fourier

transform; for example, more common definitions in harmonic analysis are

(Fg)(ξ) =
1√
2π

∫
e−iξxg(x) dx, or (Fg)(ξ) =

∫
e−2πiξxg(x) dx.

But (3.14) agrees with the form of characteristic functions used in the probability theory so we will
stick to it.

One can also define the inverse Fourier transform by

(F−1h)(x) :=
1

2π

∫
e−iξxh(ξ) dξ. (3.15)

Note that like F, the natural domain for F−1 are functions in L1(R). However, if g ∈ L1(R), then
in general we merely have Fg ∈ L∞(R), so F−1 is not a true “inverse” (but it will be after a proper
generalization). When it happens that Fg ∈ L1(R), the map F−1 indeed takes Fg back to g. Here, the
form of F−1 in (3.15) depends on the choice we made in (3.14) to define F.

Proposition 3.11 If g ∈ L1(R) and Fg ∈ L1(R), then (F−1 ◦ F)g = g.

The proof typically involves some integration tricks, and can be found in most analysis/PDE
textbooks that present the Fourier transform. We skip the proof here since the most important thing
for us is to know that the Fourier transform does have an inverse, at least in some sense.

The next question is that we need to define the Fourier transform for objects other than L1 func-
tions, like the probability measures. One can say that probability measures are like L1 functions, but
we will see below that the Fourier transform can even be defined for unbounded functions/measures.
The key are the “Schwartz space” and its dual space, the “tempered distributions”.
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The Schwartz space contains smooth functions that decays fast at ∞; more precisely,

S = {g ∈ C∞(R) : lim
|x|→∞

|xk|
∣∣g(m)(x)

∣∣ = 0, . ∀k,m ≥ 0}.

The functions in S are called Schwartz functions. We can talk about convergence in S: gn → g in S
if for every k,m ≥ 0, supx|x|k|g

(m)
n (x)− g(m)(x)| → 0. The convergence can also characterized by the

metric

d(f, g) =
∞∑

k,m=0

|f − g|k,m ∧ 1

2m+k
, |h|k,m := sup

x
|x|k|h(m)(x)|.

A nice thing about the Fourier transform is that it turns differentiation ∂kx into multiplica-
tion (−iξ)k and vise versa.

Proposition 3.12 Let g ∈ S. Then for k ≥ 1,

(Fg(k))(ξ) = (−iξ)k(Fg)(ξ), F
(
(−ix)kg

)
= Fg(k).

Hence, the Schwartz space S is invariant under F. By Proposition 3.11, it is a bijection on S.

Proposition 3.13 The Fourier transform F : S → S is a bijection.

Another obvious fact is that F is linear: F(f + g) = Ff + Fg. It is natural to consider the action
of F on the dual of S, called the tempered distribution, defined by

S ′ := {continuous, linear functional on S}
= {ℓlinear : S → R, . |ℓ(g)| ≤ Cm,k|g|k,m, ∀k,m ≥ 0}.

The space S ′ contains all probability measures µ, identified with the linear functional

ℓµ(g) :=

∫
g(x) dµ(x).

It also contains S itself, identified with the linear functionals defined by taking L2 inner product:

ℓh(g) :=

∫
g(x)h(x) dx, h ∈ S.

The Fourier transform can be defined on S ′ by duality:

(Fℓ)(g) := ℓ(Fg).

For example, if µ is a probability measure on R, then by Fubini’s Theorem,

(Fµ)(g) = µ(Fg) =
∫ [∫

eiξx dx
]
dµ(ξ) =

∫ [∫
eiξx dµ(ξ)

]
g(x) dx =

∫
φµ(x)g(x) dx, ∀g ∈ S,

where φµ is the ch.f. of µ. Hence, the ch.f. φµ is F(µ), when µ is treated as an element in S ′.
Since F : S → S is a bijection, it is also a bijection on S ′. Therefore, a probability measure is uniquely
determined by its ch.f.

3.3 Heat equation on bounded domains, separation of variables

Some of the materials in this section can be found in [Zho05, 3.2]
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3.3.1 Motivation

Consider the linear ODE system
ẋ(t) = Ax(t).

Assume that the matrix A ∈ Rd×d can be diagonalized as A = PΛP−1, then y = P−1x solves ẏ =
Λy(t), and hence

y(t) =
(
eλityi(0)

)
.

Plugging in, we obtain

x(t) = [v1 · · · vd]Λ[c1 . . . cd]T =
d∑

i=1

cie
λitv̇i.

As the principle of superposition suggest, if xi(t) = eλitv⃗i are solutions, then their linear combinations

d∑
i=1

cie
λitv⃗i

are also solutions. Here, (λi, v⃗i) are eigen-pairs of the matrix A.
Returning to the heat equation ∂tu = ∆u. What are the “eigenfunctions” of the Laplacian opera-

tor ∆? We have seen that
∆e2πiξ·x = −4π2|ξ|2e2πiξ·x.

Thus, (−4π2|ξ|2, e2πiξ·x) may be interpreted as eigenpairs. By applying the Fourier transform, the
heat equation solution can be expressed as

u(t, x) =

∫
û(t, ξ)e2πiξ·x dξ =

∫
û(0, ξ)e−4π2|ξ|2te2πiξ·x dξ,

which is analogous to the linear ODE solution
∑d

j=1 cje
λjtv⃗j .

3.3.2 Spectral theory of the Laplacian operator

The characterization of (−4π2|ξ|2, e2πiξ·x) as an eigenpair of the Laplacian on Rd is not entirely accu-
rate, since the function x 7→ e2πiξ·x does not belong to L2(Rd), the standard space for spectral theory
of linear operators. In fact, λ = −4π2|ξ| belongs to the continuous spectrum of the Laplacian, whereas
eigenpairs are associated with the point spectrum of an operator.

One way to characterize the continuous spectrum is the following. For any λ > 0, for every ε > 0,
there is fε ∈ L2(Rd) ∩ C2(Rd) such that

∥∆fε + λfε∥L2 ≤ ε.

The appearance of the continuous spectrum is essentially due to the infinite-dimensional nature of the
operator.

However, the spectral theory of ∆ on a bounded domain is much simpler. As an example, let Ω
be a bounded C1-domain and consider the eigenvalue problem −∆u = λu, x ∈ Ω

αu+ β
∂u

∂n
= 0, x ∈ ∂Ω.

(3.16)

Here, α and β are constants such that α2 + β2 > 0. If (λ, u) satisfies the above equation, then it is
called an eigenpair. The following holds.
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Theorem 3.14 1. −∆ is symmetric in L2(Ω): (−∆u, v)L2 = (u,−∆v)L2.

2. All eigenvalues of −∆ are real; and if α, β ≥ 0, they are non-negative.

3. If (λ1, u) and (λ2, v) are two eigenpairs such that λ1 ̸= λ2, then (u, v)L2 = 0.

4. The eigenvalues are countable, and if ordered as 0 ≤ λ1 ≤ λ2 ≤ · · ·, then limn→∞ λn = ∞.

5. The eigenfunctions {wk} forms an orthonormal basis for L2(Ω), that is, for any f ∈ L2(Ω)
satisfying the boundary condition, there are ck such that

f(x) = L2-

∞∑
k=1

ckwk(x).

Remark 3.1 We will prove the first three items, which is analogous to the spectral theory of semi-positive definite
matrices. The last two items requires deeper results from functional analysis.

For more on the eigenvalue problem of −∆, the readers can refer to [Zho05, Thm 3.6] and [Eva98,
6.5.1].
Proof: We have ∫

Ω
(u∆v − v∆u) dx =

∫
∂Ω

(u
∂v

∂n
− v

∂u

∂n
) dS.

Since (α, β) is a non-trivial solution of the linear system

αu+ β
∂u

∂n
= αv + β

∂v

∂n
= 0,

we have

det

[
u ∂u

∂n

v ∂v
∂n

]
= u

∂v

∂n
− v

∂u

∂n
= 0.

This proves the first item.
Let (λ, u) be an eigenpair. Then

λ

∫
Ω
|u|2 = λ

∫
Ω
ū(−∆u) =

∫
Ω
(−∆ū)u = λ̄

∫
Ω
|u|2.

Hence λ = λ̄, which implies λ ∈ R. If α, β ≥ 0, then on ∂Ω, we have u · ∂u
∂n ≥ 0. Therefore,

λ

∫
Ω
|u|2 =

∫
Ω
(−∆u)u =

∫
Ω
∥∇u∥2 −

∫
∂Ω
u
∂u

∂n
≥ 0.

So λ ≥ 0.
Let (λ1, u) and (λ2, v) be two eigenpairs with λ1 ̸= λ2. We have

λ1

∫
Ω
uv =

∫
Ω
(−∆u)v =

∫
Ω
v(−∆u) +

∫
∂Ω

(u
∂v

∂n
− v

∂u

∂n
) = λ2

∫
Ω
uv.

Hence,
∫
Ω uv = 0.

□
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3.3.3 Separation of variables

Exact solutions to the eigenvalue problem (3.16) are difficult to obtain, unless the domain Ω is suffi-
ciently simple such as an interval or a rectangle. In such cases, the final two items of Theorem 3.14 can
be directly verified by theory of Fourier series. The method of solving linear PDEs using eigenfunction
expansion is also known as separation of variables, which is typically formulated in a different way.

Set up We will illustrate how to solve the following PDE using separation of variables:
∂tu = ∂xxu, t > 0, x ∈ (0, ℓ),

u(0, x) = ϕ(x), x ∈ (0, ℓ),

−α1u
′(0) + β1u(0) = 0,

α2u
′(ℓ) + β2u(ℓ) = 0.

(3.17)

Here, ℓ > 0 so that Ω = (0, ℓ), and αi, βi are constants.
Separation of variables usually consists of the following steps.
Step 1: consider nontrivial solution of the form (where t, x are separated):

u(t, x) = T (t)X(x).

Plugging it into the equation, we obtain

T ′(t)X(t) = T (t)X ′′(x).

Hence,
T ′(t)

T (t)
=
X ′′(x)

X(x)
=: −λ,

which is a constant since the expression is independent of t and x. Given λ, the functions T and X
satisfy different equations. For T , it solves

T ′(t) = −λT (t),

while for X, combined with the boundary condition, it solves the Sturm-Liouville problem
X ′′(x) + λX(x) = 0, x ∈ (0, ℓ),

−α1X
′(0) + β1X(0) = 0,

α2X
′(ℓ) + β2X(ℓ) = 0.

(3.18)

Step 2:: solve the Sturm-Liouville problem (3.18). This is the eigenvalue problem for ∂xx on (0, ℓ)
with the given boundary condition. Denote by (λn, Xn) all its eigenpairs, and let Tn(t) = e−λntTn(0).

Step 3: by principle of superposition, any linear combination of

un(t, x) = Tn(t)Xn(x)

will satisfy the equation and the boundary condition. We need to determine a correct combination so
that the initial condition is also satisfied. This is possible since {Xn(x)} is a basis in L2(0, ℓ), so we
have the decomposition

ϕ(x) =

∞∑
n=1

ϕnXn(x).

With this decomposition, the final solution to (3.17) is given by

u(t, x) =

∞∑
n=1

ϕne
−λntXn(x).
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Examples Example 1: Consider the equation
∂tu = ∂xxu, x ∈ (0, ℓ),

u(t, ℓ) = u(t, 0) = 0,

u(0, x) = ϕ(x).

The correspondign Sturm-Liouville problem is

X ′′(x) + λX = 0, X(0) = X(ℓ) = 0.

The general solution to the S-L problem is

X(x) = C1 sin(
√
λx) + C2 cos(

√
λx).

To match the boundary condition, we must have C2 = 0 and
√
λℓ = nπ, so that λ =

(
nπ
ℓ

)2
. Hence,

Xn(x) = sin
nπx

ℓ
.

The solution is then given by

u(t, x) =
∞∑
n=1

cne
−
(

nπ
ℓ

)2
t sin

nπx

ℓ
.

The constants cn are determined by

ϕ(x) =
∞∑
n=1

cn sin
nπx

ℓ
.

As the theory of the Fourier series suggests, we should use the orthogonality of the basis function to
find out cn, that is,∫ ℓ

0
sin

nπx

ℓ
ϕ(x) dx =

∫ ℓ

0
sin

nπx

ℓ

∞∑
m=1

cm sin
mπx

ℓ
dx = cn

∫ ℓ

0
sin2

nπx

ℓ
dx = cn · ℓ

2
.

Hence,

cn =
2

ℓ

∫ ℓ

0
sin

nπx

ℓ
ϕ(x) dx.

Example 2: Consider the equation
∂tu = ∂xxu, x ∈ (0, ℓ),

∂xu(t, ℓ) = ∂xu(t, 0) = 0,

u(0, x) = ϕ(x).

The correspondign Sturm-Liouville problem is

X ′′(x) + λX = 0, X ′(0) = X ′(ℓ) = 0.

The general solution to the S-L problem is

X(x) = C1 sin(
√
λx) + C2 cos(

√
λx).
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To match the boundary condition, we must have C1 = 0 and λ =
(
nπ
ℓ

)2
. Hence,

Xn(x) = cos
nπx

ℓ
.

The solution is then given by

u(t, x) =
∞∑
n=1

cne
−
(

nπ
ℓ

)2
t cos

nπx

ℓ
.

The constants cn are given by

cn =

{
1
ℓ

∫ ℓ
0 ϕ(x) dx, n = 0,

2
ℓ

∫ ℓ
0 sin nπx

ℓ ϕ(x) dx, n ≥ 1.

Example 3: Consider the equation
∂tu = ∂xxu, x ∈ (0, ℓ),

u(t, ℓ) = ∂xu(t, 0) = 0,

u(0, x) = ϕ(x).

The correspondign Sturm-Liouville problem is

X ′′(x) + λX = 0, X(0) = X ′(ℓ) = 0.

The general solution to the S-L problem is

X(x) = C1 sin(
√
λx) + C2 cos(

√
λx).

To match the boundary condition, we have C2 = 0 and

√
λℓ = (n+ 1/2)π =⇒ λn =

(n+ 1/2)2π2

ℓ2
, n ≥ 0.

Hence,

Xn(x) = sin
(n+ 1/2)πx

ℓ
.

The solution is then given by

u(t, x) =

∞∑
n=0

cne
−
(

(n+1/2)π
ℓ

)2
t sin

(n+ 1/2)πx

ℓ
.

The constants cn are given by

cn =
[∫ ℓ

0
sin2

(n+ 1/2)πx

ℓ
dx

]−1
∫ ℓ

0
sin

(n+ 1/2)πx

ℓ
ϕ(x) dx =

2

ℓ

∫ ℓ

0
sin

(n+ 1/2)π

ℓ
ϕ(x) dx.
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Solvable eigenvalue problems We list some cases where the eigenvalue problem −∆Xn(x) = λXn(x), x ∈ Ω,

αXn + β
∂Xn

∂n
= 0, x ∈ ∂Ω

(3.19)

is solvable.
Ω = [0, 2π] (or any interval).

Xn(x) = an cos(
√
λnx) + bn sin(

√
λnx) = cn sin(

√
λnx+ θn).

Ω = [0, 2π]d (or any rectangles).

Xn⃗(x⃗) = sin(
√
λn1x1 + θ1) · · · sin(

√
λnd

xd + θd), n⃗ = (n1, . . . , nd).

In particular, if Xn = 0 on the boundary, then

Xn⃗(x) = sin(n1x1) · · · sin(ndxd).

Periodic boundary condition Ω = Td.

Xn⃗(x⃗) = ein⃗·x⃗, n⃗ ∈ Zd.

Two-dimensional ball: Ω = B1(0) ⊂ R2. We can use separation of variables in the polar
coordinate to find the eigenfunctions. We write

X(x) = ψ(r, θ) = R(r)Θ(θ),

and λ = k2 ≥ 0. Then

0 = ∆ψ(r, θ) + k2ψ = ∂rrψ +
1

r
∂rψr + r−2∂θθψ

=
(
R′′(r) + r−1R′ + k2R

)
Θ+ r−2RΘ′′.

Hence,
r2
(
R′′ + r−1R′ + k2R

)
R

= −Θ′′

Θ
= µ.

Since Θ is 2π-periodic, we have Θ(θ) = einθ, and hence µ = n2. Then R solves

r2R′′ + rR′ + (r2k2 − n2)R = 0.

We write R(r) = J(kr). Then

x2J ′′(x) + xJ ′(x) + (x2 − n2)J(x) = 0, x = kr. (3.20)

Solutions to (3.20) are Bessel functions Jm(x), indexed by m ≥ 0. The Dirichlet boundary condition
requires u

∣∣
r=1

= 0, which gives Jm(k) = 0, so k is a zero of Jm.
For the equation ∆u = 0, k = 0 and R solves

r2R′′ + rR′ = n2R =⇒ R(r) = r|n|.

Hence,

u(r, θ) =

∞∑
n=−∞

anr
|n|einθ.
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3.3.4 Non-homogeneous equation and Green’s function

Duhamel’s principle Consider the equation
∂tu = ∂xxu+ f, t > 0, x ∈ (0, ℓ),

u(t, 0) = u(t, ℓ) = 0, t > 0,

u(0, x) = ϕ(x), x ∈ (0, ℓ).

To solve it, we expand u(t, ·), f(t, ·) and ϕ(·) in the basis {sin nπx
ℓ }:

u(t, x) =
∞∑
n=1

Tn(t) sin
nπx

ℓ
,

f(t, x) =

∞∑
n=1

fn(t) sin
nπx

ℓ
,

ϕ(x) =
∞∑
n=1

ϕn sin
nπx

ℓ
,

where

fn(t) =
2

ℓ

∫ ℓ

0
f(t, y) sin

nπy

ℓ
dy,

ϕn =
2

ℓ

∫ ℓ

0
ϕ(y) sin

nπy

ℓ
dy,

Then Tn(t) solves the ODE

T ′
n(t) +

(nπ
ℓ

)2
Tn(t) = fn(t), Tn(0) = ϕn.

From linear ODE theory or Duhamel’s principle, we have

Tn(t) = ϕne
−(nπ

ℓ
)2t +

∫ t

0
e−(nπ

ℓ
)2(t−s)fn(s) ds.

Hence,

u(t, x) =

∫ ℓ

0
ϕ(y)G(t;x, y) dy +

∫ t

0
ds

∫ ℓ

0
f(s, y)G(t− s;x, y) dy,

where

G(t;x, y) =
2

ℓ

∞∑
n=1

sin
nπx

ℓ
sin

nπy

ℓ
e−(nπ

ℓ
)2t. (3.21)

The function G is called the Green’s function. If we define

Φ(t) : h(·) 7→
[
Φ(t)h

]
(x) =

∫ ℓ

0
G(t;x, y)h(y) dy,

then we can rewrite the above Duhamel’s principle as

u(t, ·) = Φ(t)ϕ+

∫ t

0
Φ(t− s)f(s, ·) ds.
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Green’s function We introduce

G(t, x; s, y) =

{
G(t− s;x, y), t > s,

0, t ≤ s.

Then formally the Green’s function G(t, x; s, y) solves
∂tG− ∂xxG = δ(t− s, y − x), t > 0, x ∈ (0, ℓ),

u(t, 0) = u(t, ℓ) = 0, t > 0,

u(0, x) = 0.

The Green’s function is similar to the fundamental solution, but the former satisfies additional some
boundary conditions.

Properties of the Green’s function Using the explicity form of the Green’s function (3.21), we
will prove some of its properties. These properties still holds true for general domain and boundary
condition, but the proof will be more difficult.

Symmetry: G(t, x; s, y) = G(t, y; s, x). One can say that the influence of x at y is the same as
the influence of y at x.

Smoothness: G(t, x; s, y) ∈ C∞ and

(∂t − ∂xx)G = (∂s + ∂yy)G = 0.

Singularity at t = 0: for some constant C > 0,

|G(t, x; s, y)| ≤ C√
t− s

.

For the fundamental solution Gt(x) =
1√
4πt
e−

x2

4t , the same bound holds.

Proof: It suffices to show that
2

ℓ

∞∑
n=1

e−(nπ
ℓ
)2t ≤ C√

t
.

Indeed,

∞∑
n=1

e−an2
=

∑
√
an≤1

e−an2
+

∑
√
an>

e−an2

≤ 1√
a
+

∑
n>1/

√
a

e−n
√
a

≤ 1√
a
+

e−1

1− e−
√
a

≤ C√
a
,

provided that a < 1. Letting a = −π2t/ℓ2 completes the proof. □

Initial condition: if ϕ ∈ C1[0, ℓ] and ϕ(0) = ϕ(ℓ) = 0, then

lim
t→0+

∫ ℓ

0
G(t;x, y)ϕ(y) dy = ϕ(x).
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Proof: We have ∫ ℓ

0
G(t;x, y)ϕ(y) dy =

∫ ℓ

0

∞∑
n=1

2

ℓ
sin

nπx

ℓ
sin

nπy

ℓ
e−(nπ

ℓ
)2tϕ(y) dy

=
∞∑
n=1

2

ℓ

∫ ℓ

0
sin

nπx

ℓ
sin

nπy

ℓ
ϕ(y) dy

=

∞∑
n=1

ϕn sin
nπx

ℓ
e−(nπ

ℓ
)2t.

One can show that
∞∑
n=1

ϕn sin
nπx

ℓ

converges since ϕ ∈ C1, and e−(nπ
ℓ
)2t is monotone in t. By Abel’s test, the whole series converges

uniformly in t, and hence

lim
t→0+

∑
n=1

ϕn sin
nπx

ℓ
e−(nπ

ℓ
)2t =

∑
n=1

ϕn sin
nπx

ℓ
lim
t→0+

e−(nπ
ℓ
)2t = ϕ(x).

□

We only use the fact that the Fourier series conveges. A weaker sufficient condition may be ϕ
being absolute continuous.

3.3.5 Non-homogeneous boundary conditions

Let us consider a heat equation on (0, ℓ) where the boundary condition is time-dependent and thus
non-homogeneous: 

(∂t −∆)u = f, t > 0, x ∈ (0, ℓ),

u(t, 0) = g1(t), t > 0,

u(t, ℓ) = g2(t), t > 0,

u(0, x) = ϕ(x), x ∈ (0, ℓ).

(3.22)

Let

ũ(t, x) = u(t, x)− x

ℓ
g2(t) +

ℓ− x

ℓ
g1(t) =: u(t, x)− h(t, x).

Then ũ solves (3.22) with

f̃(t, x) = f(t, x)−
[x
ℓ
g′2(t) +

ℓ− x

ℓ
g′1(t)

]
= f(t, x)− ∂th(t, x),

ϕ̃(x) = ϕ(x)−
[x
ℓ
g2(0) +

ℓ− x

ℓ
g1(0)

]
= ϕ(x)− h(0, x).
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For simplicity we assume f = ϕ = 0. Then

u(t, x) = h(t, x)−
∫ ℓ

0
G(t, x; 0, y)h(0, y) dy −

∫ t

0

∫ ℓ

0
G(t, x; s, y)∂sh(s, y) dyds

=

∫ t

0

∫ ℓ

0
∂sG(t, x; s, y)h(s, y) dsdy

=

∫ t

0

∫ ℓ

0
−∂yyG(t, x; s, y)h(s, y) dsdy

=

∫ t

0

[
−∂yG(t, x; s, y)h(s, y)

∣∣ℓ
0
+G(t, x; s, y)∂sh(s, y)

∣∣ℓ
0
−
∫ ℓ

0
G(t, x; s, y)∂ssh(s, y) dy

]
ds

=

∫ t

0
∂yG(t, x; s, y)g1(s)− ∂yG(t, x; s, ℓ)g2(s) ds.

Here, in the second line we used

lim
s↑t

∫ ℓ

0
G(t, x; s, y)h(s, y) dy =

∫ ℓ

0
δ(x− y)h(t, y) dy = h(t, x),

and in the fourth line we used G(t, x, s, y) = 0 for x = 0, ℓ and ∂ssh(s, y) = 0.
We point out that the final solution is also a linear functional of the boundary data g1 and g2.

3.4 Maximum principle

For more on the maximum principle of the heat equation, the readers can refer to [Zho05, 3.3.1]
or [Eva98, 2.3.3.a]

3.4.1 Bounded domain

For a domain Ω and T > 0, we introduce the parabolic interior

ΩT = (0, T ]× Ω

and the parabolic boundary

∂pΩT =
(
{0} × Ω

)
∪
(
[0, T ]× ∂Ω

)
= ΩT \ ΩT .

Theorem 3.15 (Weak maximum principle) Let u ∈ C1,2(ΩT ) ∩ C(ΩT ). If

∂tu(t, x)−∆u(t, x) ≤ 0, x ∈ ΩT ,

then
max
ΩT

u = max
∂pΩT

u,

that is, the maximum on ΩT is acheived on the parabolic boundary.

The most application of the maximum principle is the uniqueness of the solution to the heat
equation.

Theorem 3.16 There is at most one solution u ∈ C1,2(ΩT ) ∩ C(ΩT ) to the PDE
∂tu = ∆u, ΩT ,

u
∣∣
∂Ω

= g(t), ∂Ω,

u
∣∣
t=0

= ϕ.
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Proof: Let u1, u2 be two solutions. Then v = u1 − u2 ∈ C1,2(ΩT ) ∩ C(ΩT ) solves{
∂tv = ∆v, ΩT ,

v = 0, ∂pΩT .

By weak maximum principle,
max
ΩT

v ≤ max
∂pΩT

v = 0,

max
ΩT

(−v) ≤ max
∂pΩT

(−v) = 0,
=⇒ v ≡ 0 in ΩT .

□

Now let us prove the weak maximum principle.
Proof: First, let us assume that

∂tu−∆u < 0, x ∈ ΩT . (3.23)

Assume on the contrary that u achieves the maximum at (t∗, x∗) ∈ ΩT . Since u(t∗, x∗) ≥ u(t, x∗) for
all t < t∗, we have ∂tu(t

∗, x∗) ≥ 0. Also, since u(t∗, x∗) ≥ u(t∗, x) for all x, the Hessian of u(t∗, ·)
at x = x∗ is negative, and hence

∆u(t∗, x∗) ≤ 0.

Combination of these two inequalities contradicts with (3.23).
If the inequality is non-strict, for every ε > 0, let us consider uε(t, x) = u(t, x)− tε. Then

∂tuε −∆uε = ∂tu−∆u− ε < 0, x ∈ ΩT ,

so the weak maximum principle for uε implies

max
ΩT

uε ≤ max
∂pΩT

uε.

Taking ε→ 0+ we obtain the desired result. □

3.4.2 Unbounded domain

We can use the maximum principle to obtain uniqueness of heat equation solution on unbounded
domain.

Theorem 3.17 If u ∈ C1,2((0,∞)× Rd) ∩ C([0,∞)× Rd) solves

∂tu = ∆u, u(0, x) = 0,

and satisfies
|u(t, x)| ≤ CeAx2

for some A > 0. Then u = 0.

Proof: Let ΩL,T = (0, T ]×BL(0), where T < 1
4A . Let ε > 0 be such that T + ε < 1

4A . We consider

v(t, x) = u(t, x)− µ

(T + ε− t)d/2
e

|x|2
4(T+ε−t) , t ∈ [0, T ].
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Then ∂tv −∆v = 0. On ΩL,T the weak maximum principle applies, so

max
ΩL,T

v = max
∂pΩL,T

v.

We notice two things. First, v(0, x) ≤ u(0, x) = 0. Second, for every µ > 0, when |x| = L,

v(t, x) ≤ CeAL2 − µ

(T + ε− t)d/2
e

L2

4(T+ε−t)

≤ CeAL2 − µ

(T + ε)d/2
e

L2

4(T+ε)

≤ 0,

provided L is sufficiently large, since 1
4(T+ε) > A. Hence, v ≤ 0 on ΓL,T . This implies

u(t, x) ≤ µ

(T + ε− t)d/2
e

|x|2
4(T+ε−t) , ∀t ∈ [0, T ], ∀x.

Since µ > 0 is arbitrary, we obtain u(t, x) ≤ 0 when t ∈ [0, T ]. Similarly, we have −u(t, x) ≤ 0.
Therefore, u(t, x) = 0 for t ∈ [0, T ].

Finally, we can iterate the argument on [T, 2T ], [2T, 3T ], . . . to obtain that u(t, x) = 0 for all t ≥ 0.
□

Remark 3.2 When the growth condition is not satisfied, a counterexample, known as Tychonoff’s solution can
be constructed; see Firtz John 7.1.

3.4.3 Comparison principle and stability in maximum norm

Dirichlet boundary condition, bounded domain As a corollary of the weak maximum principle,
we have the following result.

Theorem 3.18 (Comparison principle) If u, v ∈ C1,2(UT ) ∩ C(UT ) satisfy{
(∂t −∆)u ≥ (∂t −∆)v, UT ,

u ≥ v, ΓT ,

then u ≥ v in UT .

From this we can derive a stability result in the L∞ norm.

Theorem 3.19 Let ui ∈ C1,2(ΩT ) ∩ C(ΩT ), i = 1, 2, be classical solutions to
∂tui = ∆ui + fi, ΩT ,

ui
∣∣
∂Ω

= gi,

ui
∣∣
t=0

ϕi,

where fi, gi, ϕi are continuous in their respective domains. Then

max
ΩT

|u1 − u2| ≤ T∥f1 − f2∥L∞ + ∥g1 − g2∥L∞ + ∥ϕ1 − ϕ2∥L∞ .
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We can interpret this result as the map from data to solution:

(f, g, ϕ) 7→ u,

is continuous (stable) in the space of continuous functions, which is equipped with the maximum norm.
Proof: Let

v(t, x) = u1(t, x)− u2(t, x), w(t, x) = t∥f1 − f2∥L∞ + ∥g1 − g2∥L∞ + ∥ϕ1 − ϕ2∥L∞ .

Then one can check {
∂tw −∆w ≥ ∂tv −∆v, ΩT ,

w ≥ v, ΓT .

Hence, w ≥ u in UT , and

max
ΩT

|u1 − u2| ≤ ∥w∥L∞ = T∥f1 − f2∥L∞ + ∥g1 − g2∥L∞ + ∥ϕ1 − ϕ2∥L∞ .

□

mixed boundary condition, bounded domain We can also formulate similar results for more
general mixed boundary conditions. First, we need a version of comparison principle. For simplicity,
we will assume Ω = (0, ℓ), but the result holds for general bounded domains as well.

Proposition 3.20 Let u ∈ C1,2(ΩT ) ∩ C0,1(ΩT ) satisfy
Lu = ∂tu−∆u ≥ 0, ΩT ,

u(t, x) ≥ 0, Ω,

∂u

∂n
+ βu

∣∣
∂U

≥ 0, t ∈ [0, T ],

where β : ∂Ω → [0,∞). Then u ≥ 0 on ΩT .

Proof:
First let us assume the strict inequality on the boundary:

∂u

∂n
+ βu > 0, x ∈ ∂Ω.

By weak maximum principle, minΩT
u is achieved on ∂pΩT . Let (t∗, x∗) be the point of maximum.

We claim that u(t∗, x∗) ≥ 0. Indeed, if (t∗, x∗) ∈ {t = 0} × Ω, then u(0, x∗) ≥ 0 due to the initial
condition; if (t∗, x∗) ∈ [0, T ]×∂Ω, then ∂u

∂n ≤ 0 on ∂Ω. Since β ≥ 0, we have u(t∗, x∗) ≥ 0. This proves
the claim.

Next, we assume the non-strict inequality. Let

w(t, x) = 2t+ (x− ℓ/2)2.

Then

Lw ≥ 0, w
∣∣
t=0

≥ 0,
∂w

∂n
+ βw

∣∣
∂Ω

≥ c, (3.24)

where c > 0 is a constant. Also,
max
ΩT

|w| ≤ C1(T + 1)

39



by direct computation. We consider

uε(t, x) = u(t, x) + εw(t, x),

then uε satisfies the strict inequality on the boundary. Hence, we have

min
ΩT

uε ≥ 0 =⇒ min
ΩT

u ≥ −εmax
ΩT

(
2t+ (x− ℓ/2)2

)
.

Letting ε→ 0+, we obtain minΩT
u ≥ 0. □

In the proof, the assumption on the domain is used solely to construct the function w satisfying
(3.24). For a general bounded domain, such function still exists; however, its existence relies on the
theory of elliptic equations.

We can formulate the L∞-stability for mixed boundary condition.

Theorem 3.21 Let u ∈ C1,2(ΩT ) ∩ C1,0(ΩT ) be a classical solution to
Lu = ∂tu−∆u = f(t, x), (t, x) ∈ ΩT ,

u(0, x) = ϕ(x), x ∈ Ω,

∂u

∂n
+ βu

∣∣
∂Ω

= g(t, x), (t, x) ∈ ∂pΩT .

Then
max
ΩT

≤ C(T + 1)
(
∥f∥L∞(ΩT ) + ∥ϕ∥L∞(Ω) + ∥g∥L∞(∂pΩT )

)
for some constant C = C(Ω).

Proof:

Remark 3.3 If β > 0, then we do not need w.

Let w satisfy (3.24) such that
max
ΩT

|w| ≤ C1(T + 1).

We consider

v(t, x) = Ft+Φ+
G

c
± u(t, x),

where c is the constant in (3.24) and

F = ∥f∥L∞ , Φ = ∥ϕ∥L∞ , G = ∥g∥L∞ .

Then

Lv = F ± Lu+GLw ≥ 0, (t, x) ∈ ΩT ,

v(0, x) ≥ Φ± ϕ(t, x) ≥ 0, x ∈ Ω,

∂v

∂n
+ βv ≥ G+ g ≥ 0, x ∈ ∂Ω.

Hence, by Proposition 3.20, v(t, x) ≥ 0 on ΩT and

max
ΩT

|u(t, x)| ≤ FT +Φ+
∥w∥L∞

c
G.

The desired conclusion follows. □
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3.4.4 Weak maximum principle for general parabolic operators

The weak maximum principle also holds for general parabolic operators ∂t − L , where

Lf =
∑
i,j

aij(x)∂ijf(x) +
∑
i

bi(x)∂iu.

Theorem 3.22 Let Ω be a bounded domain. Suppose A(x) =
(
aij(x)

)
is positive semi-definite for

every x ∈ Ω. If u ∈ C1,2(ΩT ) ∩ C(UT ) satisfies ∂tu− Lu ≤ 0 in ΩT , then

max
UT

u = max
∂pΩT

u.

The following lemma from linear algebra is useful.

Lemma 3.23 If two symmetric d × d matrices (aij) and (bij) are positive semi-definite, then their
Hadamard product (cij) = (aijbij) is also positive semi-definite.

Proof: Assume first that ∂tu− Lu < 0 in ΩT . Assume the contrary, that is, the point of maximum
of u over ΩT , (t

∗, x∗) is in ΩT . Then we have

∂tu
∣∣
(t∗,x∗)

> 0,

∇u(t∗, x∗) = 0 =⇒
∑
i

bi(x
∗)∂iu(t

∗, x∗) = 0,

Also, the matrix
H = (Hessu(t∗, x∗)) = (∂iju(t

∗, x∗))

is negative semi-definite. Since (aij(x
∗)) is positive semi-definite, by Lemma 3.23, their Hadamard

product
M = (aij(x

∗)∂iju(t
∗, x∗))

is negative semi-definite, and hence∑
aij(x

∗)∂iju(t
∗, x∗) = 1TM1 ≤ 0,

where 1 = (1, 1, . . . , 1)T . This implies ∂tu−Lu ≥ 0 at (t∗, x∗), which contradicts with the assumption.
For the non-strict inequality, we can consider uε(t, x) = u(t, x)− εt and then let ε→ 0+.

□

The weak maximum principle about more general parabolic operators can be found in [Eva98,
7.1.4.a]

Last, we will say a few words about the strong maximum principle, which is formulated as follows.

Theorem 3.24 Let u be a classical solution to the heat equation. If Ω is connected and ∃(t0, x0) ∈ ΩT

such that
u(t0, x0) = max

ΩT

u,

then u is a constant in Ωt0.

To prove this, we need a more powerful tool: the mean-value property for the heat equation
solution. This property can also be employed to show that u ∈ C∞(ΩT ), a result which we have
derived for solutions on the whole space but not yet for general domains. Although we omit the proof
here, a parallel development exists for harmonic functions — those satisfying ∆u = 0.
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3.5 Energy estimates

Theorem 3.25 Let u ∈ C1,2(ΩT ) ∩ C(ΩT ) solve

∂tu = ∆u+ f, u
∣∣
t=0

= ϕ, u
∣∣
∂Ω

= 0.

Then there exists a constant C = C(T ) such that

sup
0≤t≤T

∥u(t, ·)∥2L2(Ω) + 2

∫ T

0
∥∇u(t, ·)∥2L2(Ω) dt ≤ C

(
∥ϕ∥2L2(Ω) +

∫ T

0
∥f(t, ·)∥2L2(Ω) dt

)
.

This result states that the solution map (ϕ, f) 7→ u is continuous in the L2-norm.
We will need the following Gronwall’s inequality.

Lemma 3.26 (Gronwall’s inequlity) Let G,F satisfy

G′(t) ≤ G(t) + F (t), F ≥ 0.

Then

G(t) ≤ et
∫ t

0
F (s) ds.

Proof: Multiplying the equation by u and integrating over Ω, we have∫
Ω
u∂tu− u∆u =

∫
Ω
uf. (3.25)

Using integration by parts and noting that u
∣∣
∂U

= 0, the LHS is

1

2

∫
Ω
u2(t, x) dx+

∫
Ω
|∇u|2(t, x) dx,

while the RHS is bounded by

1

2

∫
Ω
u2(t, x) dx+

1

2

∫
Ω
f2(t, x) dx.

Integrating over [0, t], we obtain

∥u(t, ·)∥2L2(Ω) + 2

∫ t

0
∥∇u∥2L2(Ω)(s) ds ≤ ∥ϕ∥2L2(Ω) +

∫ t

0
∥u(s, ·)∥2L2(Ω) +

∫ t

0
∥f(s, ·)∥2L2(Ω) ds.

Applying Lemma 3.26 with

G(t) =

∫ t

0
∥u(s, ·)∥2L2 ds, F (t) = ∥ϕ∥2L2 +

∫ t

0
∥f(s, ·)∥2L2 ds,

we obtain
∥u(t, ·)∥2L2 ≤ etF (t).

Therefore,

sup
0≤t≤T

∥u(t, ·)∥2L2 ≤ eTF (T ) = eT
(
∥ϕ∥2L2 +

∫ T

0
∥f(s, ·)∥2L2 ds

)
,

and

2

∫ T

0
∥∇u(t, ·)∥2L2 ≤ F (T ) +G(T ) ≤ (eT + 1)F (T ) = (eT + 1)

(
∥ϕ∥2L2 +

∫ T

0
∥f(s, ·)∥2L2 ds

)
.

This completes the proof. □
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3.6 Backward heat equation

It may happen that the PDE solution is unique, but is not stable with respect to the data. One such
example is the backward heat equation.

Proposition 3.27 Let ui ∈ C2(ΩT ), i = 1, 2, solve

∂tui = ∆u, in ΩT , ui
∣∣
∂Ω

= g.

Assume that u1(T, ·) = u2(T, ·). Then u1 ≡ u2 on ΩT .

Here, the stability cannot hold. Let φ solve

−∆φ = λφ, φ
∣∣
∂U

= 0.

Then uλ(t, x) = e(T−t)λφ(x) solves

∂tuλ = ∆uλ, uλ(T, ·) = φ(x),

with
∥uλ(0, ·)∥L2 = eTλ∥φ∥L2 .

But for the eigenvalue problem, there exists eigenpair (λ, φ) with λ arbitrarily large, so the solution
cannot be controlled by the data φ in any sense. In terms of physics, this can be interpreted as the
irreversibility of a thermodynamical system.
Proof: Let w = u1 − u2 and e(t) = ∥w(t, ·)∥2L2(Ω). We have

ė(t) = −2

∫
Ω
|∇w|2(t, x) dx = 2

∫
Ω
w∆w,

ë(t) = −4

∫
Ω
∇w · ∇wt

= 4

∫
Ω
(∆w)wt − 4

∫
∂Ω

∂w

∂n
wt

= 4

∫
Ω
|∆w|2.

Hence, by Cauchy-Schwartz,

|ė(t)|2 = 4
∣∣∣ ∫

Ω
w∆w

∣∣∣2 ≤ 4

∫
Ω
w2

∫
Ω
|∆w|2 = e(t)ë(t).

We claim that if a non-negative C2-function f satisfies

|f ′(t)|2 ≤ f(t)f ′′(t), 0 ≤ t ≤ T,

and f(T ) = 0 , then f(t) ≡ 0 for t ∈ [0, T ]. Indeed, if f(t) ̸≡ 0, then there exists an interval [a, b] such
that f(t) > 0 on [a, b) and f(b) = 0. Let g(t) = log e(t). Then

g′′(t) =
f ′′(t)f(t)− [f ′(t)]2

g(t)
≥ 0, t ∈ (a, b),

so g(t) is a convex function on (a, b). On the other hand,

lim
t→b−

g(t) = −∞.

This is impossible for a convex function, and thus leads to a contradiction. □
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4 Elliptic equation

In this section, we will study the Laplace equation ∆u = 0 and the Poisson’s equation −∆u = f .
Similar to the heat equation, the fundamental solution and the Green’s function play important roles
in the solution theory. A function Φ is called the fundamental solution if it solves

−∆u(x) = δ(x), x ∈ Rd,

and a function G(x; y) is called the Green’s function for the domain Ω, where y ∈ Ω, if{
−∆G(x; y) = δ(x− y), x ∈ Ω,

G(x; y) = 0, x ∈ ∂Ω.

We can use the Green’s function to solve the Laplace equation on a domain. Indeed, if u ∈ C2(Ω)∩
C(Ω̄) solves

−∆u(x) = 0, x ∈ Ω, u(x) = g(x), x ∈ ∂Ω, (4.1)

then formally we have

u(y) =

∫
Ω
δ(x− y)u(x) dx

=

∫
Ω
(−∆G(x; y))u(x) dx

=

∫
Ω
(−∆u)G(x; y) dx−

∫
∂Ω

∂G

∂n
u dS +

∫
∂Ω

∂u

∂n
GdS

=

∫
∂Ω

(
−∂G(x; y)

∂n

)
g(x) dS(x).

(4.2)

4.1 Fundamental solution

4.1.1 Method of Fourier transform

Let Φ(x) be the fundamental solution. Then its Fourier transform satisfies

4π2|ξ|2Φ̂(ξ) = 1,

and hence

G(x) =
( 1

4π2|ξ|2
)∧

=

∫
e2πix·ξ

4π2|ξ|2
dξ. (4.3)

This integral does not exist in the classical sense unless d ≥ 3.
We have two observations. First, the function G is radially symmetric, that is, G(x) = G(|x|).

Indeed, for any orthogonal transform O : Rd → Rd,

G(Ox) =

∫
1

4π2|ξ|2
e2πi(Ox·ξ) dξ =

∫
1

4π2|ξ|2
e2πix·O

T ξ dξ = G(x),

since |Oξ| = |ξ|. Second, there is scaling relation: for λ > 0,

G(λx) =

∫
1

4π2|ξ|2
e2πix·(λξ) dξ =

1

λd−2

∫
1

4π2|λξ|2
e2πix·(λξ) d(λξ) =

1

λd−2
G(x).

Therefore, G(x) = cd|x|d−2 for d ≥ 3.
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To determine the constant cd, we use the following argument. For any domain Ω ∋ 0, we have

1 =

∫
Ω
δ(x) dx =

∫
Ω
(−∆Φ) · 1 = −

∫
∂Ω

∂Φ

∂n
· 1.

Taking Ω = Br(0), we have

1 =

∫
∂Br(0)

(d− 2)
cd
rd−1

dS = (d− 2)
|∂Br|
rd−1

.

Let |Br| = αdr
d. Then |∂Br| = dαdr

d−1, and hence

c =
1

(d− 2)dαd
.

It is known that

αd = |B1| =
πd/2

Γ(d/2 + 1)
.

To demystify the appearance of the δ-function, we formulate the following result.

Theorem 4.1 Let f ∈ C2
c (Rd), d ≥ 3. Then

u(x) = (Φ ∗ f)(x) = 1

d(d− 2)αd

∫
Rd

1

|x− y|d−2
f(y) dy

is in C2(Rd) and solves −∆u = f .

Proof: Direct computation shows ∆Φ(x) = 0 for x ̸= 0, and ∂ij(Φ ∗ f) = Φ ∗ (∂ijf) exists so u ∈ C2.
Let x ∈ Rd and R be sufficiently large so that BR(x) contains the support of f . We have

∆u(x) =

∫
|y|≤R

Φ(y)∆xf(x−y) dy =

∫
ε≤|y|≤R

Φ(y)∆xf(x−y) dy+
∫
|y|<ε

Φ(y)∆xf(x−y) dy =: I1+I2.

For I1, since f vanishes on ∂BR, integration by parts yields

I1 = −
∫
ε≤|y|≤R

∆yΦ(y)f(x− y) dy −
∫
∂Bε

∂f

∂n
(x− y)Φ(y) dS +

∫
∂Bε

f(x− y)
∂Φ

∂n
dS

= 0 + I11 + I12.

We have

|I11| ≤ ∥Df∥L∞

∫
∂Bε

Φ(y) ≤ ∥Df∥L∞cεd−1 · 1

εd−2
→ 0, ε→ 0+,

and

|I12 − f(x)| =
∣∣∣ ∫

∂Bε

f(x− y)
∂Φ

∂n
−
∫
∂Bε

f(x)
∂Φ

∂n

∣∣∣
≤ sup

|y|≤ε
|f(x− y)− f(x)| → 0, ε→ 0,

where we used −∂Φ
∂n ≥ 0 and integrates to 1 on ∂Bε. For I2, we have

|I2| ≤ ∥D2f∥L∞

∫
|y|≤ε

G(ε) ≤ ∥D2f∥L∞cεd
1

εd−2
→ 0, ε→ 0 + .

Combining all these we prove the desired conclusion. □
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Remark 4.1 In the proof, besides ∆Φ = 0 at x ̸= 0, we have use two things:∫
∂Br

∂Φ

∂n
= −1, ∀r > 0,

and ∫
Br

G(y) dy,

∫
∂Br

G(y) dS(y) → 0, r → 0 + .

These two facts still hold for fundamental solution in d = 1, 2, as we will see.

In d = 3, the fundamental solution takes the form Φ(x) = c|x|−1. This form has significant
implications in physics. In a static electric field, Maxwell’s equation states that the electric field E⃗
satisfies

∇ · E =
ρ

ε0
, ∇× E⃗ = 0,

where ρ is the charge density and ε0 is a physical constant. The second equation implies that E⃗ is
irrotational, so it can be expressed as E⃗ = ∇Φ for some scaler potential Φ. Plugging this into the first
equation yields

∆Φ =
ρ

ε0
.

Let us consider the case of a point charge of strength q located at the origin, which corresponds to a
charge density ρ(x) = qδ(x). The potential Φ(x) is then a multiple of the fundamental solution in R3.
Specifically,

Φ(x) = − q

4πε0|x|
Taking the gradient of this potential gives the electric field produced by the point charge:

E⃗(x) =
q

4πε0|x|2
· x
|x|
.

This expression is recognized as Coulomb’s law, which states that the electric force is inversely pro-
portional to the square of the distance between two point charges. This inverse-square law can be
observed as a consequence of the three-dimensional nature of the space.

4.1.2 Argument by spherical symmetry

Since δ(x) is rotationally invariant, we postulate that the fundamental solution is radially symmetric,
that is, Φ(x) = Φ(|x|).

We need a lemma about the Laplacian of a radially symmetric function.

Lemma 4.2 Let u(x) = u(r) where r = |x|. Then

∆u = u′′(r) +
d− 1

r
u′(r).

Proof: We have

∂xiu(x) = u′(r) · xi
r
,

∂2xi
u(x) = u′′(r) · (xi/r)2 + u′(r)(1/r − xi/r · xi/r2)

= u′′(r) · x
2
i

r2
+ u′(r)

(1
r
− x2i
r2

)
.
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Summing over i and using
∑d

i=1 x
2
i = r2 give the desired result. □

Since the fundamental solution satisfies ∆Φ(x) = 0 for x ̸= 0, we have

Φ′′(r) +
d− 1

r
Φ′(r) = 0.

Integrating once gives
rΦ′ + (d− 2)Φ = const.

When d = 2, we obtain u′ = const/r and hence

u(r) = a log r + b.

Apparently we should take b = 0 since ∆const = 0. When d ̸= 2, we can solve Φ from

dΦ

const− (d− 2)Φ
=
dr

r
,

which gives
Φ(r) = ar2−d + b.

Again, b = 0. We can determine the constant using the relation∫
∂Br

∂Φ

∂n
= −1.

As a result, we have the fundamental solution for all dimensions:

Φ(x) =


−1

2 |x|, d = 1,

− 1
2π log|x| d = 2,
1

d(d−2)αd
|x|2−d, d ≥ 3.

4.2 Poisson kernel

In this section we want to construct Green’s function on special domains. Recall that the Green’s
function satisfies the equation

−∆G(x; y) = δ(x− y), x ∈ Ω, G(x; y) = 0, x ∈ ∂Ω. (4.4)

Case 1: Ω is the half-space

Ω = Rd
+ = {(x1, . . . , xd) : x1 > 0}.

We will check that
G(x; y) = Φ(x, y)− Φ(x, ȳ),

where ȳ = (−y1, y2, . . . , yd) and Φ(x, y) = Φ(x− y). Indeed, first,

−∆G(x; y) = −∆xΦ(x, y) + ∆xΦ(x, ȳ) = −∆xΦ(x, y) = δ(x− y),

since x ∈ Ω implies that x ̸= ȳ ∈ Ωc; second,

G(x0; y) = Φ(|x0 − y|)− Φ(|x0 − ȳ|) = 0, x0 ∈ ∂Ω,
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since y and ȳ has equal distance to any point on ∂Ω.
Writing z = (z1, z̃), we can use (4.2) to write down the solution to the Laplace equation (4.1):

u(x) =

∫
∂Ω

(−∂G
∂n

(z;x)g(z) dz) =

∫
Rd−1

2∂z1Φ(z, x)
∣∣
z1=0

g(z̃) dz̃.

For example, if d = 2, then

Φ(z;x) = − 1

4π
log

(
(z1 − x1)

2 + (z2 − x2)
2
)
,

and

∂z1Φ(z;x)
∣∣
z1=0

= − 1

2π
· z1 − x1
(z1 − x1)2 + (z2 − x2)2

∣∣∣
z1=0

=
1

2π
· x1
x21 + (z2 − x2)2

.

So

u(x1, x2) =
1

π

∫ ∞

−∞

x1
x21 + (y − x2)2

g(y) dy.

The function

K(x, y) =
1

π

x1
x21 + (y − x2)2

(4.5)

is called the Poisson kernel on the half plane.
Case 2: Ω = BR(0).
We start with a geometric lemma.

Lemma 4.3 (Apollonius) Let y ∈ Rd \ {0} and ȳ = R2

|y|2 y. Then for any |x| = R,

|x− y|
|x− ȳ|

= |y|/R.

In d = 2, BR will be a circle of Apollonius between y and ȳ.

Proof: We have

|x− y|2 − |y|2

R2
|x− ȳ|2 = (1− |y|2

R2
)|x|2 + |y|2 − |y|2|ȳ|2

R2
− 2x ·

(
y − |y|2

R2
ȳ
)

= (R2 − |y|2)− (R2 − |y|2) = 0.

□

Now let

G(x, y) = Φ(|x− y|)− Φ
( |y||x− ȳ|

R

)
.

Then by Lemma 4.3, G(x, y) = 0 for |x| = R, so the boundary condition is satisfied.
To obtain the solution to the Laplace equation, we need to compute ∂G/∂n on ∂BR. We have

∂Φ(x− y)

∂xj
= − 1

dαd

xj − yj
|x− y|d

,

∂Φ

∂xj

( |y|(x− ȳ)

R

)
= − 1

dαd

|y|2
R2 (xj − ȳ)∣∣∣ |y|R (x− ȳ)

∣∣∣d
= − 1

dαd

|y|2
R2 xj − yj

|x− y|d
.
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The unit normal vector at x ∈ ∂BR is n = x
R . Hence,

∂G

∂n
(x; y) =

d∑
j=1

xj
R

[ ∂Φ
∂xj

(x− y)− ∂Φ

∂xj

( |y|(x− ȳ)

R

)]

= − 1

dαd|x− y|d
d∑

j=1

xj
R

[
(xj − yj)− (

|y|2

R2
xj − yj)

]

= − 1

dαd|x− y|d
d∑

j=1

x2j
R

(
1− |y|2

R2

)
= − R2 − |y|2

dαd|x− y|d ·R
.

Therefore, the solution to (4.1) is given by

u(y) =
R2 − |y|2

dαdR

∫
∂BR

g(x) dS(x)

|x− y|d
, y ∈ BR.

The kernel

K(x, y) =
R2 − |y|2

dαdR|x− y|d

is called the Poisson kernel for BR.

4.2.1 Laplace equation in special domains

Recall that if G(x, y) is the Green’s function in Ω and u ∈ C2(Ω) ∩ C(Ω̄) solves

−∆u(x) = 0, x ∈ Ω, u(x) = g(x), x ∈ ∂Ω, (4.6)

then

u(x) =

∫
∂Ω

(
−∂G
∂n

)
(x, y)g(y) dS(y). (4.7)

We explicit compute −∂G
∂n for Ω = Rd

+ and BR(0), which is also called the Poisson’s kernel. For such
special domains, the expression (4.7) indeed gives the unique solution to the Laplace equation (4.7).
We formulate the following result for Ω = Rd

+.

Proposition 4.4 Let g ∈ C(Rd−1) ∩ L∞(Rd−1). Then

u(x) =

∫
Rd−1

K(x, y)g(y) dy, K(x, y) :=
2x1
dαd

· 1

|x− y|d
,

is the unique bounded solution in C∞ to (4.6), with

lim
x→y, x∈Rd

+

u(x) = u(y), ∀y ∈ ∂Rd
+.

Proof:
One can directly verify ∆u = 0 in Rd

+, and hence u ∈ C∞(Rd
+) by Proposition 4.7.

Since K(x, y) ≥ 0 and
∫
Rd−1 K(x, y) dy = 1, we have

|u(x)| ≤
∣∣∣ ∫

Rd−1

K(x, y)g(y) dy
∣∣∣ ≤ ∥g∥L∞ ,
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so u is bounded.
Finally, we will verify the boundary condition. Let y0 ∈ Rd−1. We write x = (x1, x̂1) ∈ Rd. For

every ε > 0,

|g(y0)− u(x)| ≤
∣∣∣ ∫

Rd−1

g(y0)K(x, y) dy −
∫
Rd−1

g(y)K(x, y) dy
∣∣∣

≤
∫
Rd−1

K(x, y)|g(y)− g(y0)| dy

=

∫
|y−y0|≥ε

K(x, y)|g(y)− g(y0)| dy +
∫
|y−y0|<ε

K(x, y)|g(y)− g(y0)| dy

≤ 2∥g∥L∞

∫
|y−y0|≥ε

K(x, y) dy + sup
|y−y0|<ε

|g(y)− g(y0)|.

As x̂1 → y0, |x− y| ≥ 1
2 |y0 − y|, and hence∫

|y−y0|≥ε
K(x, y) dy =

∫
|y−y0|≥ε

2x1
dαd

· 1

|x− y|d
dy

≤ 2x1 · 2d

dαd

∫
|y−y0|≥ε

1

|y − y0|d
dy

≤ Cx1

∫ ∞

ε
r−2 dr → 0

as x1 → 0. Hence, for every ε > 0,

lim sup
x→y0

|g(y0)− u(x)| ≤ sup
|y−y0|<ε

|g(y)− g(y0)|.

Since ε > 0 is arbitrary, by the continuity of g, the LHS must be 0, and the conclusion follows. □

Remark 4.2 For Ω = BR, since the explicit form of K(x, y) is also known, we can verify

lim
x→y0

∫
∂BR∩{|y−y0|≥ε}

K(x, y) dy = 0.

How do we find Green’s function for a general domain? Recall that the fundamental solution Φ(x, y)
solves

−∆xΦ(x, y) = δ(x− y).

The Green’s function G(x, y) needs to satisfy the boundary condition G(x; y) = 0 for x ∈ ∂Ω. If we
can solve the Laplace equation

−∆u(x) = 0, x ∈ Ω, u(x) = Φ(x, y), x ∈ ∂Ω,

then G(x, y) = Φ(x, y)− u(x) will be the desired Green’s function.

4.2.2 Symmetry of the Green’s function

If the Green’s function satisfying (4.4) is known, then the solution to

−∆u = f, x ∈ Ω, u
∣∣
∂Ω

= g
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is given by

u(x) =

∫
Ω
f(y)G(x, y) dy +

∫
∂Ω

(
−∂G
∂n

(x; y)
)
g(y) dS(y).

The Green’s function is symmetric in x and y. We will give a formal proof below; for the rigorous
proof one can see [Eva98, 2.2, Theorem 13].

Theorem 4.5 G(x, y) = G(y, x) for x ̸= y.

Proof: Since −∆xG(x; y) = δ(x− y) and −∆yG(y;x) = δ(x− y), we have

G(x; y) =

∫
Ω
δ(x− z)G(z; y) dz

=

∫
Ω
−∆zG(z;x)G(z; y) dz

=

∫
Ω
G(z;x)(−∆zG(z; y)) dz −

∫
∂Ω

∂G

∂zn
(z;x)G(z; y) dS(z) +

∫
∂Ω

∂G

∂zn
(z; y)G(z, x) dS(z)

=

∫
Ω
G(z;x)δ(z − y) dz

= G(y;x).

□

4.3 Harmonic function

A function u ∈ C2(Ω) is harmonic if ∆u = 0 in Ω. In this section we present some properties of the
harmonic functions. We follow [Eva98, 2.2.3]

4.3.1 Mean-value property

Theorem 4.6 If u ∈ C2(Ω) is harmonic, then

u(x) = −
∫
∂Br(x)

u dS = −
∫
Br(x)

u dx, ∀Br(x) ⊂ Ω, (4.8)

where for any domain D, −
∫
D
:= 1

|D|
∫
.

Conversely, if u ∈ C2(Ω) satisfies (4.8), then u is harmonic in Ω.

Proof:
Fix x ∈ Ω. Let

φ(r) = −
∫
∂Br(x)

u dS = −
∫
∂B1(0)

u(x+ ry) dS(y), r > 0.

We have

φ′(r) = −
∫
∂B1(0)

∇u(x+ ry) · y dS(y)

= −
∫
∂B1(0)

∂u

∂n
(x+ ry) dS(y)

=
1

|∂B1(0)|

∫
B1(0)

(∆u) · 1 dy = 0.
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Hence, φ is a constant, which equals to

lim
r→0+

ϕ(r) = −
∫
∂Br(x)

u dS = u(x)

by the continuity of u at x.
For the second equality in (4.8), by the co-area formula, we have

−
∫
Br(x)

u dx =
1

|Br(x)|

∫ r

0

∫
∂Br′ (x)

u dSdr′

=
1

|Br(x)|

∫ r

0
u(x)|∂Br′(x)| dr′

= u(x).

For the converse part, if ∆u(x) ̸= 0, assume without loss of generality that ∆u(y) > 0 in Bδ(x).
Then the previous computation implies that φ′(r) > 0, which contradicts with (4.8) that implies φ
being a constant. □

We can remove the assumption that u ∈ C2(Ω) for the converse part of Theorem 4.6.

Proposition 4.7 If u ∈ C(Ω) satisfies (4.8), then u ∈ C∞(Ω) and is harmonic. In particular, harmonic
functions are C∞.

Proof: Let η ∈ C∞(Rd) be radially symmetric, non-negative such that supp η ⊂ B1(0) and
∫
B1(0)

η(x) dx =
1. For example, one can take

η(x) =

{
c exp

(
1

|x|2−1

)
, |x| < 1,

0, |x| ≥ 1,

where c > 0 is a constant so that η integrates to 1. Let ηε(x) = ε−dη(x/ε). Then uε = u∗ηε ∈ C∞(Uε)
where

Uε = {x ∈ U : dist(x, ∂U) > ε}.

On the other hand, we have

uε(x) =

∫
Bε(0)

u(x− y)ηε(y) dy

=

∫ ε

0
dr

∫
∂Br(0)

u(x− y)ηε(r) dS(y)

=

∫ ε

0
|∂Br(0)|ηε(r)u(x) dr

= u(x) ·
∫
Bε(0)

ηε(y) dy = u(x),

where the third line follows from u having the mean-value property. Hence, u(x) = uε(x) ∈ C∞. The
rest follows from Theorem 4.6. □

4.3.2 Maximum principle

Theorem 4.8 (Maximum principle for harmonic functions) Let u ∈ C2(Ω) ∩ C(Ω̄) be harmonic in Ω
where Ω is a bounded domain.
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1. (Weak maximum principle) maxΩ̄ u = max∂Ω u.

2. (Strong maximum principle) Let Ω be connected. If x0 ∈ Ω achieves the maximum of u over Ω̄,
then u is a constant in Ω.

Proof: The strong maximum principle implies the weak one, so we will only prove the strong one.
However, the weak maximum principle has a proof similar to Theorem 3.22 and can be generalized to
other elliptic operators, as we will see.

Let M := u(x0). By the mean-value property, if u(x) =M , then for any Br(x) ⊂ Ω,

u(x) = −
∫
Br(x)

u(y) dy =M,

so u(y) =M for all y ∈ Br(x). This implies that

A = {x ∈ Ω : u(x) =M}

is a (relatively) open set in Ω. The set A is also closed, since it is a pre-image of a singleton {M} of
a continuous function u. Since Ω is connected, the only sets that are both open and close are ∅ or Ω.
Since x0 ∈ A, A is non-empty, and hence A = Ω.

□

Remark 4.3 A set Ω is connected if Ω = A ∪B where A,B are disjoint relatively open sets in Ω implies A = ∅
or B = ∅.

As a corollary, we have the uniqueness of solution to the Poisson equation.

Theorem 4.9 Let Ω be a bounded domain. Then the solution u ∈ C2(Ω) ∩ C(Ω̄) to

−∆u = f, Ω, u = g, ∂Ω,

is unique if it exists.

We can generalize the weak maximum principle to more general elliptic operators. Below is an
example.

Proposition 4.10 Let
(Lu)(x) = −∆u(x) + c(x)u(x),

where c ∈ C(Ω) and c ≥ 0. If u ∈ C2(Ω) ∩ C(Ω̄) satisfies Lu ≤ 0 in Ω, then

max
Ω̄

u(x) ≤ max
∂Ω

u+(x), u+ = max(u, 0).

Proof: Let x0 ∈ argmaxΩ̄ u(x). If x0 ∈ ∂Ω or u(x0) ≤ 0, there is nothing to prove.
Assume that u(x0) > 0 and x0 ∈ Ω. Also assume first that the strict inequality Lu < 0 holds in Ω.

Then
−∆u(x0) ≥ 0, c(x0)u(x0) ≥ 0,

and hence Lu(x0) ≥ 0. This is a contradiction.
Assume that Lu ≤ 0. Let

vε(x) = u(x)− ε|x|2.
Then

Lvε = Lu− ε · 2d < 0.

By what has been proved, we have
max
Ω̄

vε(x) ≤ max
∂Ω

v+ε .

Since vε → u uniformly as ε→ 0+, the conclusion follows. □
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4.3.3 Other properties of harmonic functions

Local estimate of derivatives

Theorem 4.11 Let u be harmonic in Ω ⊂ Rd. Then for all Br(x0) ⊂ Ω and multi-index |α| = k,

|Dαu(x0)| ≤
ck
rd+k

∥u∥L1(Br(x0)),

where c0 =
1
αd

, ck = (2d+1dk)k

αd
.

We will give some applications of this result.
Application 1: Analycity of harmonic functions. Let u be harmonic in Ω. We want to show that

the Taylor series expansion

u(x) =
∑
α

Dαu(x0)

α!
(x− x0)

α

has positive radius of convergence for every x0 ∈ Ω. Indeed, by Theorem 4.11, for |x − x0| ≤ s, we
have ∑

α

∣∣∣Dαu(x0)

α!
(x− x0)

α
∣∣∣ ≤ ∞∑

k=0

∑
|α|=k

∣∣∣Dαu(x0)

α!

∣∣∣sk
≤

∞∑
k=0

sk

rd+k
· (2

d+1dk)k

αd

∑
|α|=k

1

α!
.

Since

dk = (1 + · · ·+ 1)k =
∑
|α|=k

k!

α!
,

and

lim
n→∞

k
k
√
k!

= e,

we have

kk
∑
|α|=k

1

α!
=
dk

k!
≤ ck

for some c > 0. The conclusion follows.
Application 2:

Theorem 4.12 (Liouville’s theorem) If u is harmonic in Rd and bounded, then u is a constant.

Proof: We have

|Du(x0)| ≤
C

rd+1
∥u∥L1(Br(x0)) ≤

C∥u∥L∞

r
→ 0, r → ∞.

Hence, ∇u ≡ 0, and the conclusion follows. □

Application 3:

Proposition 4.13 Let f ∈ C2
c (Rd), d ≥ 3. Then all bounded solutions to −∆u = f is given by

u(x) = (Φ ∗ f)(x) + c,

where c is a constant.
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Proof: For d ≥ 3, u = Φ∗f is bounded and solves −∆u = f . If ũ is another solution, then v = ũ−u
is harmonic and bounded on Rd, and the conclusion follows from Theorem 4.12. □

Now we will prove Theorem 4.11. Proof: We will prove by induction on k.
Let u be harmonic. Then ∂xju is also harmonic. By mean-value property,

|(∂xju)(0)| =
∣∣∣−∫

Br/2

∂xju dx
∣∣∣ = 1

|Br/2|

∣∣∣ ∫
Br/2

∂xju dx
∣∣∣

=
1

|Br/2|

∣∣∣ ∫
∂Br/2

uni dS(x)
∣∣∣

≤
|∂Br/2|
|Br/2|

∥u∥L∞(Br/2)

≤
|∂Br/2|
|Br/2|

· 1

|Br/2|
∥u∥L1(Br)

=
d

r/2
· 1

αd

(2
r

)d
∥u∥L1(Br).

So the results holds for k = 1.
Assume that

|Dβu(x0)| ≤
ck−1

sd+k−1
∥u∥L1(Bs(x0)), ∀s > 0, ∀|β| = k − 1.

Let Dα = ∂xjD
β. We have

|(Dαu)(x0)| ≤
d

s
∥u∥L∞(Bs(x0))

≤ d

s

ck−1

(r − s)d+k−1
∥u∥L1(Br(x0)).

To optimize s(r − s)d+k−1, we take s = r/k and r − s = (k − 1)r/k, and the conclusion follows. □

Harnack’s inequality

Theorem 4.14 Let u ≥ 0 be harmonic in Ω, and V ⊂ V̄ ⊂ Ω, where V is bounded and connected.
Then there exists a constant C = C(V ) such that

inf
V
u ≤ C · sup

V
u.

Proof: Let r = 1
4 dist(V, ∂Ω). If |x− y| ≤ r and x, y ∈ Ω, then

u(x) = −
∫
B2r(x)

u dz ≥ 1

|B2r|

∫
Br(y)

u dz =
|Br|
|B2r|

u(y) =
1

2d
u(y).

Since V̄ is compact, there exists z1, . . . , zN ∈ V̄ such that V̄ ⊂
⋃N

j=1Br(zj). For any x, y ∈ V , there
exists a chain of points

w0 = x,w1, . . . , wm = y, m ≤ 2N + 1,

such that |wi − wi+1| ≤ r. Hence, u(x) ≤ 2d(2N+1)u(y). The conclusion follows. □
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4.4 Perron’s method

The goal of this section is to solve the Laplace equation

∆u(x) = 0, x ∈ Ω, u(x) = ϕ(x), x ∈ ∂Ω.

We follow [HL11, Chap 6]
We first give two definitions for subharmonic functions.

Definition 4.1 A function v ∈ C2 is subharmonic if −∆v ≤ 0.

Definition 4.2 A continuous v is subharmonic if v ≤ w in B for every ball B and w ∈ C2(B)∩ C(B̄)
harmonic such that w ≥ v on ∂B.

In d = 1, harmonic functions are straight lines and subharmonic functions are convex functions.
The advantage of the second definition is that it requires lower regularity.

Proposition 4.15 (Harmonic lifting) Let u ∈ C(Ω̄) be subharmonic and B be a ball such that B̄ ⊂ Ω.
Let w solve

∆w(x) = 0, x ∈ B, w(x) = u(x), x ∈ Ω \B.

Then w is subharmonic.

The function w is called a harmonic lifting of u in B. Such lifting exists since we can always solve
the Laplace equation in a ball.
Proof: Let v be harmonic, B1 ⊂ Ω and v

∣∣
∂B1

≥ w
∣∣
∂B1

. We want to show that

v ≥ w, in B1.

Since v
∣∣
∂B1

≥ w
∣∣
∂B1

≥ u
∣∣
∂B1

and u is subharmonic, we have v ≥ u in B1. Since u = w in B1 \B,

we have v ≥ w in B1 \B.
In B1∩B, since v ≥ w on ∂(B1∩B) = (∂B1∩B̄)∪(∂B∩B1) and v, w are harmonic, by comparison

principle v ≥ w in B1 ∩B.
This completes the proof. □

Similarly, we can define superharmonic functions. We have the following comparison principle.

Lemma 4.16 Let Ω be a bounded, connected domain. Let u, v ∈ C(Ω̄). If u is subharmonic and v is
superharmonic with u ≤ v on ∂Ω, then u ≤ v in Ω.

Proof: Let M = maxΩ̄ u− v and

D = {x ∈ Ω : u(x)− v(x) =M} ⊂ Ω.

The set D is closed since it is the pre-image of a continuous function of a singleton {M}. We will
show that D is also open in Ω, and hence D = ∅ or Ω. In both cases, the conclusion follows.

Let x0 ∈ D. For r > 0 such that B = Br(x0) ⊂ Ω, we consider the harmonic lifting of u, denoted
by ū, and the harmonic lifting of v, denoted by v̄, in the ball B. On the one hand, since ū and v̄ are
harmonic lifting, we have

ū(x0)− v̄(x0) ≥ u(x0)− v(x0) =M.

On the other hand, for x ∈ ∂B,

ū(x)− v̄(x) = u(x)− v(x) ≤M.
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Hence,
(ū− v̄)(x0) ≥ max

∂B
(ū− v̄).

Since ū − v̄ is a harmonic function in B, by the strong maximum principle, ū − v̄ ≡ M in B, and
therefore u − v = M on ∂B. This holds for all r > 0 with Br(x0) ⊂ Ω. So x0 is in the interior of Ω.
This proves the desired result. □

Let ϕ ∈ C(∂Ω). We define

Sϕ = {v ∈ C(Ω̄) : subharmonic, v ≤ ϕ on ∂Ω}.

Note that if u1, u2 ∈ Sϕ, then max(u1, u2) ∈ Sϕ. We will show that

sup
u∈Sϕ

u

is harmonic with boundary condition ϕ. More precisely, we define

uϕ(x) = sup{v(x) : v ∈ Sϕ}, x ∈ Ω.

Theorem 4.17 uϕ(x) <∞ and uϕ is harmonic in Ω.

Proof:
Since w ≡M := maxϕ is a (super)harmonic and

w(x) ≥ v(x), x ∈ ∂Ω,

for all v ∈ Sϕ, by Lemma 4.16, w ≥ v for all v ∈ Sϕ. Hence, uϕ(x) ≤ M for all x ∈ Ω. In particular,
uϕ is a well-defined function.

For every x0 ∈ Ω and B2r(x0) ⊂ Ω, we will show that uϕ is harmonic in B = Br(x0).
First, by definition of uϕ, there exist vn ∈ S such that vn(x0) ↑ uϕ(x0). We can assume that vn ≥

m = minϕ; otherwise we can replace vn by max(vn,m) ∈ Sϕ. Let ṽn be the harmonic lifting of vn
in B. Then

vn(x0) ≤ ṽn(x0) ≤ uϕ(x0).

Since ṽn are bounded and harmonic, by Theorem 4.11 ∇ṽn are uniformly bounded in B̄. Hence, ṽn
are uniformly bounded and equi-continuous in B̄. By Azela–Ascoli, there exists a subsequence ṽnk

so
that ṽnk

→ v∗ uniformly in B̄. Since the mean-value property is preserved under uniform convergence,
v also has the mean-value property, and hence v∗ is harmonic in B. Moreover, v∗(x0) = uϕ(x0).

Next, we will show that v∗ = uϕ in B. Let x̄ ∈ B. There exist wn ∈ Sϕ such that wn(x̄) ↑ uϕ(x̄).
We can assume wn ≥ ṽn in B; otherwise we can replace wn by max(wn, ṽn). Let w̃n be the harmonic
lifting of wn. Again, there exists a further subsequence {n′k} ⊂ {nk}, so that w̃n′

k
→ w∗ uniformly

in B̄ and w∗ is harmonic. Then w∗(x̄) = uϕ(x̄). For any x ∈ B,

w∗(x) = lim
k→∞

wn′
k
(x) ≥ lim inf

k→∞
ṽn′

k
(x) = v∗(x).

On the other hand, w∗(x0) ≤ uϕ(x0) = v∗(x0). Hence, w∗(x0) = v∗(x0). Therefore, the harmonic
function v∗−w∗ achieves its maximum over B̄ at x0 ∈ B. By the strong maximum principle, v∗−w∗ = 0
in B, and hence w∗(x̄) = v∗(x̄) = uϕ(x̄) for all x̄ ∈ B. This completes the proof. □

The following result gives the boundary behavior of uϕ.
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Theorem 4.18 Let x0 ∈ ∂Ω. Assume that there exists wx0 subharmonic such that

wx0(x0) = 0, wx0(x) < 0, ∀x ∈ ∂Ω \ {x0}. (4.9)

Then
lim

Ω∋y→x0

uϕ(y) = ϕ(x0).

Proof: For every ε > 0, there exists δ > 0 such that

|ϕ(x)− ϕ(x0)| ≤ δ, ∀|x− x0| ≤ ε, x ∈ ∂Ω.

Since
min

x∈∂Ω\Bδ(x0)
|w(x)| > 0,

there exists K > 0 such that

K

2
|w(x)| ≥M := max|ϕ|, ∀x ∈ ∂Ω \Bδ(x0).

Let v(x) = ϕ(x0)− ε+Kw(x). Then v(x) is subharmonic, and

v(x) ≤ ϕ(x0)− ε ≤ ϕ(x), x ∈ ∂Ω ∩Bδ(x0),

v(x) ≤ ϕ(x0)− ε− 2M ≤ ϕ(x), ∀x ∈ ∂Ω \Bδ(x0).

Hence, v(x) ∈ Sϕ, and thus by definition,

ϕ(x0)− ε+Kw(x) ≤ uϕ(x), ∀x ∈ Ω.

Similarly, ṽ(x) = ϕ(x0)+ ε−Kw(x) is super-harmonic and ṽ(x) ≥ ϕ(x) for x ∈ ∂Ω, and hence ṽ(x) ≥
uϕ(x) for all x ∈ Ω by Lemma 4.16. Therefore,

|ϕ(x0)− uϕ(x)| ≤ ε−Kw(x), ∀x.

Letting x→ x0, we have
lim sup
x→x0

|ϕ(x0)− uϕ(x)| ≤ ε.

Since ε > 0 is arbitrary, the LHS is 0, which completes the proof. □

One sufficient condition for the existence of such function w such that (4.9) holds is the exterior
ball condition, which holds for domain Ω with C2-boundary. Combining all these we have the following
result.

Theorem 4.19 Let Ω be a bounded domain with C2-boundary. For any ϕ ∈ C(Ω̄), there exists a
function u ∈ C∞(Ω) ∩ C(Ω̄) solving

−∆u = 0, Ω, u = ϕ, ∂Ω.
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4.5 Green’s function in general domains

We will use Theorem 4.19 to find the Green’s function.
Let y ∈ Ω. Recall that the Green’s function G(x, y) solves{

−∆xG(x, y) = δ(x− y), x ∈ Ω,

G(x, y) = 0, x ∈ ∂Ω.
(4.10)

The term δ(x− y) is singular and thus problematic. We first use the fundamental function to remove
it as follows. Recall that the fundamental solution Φ(x− y) solves

−∆xΦ(x− y) = δ(x− y),

in the sense that −∆(Φ∗f) = f for any bounded continuous function f . To find the Green’s function,
we write G(x, y) = Φ(x− y)− v(y), and look for v that solves{

∆v(x) = 0, x ∈ Ω,

v(x) = Φ(x− y), x ∈ ∂Ω.
(4.11)

The resulting G be a solution to (4.10) by the principle of superposition.
Using the explicit form of Φ, and that fact that dist(y, ∂Ω) > 0 for y ∈ Ω, the boundary condition in

(4.11) is C(∂Ω). Hence, Perron’s method applies and there exists a classical solution v ∈ C∞(Ω)∩C(Ω̄)
to (4.11).

Since G(x, y) = Φ(x − y) − v(x) and Φ(x − y) is smooth when x ̸= y, we immediately know
that G(·, y) ∈ C∞(Ω \ {y}). Using the equation (4.10), by Theorem 4.5, the Green’s function is
symmetric, that is, G(x, y) = G(y, x), and hence G(x, y) ∈ C∞(Ω2 \ {x = y}).

Using the Green’s function we can solve the Poisson equation{
−∆u = f, Ω,

u = 0, ∂Ω,
(4.12)

whose solution is

u(x) =

∫
Ω
G(x, y)f(y) dy,

as long as the source term f is nice enough so that the above integral makes sense; for example,
f ∈ C(Ω) ∩ L∞(Ω).

4.6 Dirichlet principle

In this section we present another way to solve the Poisson equation. Let I be a functional from Xg :=
g + C2

0(Ω) to R, defined by

I[u] :=

∫
Ω

1

2
|∇u|2 − fu, (4.13)

where f ∈ C(Ω)∩L2(Ω) and g ∈ C(∂Ω). Assuming that there exists an extension of g to C2(Ω)∩C(Ω̄),
still denoted by g, we say that u ∈ Xg if u− g ∈ C2

0(Ω).
Here, we will be more careful about the distinction between Ck

0 (Ω), the space of functions that
vanish on ∂Ω, defined by

Ck
0 (Ω) = {v ∈ Ck(Ω) : lim

x→∂Ω
|v(x)| = 0},
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and Ck
c (Ω), the space of functions with compact support in Ω, defined by

Ck
c (Ω) = {v ∈ Ck(Ω) : ∃ compact K ⊂ s.t. u = 0 in Kc}.

These two spaces are different; for example, for Ω = [−1, 1], the function f = |x| − 1 is in C∞
0 (Ω) but

not C∞
c (Ω), since suppu = [−1, 1] ̸⊂ (−1, 1). Although this distinction will not be so important later

on, we will keep this in mind at this moment.
The Dirichlet Principle states that the “minimizer” of to the variation problem

inf
u∈Xg

I[u] (4.14)

will correspond to the solution to the Poisson equation

−∆u = f in Ω, u = g on ∂Ω. (4.15)

It is not obvious at all why I[·] has a minimizer in Xg. However, in the rest of section we will explain
why the problem of minimizing (4.13) is related to (4.15).

First, I[·] has a unique minimizer in Xg.
Proof: We claim that

I[
u1 + u2

2
] ≤ 1

2
I[u1] +

1

2
I[u2]. (4.16)

that is, I[·] is “convex” on its domain. Indeed, writing w = (u1 + u2)/2, we have

1

2
I[u1] +

1

2
I[u2]− I[w] =

∫
Ω

1

4
|∇u1|2 +

1

4
|∇u2|2 −

1

8
|∇u1 +∇u2|2

=

∫
Ω

1

8
|∇u1 −∇u2|2 ≥ 0.

The equality holds only if |∇u1 − ∇u2| ≡ 0, since |∇u1 − ∇u2|2 integrates to 0 and is continuous.
Since u1 − u2 = 0 on ∂Ω, this implies u1 ≡ u2 on Ω̄.

Suppose that u1 and u2 are two minimizers of I[·] in Xg, that is,

I[u1] = I[u2] = inf
u∈Xg

I[u].

Then, by (4.16), we have I[w] ≤ infXg I[u], so w is also a minimizer, and the equality in (4.16) holds.
Hence, we have u1 ≡ u2 on Ω̄, and this is the uniqueness. □

Second, if u ∈ Xg is a minimizer, then u solves (4.15).
To establish this, we need to understand the “derivative” of I[·], which is the so-called “calculus of

variation”. Recall that for a C1 function f , if f(x0) is the minimum, then by Fermat’s lemma f ′(x0) =

0. So intuitively, if u is a minimizer of I, then dI[u]
du = 0.

But what is dI
du? The issue here is that u ∈ Xg and Xg is an infinite dimensional space, so much of

our intuition for a function on R is useless. Let us consider instead a multivariate function f : Rd → R.
The gradient ∇f(x0), is a vector, but it can also be seen as a linear map from Rd to R, defined by

(
∇f(x0)

)
(h) = ∇f(x0) · h =

∂f

∂h
(x0) = lim

ε→0

f(x0 + εh)− f(x0)

ε
.

This motivates us to define some kind of “directional derivative” on Xg.
Let v ∈ C2

0(Ω). Then u+ εv ∈ Xg for every ε. The function v will serve as the “direction”.
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Let i(ε) = I[u+ εv]. Let us compute i′(ε). Note that everything is smooth so we can interchange
the integral and differentiation. We have

i′(ε) =

∫
Ω

d

dε

[1
2
|∇u+ ε∇v|2 − f(u+ εv)

]
=

∫
Ω
∇u · ∇v + ε|∇v|2 − fv =

∫
Ω
−∆u · v + ε|∇v|2 − fv,

where the boundary term
∫
∂Ω

∂u
∂nv from the integration by parts in the last step is 0 since v = 0 on ∂Ω.

Hence,

i′(0) =

∫
Ω

(
−∆u− f

)
v. (4.17)

The quantity (4.17) is called the first variation of I[·] (with respect to variation v). A necessary
condition for u being a minimizer in Xg is that the first variation vanishes with respect to every
variation v ∈ C2

0(Ω).
Since −∆u− f ∈ C(Ω) and the first variation of I[·] is 0 for all v, by Lemma 4.20 below, we have

∆u(x) + f(x) = 0, ∀x ∈ Ω. (4.18)

The equation (4.18) is the Euler–Lagrange equation associated with the variational problem (4.17).
To summarize, a necessary condition for u to be a minimizer of a variation problem is that u solves
the corresponding Euler–Lagrange equation.

Lemma 4.20 Let φ ∈ C(Ω) be such that∫
Ω
φ(x)v(x) dx = 0, ∀v ∈ C∞

0 (Ω). (4.19)

Then φ ≡ 0 in Ω.

Proof: We will prove by contradiction. If φ is not identically 0, without loss of generality we can
assume that φ(x0) > 0 for some x0 ∈ Ω. Since Ω is open and φ is continuous, there exist ε, δ > 0 such
that φ(x0) ≥ ε in Bδ(x0) ⊂ Ω. Let

v(x) = δ−dη
(
δ−1(x− x0)

)
, η(x) =

{
e
− 1

(1−|x|2) , |x| < 1,

0, |x| ≥ 1.
(4.20)

Then ∫
Ω
φ(x)v(x) dx ≥ ε

∫
Bδ(x0)

δ−dη
(
δ−1(x− x0)

)
= ε

∫
B1(0)

e
− 1

1−|x|2 > 0, (4.21)

which is a contradiction. □

However, a priori the variation problem (4.14) may not have a minimizer, and even if a minimizer
exists, it can be outside of Xg, since from the expression of I[·], its definition should require C1

differentiability at most, rather than C2.
To illustrate, let us consider the variation problem

inf
{∫ 1

0

(
(∂xu)

2 − 1
)2
dx : u ∈ C1[0, 1], . u(0) = a, . u(1) = b

}
, a < b < a+ 1. (4.22)

Since a ≤ b < a+ 1, the function

v(x) =

{
x+ a, 0 ≤ x < b+1−a

2 ,

b+ (1− x), b+1−a
2 ≤ x ≤ 1

(4.23)
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is well-defined and achieves the smallest possible infimum 0 in (4.22), except that it is not C1 at x =
x0 :=

b+1−a
2 . But we can make change to v in an arbitrary small neighborhood around x0, so that the

resulting function is C1 and makes (4.22) arbitrarily close to 0. On the other hand, if a function u ∈ C1

taking slope ±1, then by continuity of derivative, ∂xu ≡ 1 or −1, so it cannot satisfy the boundary
condition in (4.22). Combining all these together, we can say that (4.22) does not have a C1 minimizer.

But if we include piecewise C1 functions in the domain for (4.22), the minimizer will not be unique,
since there are an infinite number of polygon curves with slope ±1 connecting (0, a) and (1, b).

4.6.1 Weak derivatives and solutions

How do we obtain a minimizer to (4.14)? By definition of the infimum, there exists a sequence (un) ⊂
Xg such that I[un] → inf I[u]; such sequence is called a “minimizing sequence”. We hope that there
exists some limit point u∗ of the minimizing sequence. However, as we have seen in (4.22), the limit
point u∗ may fall out of the original domain of the functional, due to lack of continuous derivative.

To overcome the above mentioned issue, we need to generalize our notion of derivatives, as well as
our notion of solutions. This is done by the introduction of weak derivatives and weak solutions.

Recall the multi-index notion for derivative:

Dαf := ∂α1
x1

· · · ∂αd
xd
f, α = (α1, α2, . . . , αd).

Also recall that L1
loc(Ω) is the space of functions that are absolutely integrable on any compact setsK ⊂

Ω; for example, x−1 is in L1
loc(0, 1) but not L

1
loc(−1, 1).

Let u, v ∈ L1
loc(Ω). We say that v = Dαu in the weak sense, or v is the α-th weak derivative of u,

if ∫
Ω
φv =

∫
Ω
(−1)|α|(Dαφ)u, ∀φ ∈ C∞

c (Ω). (4.24)

To see the motivation, (4.38) is integration by parts (with no boundary terms since φ vanishes at the
boundary), if v is a classical derivative of u. For the Poisson equation (4.15), we say that u is a weak
solution if −∆u = f holds in the weak sense, that it,∫

Ω
(∆φ)u+ φf = 0, ∀φ ∈ C∞

c (Ω).

As an example, let u(x) = |x| ∈ L1
loc(R). Then

u′(x) =

{
1, x > 0,

−1, x < 0,

is the first-order weak derivative of u.
But u′ is not further differentiable in the weak sense. Otherwise, suppose v = u′, then for any φ ∈

C∞
0 (R), ∫

φ(x)v(x) dx = −
∫
φ′(x)u′(x) dx. (4.25)

For a < b and any n ≥ 1, it is not hard to construct φn ∈ C∞
c (R) so that

φn(x)


= 0, x ̸∈ (a, b),

= 1, x ∈ [a+ 1/n, b− 1/n],

∈ (0, 1), otherwise.
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The function φn will approximate 1(a,b), the indicator function of the interval (a, b). Then taking φ =
φn in (4.25) and letting n→ ∞, we obtain in the limit∫ b

a
v(x) dx = − lim

n→∞

∫ a+1/n

a
φ′(x)u′(x) dx+

∫ b

b−1/n
φ′(x)u′(x) dx = u′(b)− u′(a). (4.26)

Now take (a, b) = (−ε, ε) and let ε→ 0. On the one hand the right hand side in (4.26) is 1− (−1) = 2,
on the other hand since |1(−ε,ε)v| ≤ |v| and v is locally integrable, by dominated convergence theorem

lim
ε→0+

∫ ε

−ε
v(x) dx = lim

ε→0+

∫
R

1(−ε,ε)(x)v(x) dx =

∫
R

lim
ε→0+

1(−ε,ε)(x)v(x) dx =

∫
R
0 dx = 0.

This gives a contradiction.
In PDE theories, weak solutions allow more flexibility to obtain a solution, and after that there

are other means to show that the so obtained solution has the desired smoothness, and thus the weak
solution becomes the classical solution. These two parts will rely on different sets of tools. In this
note we will focus on the existence part. The following result gives an example of the other part.

Proposition 4.21 If ∆u = 0 in the weak sense, then u is a harmonic function and C∞.

Proof: Let ηε ∈ C∞(Rd) be the standard smooth mollifiers. We will use the fact that (ηε) is also an
approximate identity, so that ηε ∗ f → f almost everywhere and in L1

loc for any f ∈ L1
loc.

Let uε = u ∗ ηε. Then uε ∈ C∞ and for every φ ∈ C∞
c ,∫

(Dαφ)uε =

∫
Dαφ·(u∗ηε) =

∫
(Dαφ∗ηε)·u =

∫
Dα(φ∗ηε)u ==

∫
(−1)|α|(φ∗ηε)Dαu =

∫
(−1)|α|φ·(Dαu∗ηε),

where we use
∫
f(g ∗ h) =

∫
(f ∗ h)g. Hence, Dαuε = (Dαu) ∗ ηε in the weak sense. But uε ∈ C∞, so

the weak derivative is strong derivative. In particular, ∆uε = 0 and uε is harmonic.
Using Theorem 4.11, for any compact set K, there exists K1 ⊃ K and constant C depending

on K,K1, such that
sup
K

|uε(x)|, sup
K

|∇uε(x)| ≤ C|uε|L1(K1) ≤ C|u|L1(K1).

Since u is locally integrable, (uε) is uniformly bounded and equi-continuous on K. By Arzelà–Ascoli,
there exists a subsequence uεn and u∗ such that uεn → u∗ uniformly on K, and due to the mean-value
property for harmonic function, the limiting function u∗ is also harmonic. On the other hand, the
sequence (uε) has a unique possible limit point which is u itself. Therefore, u is harmonic. □

4.6.2 Sobolev spaces and weak convergence

With the weak derivative, we can define the functional (4.14) on the largest possible domain. This
leads to the introduction of certain Sobolev spaces.

For k ≥ 0, let us define

Hk(Ω) = {u ∈ L1
loc(Ω) : D

αu ∈ L2(Ω), . ∀|α| ≤ k}.

There is a natural norm on Hk(Ω):

∥u∥Hk(Ω) :=
∑
|α|≤k

∥Dαu∥L2(Ω),
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and under this norm, Hk(Ω) becomes a complete space, meaning that every Cauchy sequence under
this norm admits a limit in Hk(Ω).

Next, we try to define the boundary condition on Hk(Ω). As the simplest example we will treat
the zero boundary condition. We define

Hk
0 (Ω) = closure of C∞

c . under ∥·∥Hk(Ω). (4.27)

Note that C∞
0 (Ω) ⊂ Hk

0 (Ω), but there are more functions in (4.27). We say that u ∈ g + Hk
0 (Ω)

if u− g ∈ Hk
0 (Ω), where g ∈ Ck(Ω) ∩ C(∂Ω).

The function I[·] in (4.13) will make sense for all u ∈ g+H1
0 (Ω), where f ∈ L2(Ω) and g ∈ C1(Ω)∩

C(∂Ω): for the first term
∫
|∇u|2, the gradient ∇u is a weak derivative and is in L2(Ω); for the second

term, by Cauchy–Schwartz, we have∣∣∣ ∫
Ω
fu

∣∣∣ ≤ [∫
Ω
f2

]1/2[∫
Ω
u2

]1/2
,

so u 7→
∫
Ω fu is a linear functional on L2(Ω) ⊃ g +H1

0 (Ω).

Weak convergence The next problem is how to extract limit points for a minimizing sequence.
Recall that a sequence (xn) in Rd has a limit point if and only if xn are bounded. We can rephrase
it as “a set K ∈ Rd is sequentially precompact if and only if K is bounded”. One naturally expects
similar results in Hk. Unfortunately, this is false.

As a counter-example, consider X = L2(0, 2π) = H0
0 (0, 2π) and fn = 1√

π
sin(nx). Note that fn are

orthonormal, so

∥fn − fm∥2 =
∫
f2n − 2fnfm + f2m =

∫
f2n + f2m ≡ 2, ∀n ̸= m.

Hence fn is bounded in X but cannot have any limit point since any of its subsequences fails to be
Cauchy.

We need a more general notion of convergence. We say that un converges to Hk(Ω) weakly, denoted
by un ⇀ u, if

lim
n→∞

∫
Ω
φDαun =

∫
Ω
φDαu, ∀φ ∈ C∞

c (Ω), ∀|α| ≤ k.

For weak convergence we have the following powerful result.

Theorem 4.22 A set in Hk(Ω) is weakly sequentially precompact if and only if it is bounded in
the ∥·∥Hk(Ω) norm.

In the previous counter-example, fn ⇀ 0. This follows from the Riemann–Lebesgue Lemma, which
states for any g ∈ L1(R),

lim
n→∞

∫
g(x) sin(nx) dx = 0.

Poincaré inequality Recall that the H1
0 (Ω) norm is given by

∥f∥2H1
0 (Ω) =

∫
Ω
|f(x)|2 + |∇f(x)|2 dx.

Theorem 4.23 Let Ω is bounded and u ∈ H1
0 (Ω). There exists a constant K depending on the

diameter of Ω such that ∫
Ω
|u(x)|2 dx ≤ K

∫
Ω
|∇u|2 dx. (4.28)
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Proof: It suffices to establish (4.28) for u ∈ C∞
c (Ω). Indeed, since C∞

c (Ω) is dense in H1
0 (Ω), for

any u ∈ H1
0 (Ω), there exist un ∈ C∞

c (Ω) that converge to u in H1
0 (Ω). Then

∥u∥L2(Ω) = lim
n→∞

∥un∥L2(Ω) ≤ C lim
n→∞

∥∇un∥L2(Ω) = C∥∇u∥L2(Ω).

Now assume that u ∈ C∞
c (Ω). Without loss of generality, we assume that Ω ⊂ [0, L] × Rd−1 for

some L > 0. Then, there exists an extension of u to Rd, still denoted by u. For x1 ∈ (0, L), by
Cauchy–Schwartz, we have

|u(x1, x2, . . . , xd)|2 = |u(x1, x2, . . . , xd)− u(0, x2, . . . , xd)|2

≤
[ ∫ x1

0

∣∣(∂1u)(s, x2, . . . , xd)∣∣ ds]2
≤

∫ x1

0
1 dx ·

∫ x1

0

∣∣(∂1u)(s, x2, . . . , xd)∣∣2 ds
≤ L ·

∫ L

0

∣∣∇u(s, x2, . . . , xd)∣∣2 ds.
Integrating over (x2, . . . , xd) ∈ Rd−1, we obtain (4.28) with K =

√
L. □

Recall that we want to solve the equation (4.15). Let g ∈ C(∂Ω), f ∈ C(Ω̄) and Xg = g + C2
0(Ω).

We can define the functional I[u] by (4.13). The “Dirichlet principle” says that the minimizer of I[u]
in Xg will solve (4.15).

We find minimizers through a “minimizing sequence”, as we did for continuous functions. Let un ∈
Xg be such that I[un] → inf I[·]. We hope that there exists some u∗ such that

un → u∗, (4.29a)

I[un] → I[u∗]. (4.29b)

There will be two issues.
Issue 1. The sequence un may have no limit point in Xg, as in the variational problem (4.22).

This is because the space Xg is too restrictive. For this reason we introduce the concepts of the weak
convergence and weak solutions.

Issue 2. If u∗ is a weak solution, is u∗ a classical solution? The answer is yes in most cases, but
we omit the discussion here. We presented an example in this direction, Proposition 4.21.

We point out that a special case of Theorem 4.22 is the following.

Proposition 4.24 Let un ∈ H1(Ω) be such that∫
Ω
|u|2 + |∇u|2 ≤M, ∀n ≥ 1

for some M > 0. Then, there exists u∗ ∈ H1(Ω) and a subsequence (unk
) such that unk

⇀ u∗
in H1(Ω), that is, ∫

Ω
unk

v →
∫
Ω
u∗v,

∫
Ω
∂xiunk

v →
∫
Ω
∂xiu∗v, ∀v ∈ L2(Ω).
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4.6.3 Existence of weak solution

Since I[·] includes the term
∫
Ω|∇u|

2 which is part of the H1(Ω)-norm, it is no hard to see that I[·] is
continuous in the norm of ∥·∥H1 , that is, I[un] → I[u] if un → u in H1(Ω). But we cannot expect I[·]
to be continuous w.r.t. the weak convergence. To show that the weak limit attains the minimum
of I[·], we will establish the weakly lower semi-continuity of the functional.

Proposition 4.25 [Lower semi-continuity in weak topology] If um ⇀ u in H1, then

lim inf
m→∞

I[um] ≥ I[u].

Proof: We have ∫
Ω
umf →

∫
Ω
uf,

since um ⇀ u in L2.
For the other term, we have∫

|∇um|2 − |∇u|2 =
∫
|∇um −∇u|2 + 2∇u ·

(
∇um −∇u

)
≥

∫
2∇u ·

(
∇um −∇u

)
.

Since ∇u ∈ L2 and ∇um ⇀ ∇u in L2, we have

lim inf
m→∞

∫
|∇um|2 − |∇u|2 ≥ lim

m→∞

∫
2∇u ·

(
∇um −∇u

)
= 0.

This completes the proof. □

We are ready to prove the following result. We assume f ∈ L2(Ω) in (4.13).

Proposition 4.26 There exists a minimizer of I[·] in X̃g = g +H1
0 (Ω).

Proof: Let un ∈ X̃g be a minimizing sequence of I[·]. Then I[un] ≤ M for some M > 0, and vn =
un − u1 ∈ H1

0 (Ω).
To apply Proposition 4.24, we need to bound ∥vn∥H1 uniformly from above. By Poincaré inequality

Theorem 4.23, it suffices to bound |∇vn|L2 .
Below C will stand for a generic constants independent of vn, which may change from line to line.

We have

I[un] =

∫
1

2

∣∣∇u1 +∇vn
∣∣2 − f(u1 + vn)

≥ 1

2

∫
|∇u1|2 + |∇vn|2 −

∫
|∇u1| · |∇vn| −

∫
fu1 −

∫
|f | · |vn|

≥ C +
1

2

∫
|∇vn|2 −

1

2ε

∫
|∇u1|2 −

ε

2

∫
|∇vn|2 −

1

2ε

∫
|f |2 − ε

2

∫
|vn|2

≥ C +
(1
2
− ε(1 +K)

2

)∫
|∇vn|2,

where we use ab ≤ 1
2εa

2+ ε
2b

2 in the third line, andK in the last line is the constant from Theorem 4.23.
By choosing ε > 0 small enough so that

1

2
− ε(1 +K)

2
> 0,
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we obtain ∫
|∇vn|2 ≤ C

(
I[un] + 1

)
.

Since I[un] is uniformly bounded from above, we have a uniform upper bound on ∥vn∥H1 as desired.
By Proposition 4.24, there exists v∗ and a subsequence vnk

such that vnk
⇀ v∗ in H1, and

hence unk
⇀ u1 + v∗ =: u∗ in H1.

By Proposition 4.25 we have
lim inf
k→∞

I[unk
] ≥ I[u∗].

But the LHS is inf I[·] on X̃g, so I[u∗] achieves the minimum of I. This completes the proof. □

4.6.4 Free boundary condition

Next we brief discuss the Neumann boundary condition,

−∆u = f in Ω,
∂u

∂n
= 0 on ∂Ω. (4.30)

The first important thing is that a “compatibility condition” has to be satisfied for (4.30) to have
any solutions at all.

Proposition 4.27 There can exist a solution for (4.30) only if
∫
Ω f = 0.

Proof: From integration by parts, we have

0 =

∫
∂Ω

∂u

∂n
· 1 =

∫
Ω
(∆u) · 1 =

∫
Ω
−f.

□

As a consequence, the functional I[u] is invariant under addition of a constant to u, namely,

I[u+ C] = I[u], ∀C ∈ R.

To define the variational problem, the functional I takes the same form, but the domain changes
to H1(Ω), that is, no boundary condition is imposed at all. That is why the boundary condition in
(4.30) is also called “free boundary condition”.

Proposition 4.28 u is a minimizer of I[u] in C2(Ω) ∩ C1(Ω̄) if and only if it solves (4.30).

Proof: The “if” direction is similar as before. We will prove the “only if” part here.
Let u be a minimizer. Then for any φ ∈ C∞

0 (Ω), u+ φ ∈ C2(Ω) ∩ C1(Ω̄) and hence

i(ε) = I[u+ εφ] ≥ I[u], ∀ε > 0.

As before, we can derive the first variation of I[·] by computing i′(0):

i′(0) =

∫
Ω
∇u · ∇φ− fφ =

∫
Ω
(−∆u− f)φ+

∫
∂Ω

∂u

∂n
φ. (4.31)

Since φ = 0 on ∂Ω, the second term is 0, so by Lemma 4.20, ∆u+ f = 0 in Ω.
Now let φ ∈ C∞(Ω̄) be arbitrary. (4.31) still holds, but the first term is zero since ∆u + f = 0

in Ω. Therefore, ∫
∂Ω

∂u

∂n
φ = 0, ∀φ ∈ C∞(Ω̄).
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This will imply ∂u
∂n = 0 on ∂Ω, similar to Lemma 4.20. □

As before, let un be a minimizing sequence. We want to use Proposition 4.24 to extract a convergent
subsequence. But (4.28) cannot be true for any u ∈ H1(Ω), since by adding a constant to u, the RHS
is the same but the LHS can get arbitrarily large. On the other hand, by Proposition 4.27, the
functional I[u] is invariant under addition of constants. We may take advantage of that.

Proposition 4.29 Let Ω be a bounded domain. There exists K = K(Ω) such that∫
Ω
|u− ū|2 ≤ K

∫
Ω
|∇u|2, ū :=

1

|Ω|

∫
Ω
u. (4.32)

Proof: To illustrate the idea, we treat the case in one dimension.
Let Ω = (a, b). Then H1(a, b) coincides with the space of absolutely continuous function on (a, b)

with L2(Ω) derivative.
By the intermediate value theorem, there exists x0 ∈ (a, b) such that u(x0) = ū. For any x ∈ (a, b),

by Cauchy–Schwartz, we have

|u(x)− u(x0)|2 ≤
[∫ x

x0

|u′(s)| ds
]2

≤ (b− a)

∫ b

a
|u′(s)|2 ds.

Integrating over x we obtain (4.32) with K = (b− a)2. □

Now we can prove the existence of minimizer of I[·] in H1(Ω).

Proposition 4.30 There exists u∗ ∈ H1(Ω) such that

I[u∗] = inf
u∈H1(Ω)

I[u].

Proof: Let un be a minimizing sequence. Since I[·] does not change after adding a constant
to u, we can assume

∫
Ω un = 0, otherwise we can subtract ūn from un. Hence, by Proposition 4.29,

∥un∥L2 ≤ K∥∇un∥L2 . The rest follows the same argument as in Proposition 4.26. □

4.7 L2-stability

Proposition 4.31 Let u ∈ C2(Ω) ∩ C(Ω̄) solve

−∆u+ cu = f in Ω, u = 0, on ∂Ω, (4.33)

where c(x) ≥ 0 in Ω and f ∈ L2(Ω). Then if Ω is bounded,∫
Ω
|u|2 +

∫
Ω
|∇u|2 ≤ C

∫
Ω
f2. (4.34)

If in addition c(x) ≥ c0 > 0, then for any Ω,∫
Ω
|∇u|2 + c0

2

∫
Ω
|u|2 ≤ C

∫
Ω
f2.

Proof: Multiplying u to both sides of (4.33), and using integration by parts, we have∫
Ω
|∇u|2 + c(x)|u|2 =

∫
Ω
fu. (4.35)
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If Ω is bounded, we have Theorem 4.23, and∫
Ω
|∇u|2 ≤ 1

2ε

∫
Ω
f2 +

ε

2

∫
Ω
u2 ≤ 1

2ε

∫
Ω
f2 +

εK

2

∫
Ω
|∇u|2. (4.36)

By choosing ε > 0 small enough, we have
∫
Ω|∇u|

2 ≤ C
∫
Ω f

2, and using Theorem 4.23 again we obtain
(4.34).

Now assume that c ≥ c0. We have∫
Ω
|∇u|2 + c0

∫
Ω
|u|2 ≤ 1

2ε

∫
Ω
f2 +

ε

2

∫
Ω
|u|2. (4.37)

Choosing ε = c0 > 0, we obtain (4.34). □

4.8 L∞-stability

Theorem 4.32 Let Ω be a bounded domain. Let u ∈ C2(Ω) ∩ C(Ω̄) solve

−∆u+ cu = f(x), x ∈ Ω, u(x) = g(x), x ∈ ∂Ω,

where c ≥ 0. Then there exists a constant C such that

max
Ω̄

|u| ≤ C
(
sup|f |+max|g|

)
.

Theorem 4.32 is a consequence of the following comparison principle.

Lemma 4.33 Let L = −∆+ c. If Lu ≤ Lv in Ω and u ≤ v on ∂Ω, then u ≤ v on Ω̄.

As before, the comparison principle follows from the weak maximum principle.

Lemma 4.34 If Lu ≤ 0 in Ω, then
max
Ω̄

u ≤ max
∂Ω

u+,

where u+ = max(u, 0).

Proof: Assume first that Lu < 0 in Ω.
Let x0 = argmaxΩ̄ u(x). If u(x0) ≤ 0 or x0 ∈ ∂Ω, there is nothing to prove. Assume now

x0 ∈ Ω, u(x0) > 0. (4.38)

Then Hessu(x0) is negative semi-definite, and hence −∆u(x0) ≥ 0. Since c ≥ 0, we have Lu(x0) ≥ 0.
This contradicts with (4.38), so (4.38) cannot happen.

For the general case Lu ≤ 0, we consider

uε(x) = u(x) + ε(ex1 − L),

where L is sufficiently large so that ex1 − L ≤ 0 for all x ∈ Ω. Then

Luε = Lu− εex1 + c(x)ε(ex1 − L) < 0.

By what have been proved,
max
Ω̄

uε ≤ max
∂Ω

u+ε .
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Letting ε ↓ 0 and using the fact uε → u uniformly in Ω, the inequality holds for u. □

Next we derive Theorem 4.32 from Lemma 4.33. Proof:
Let w = G+ F (M − λex1) where

G = max|g|, F = sup|f |.

We want to chooseM and λ appropriately so that Lw ≥ f in Ω and w ≥ g on ∂Ω. Indeed, suppose Ω ⊂
[−L,L]× Rd−1; then

Lw = c
(
G+ F (M − λex1)

)
+ Fλex1 ≥ F,

provided that
λe−L ≥ 1, M ≥ λeL,

which can be achieved by λ = eL and M = e2L. For such λ and M , on ∂Ω we have

w ≥ G ≥ g.

Hence, v = u− w satisfies
Lv ≤ 0 in Ω, v ≤ 0 on ∂Ω,

and by Lemma 4.34,
max
Ω̄

(u− w) ≤ 0.

Therefore,
max
Ω̄

u ≤ max
Ω̄

w ≤ G+ e2LF.

Similarly, z = −u− w satisfies
Lz ≤ 0 in Ω, z ≤ 0 on ∂Ω,

and hence by Lemma 4.34
max
Ω̄

(−u) ≤ max
Ω̄

w ≤ G+ e2LF.

Combining these we obtain the desired conclusion. □

5 Wave equation

In this section, we study the wave equation
utt −∆u = f(t, x), t > 0, x ∈ Ω,

u(0, x) = g(x), x ∈ Ω,

ut(0, x) = h(x), x ∈ Ω,

(5.1)

plus some boundary condition. Note that the second-order t-derivative appears in the equation, so
consequently, we need to impose another initial condition on ut(0, ·).

We introduce the D’Alembert notation

□ := ∂tt −∆.
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5.1 One dimension, D’Alembert’s formula

5.1.1 Fourier transform

Consider the wave equation on the whole space:

∂ttu(t, x) = ∆u(t, x), x ∈ Rd.

Let û(t, ξ) =
[
u(t, ·)

]∧
. Then û solves

uttû(t, ξ) = −4π2|ξ|2û(t, ξ),

with initial condition
û(0, ξ) = ĝ(ξ), ût(0, ξ) = ĥ(ξ).

The solution to this linear ODE is given by

û(t, ξ) = ĝ(ξ) cos(2π|ξ|t) + ĥ(ξ)

2π|ξ|
sin(2π|ξ|t).

Hence,

u(t, ·) =
[
cos(2π|ξ|t)

]∨ ∗ g +
[sin(2π|ξ|t)

2π|ξ|

]∧
∗ h. (5.2)

However, it is a non-trivial task to compute the inverse Fourier transform, except in dimension d = 1.
Since cos θ = 1

2(e
iθ + e−iθ), we have

cos(2π|ξ|t)∨ =
1

2

∫
R
e2πiξ(x+t) + e2πiξ(x−t) dξ

=
1

2

[
δ(x+ t) + δ(x− t)

]
.

Noting that
sin(2π|ξ|t)

2π|ξ|
=

sin(2πξt)

2πξ
=

∫ t

0
cos(2πξs) ds,

we have [sin(2π|ξ|t)
2π|ξ|

]∨
=

∫ t

0
[cos(2πξs)]∨ ds

=

∫ t

0

1

2

[
δ(x+ s) + δ(x− s)

]
ds

=
1

2

(
1{0≤−x≤t} + 1{0≤x≤t}

)
=

1

2
1[−t,t](x).

We obtain the D’Alembert formula which solves the wave equation on R1.

Theorem 5.1 (D’Alembert Formula) Let g ∈ C2(R) and h ∈ C1(R). Then

u(t, x) =
1

2

[
g(x− t) + g(x+ t)

]
+

1

2

∫ x+t

x−t
h(y) dy, (5.3)

is a classical solution to (5.1).
In particular,

lim
(t,x)→(0,x0)

u(t, x) = g(x0), lim
(t,x)→(0,x0)

ut(t, x) = h(x0), ∀x0 ∈ R.

71



5.1.2 Method of characteristics

We will give another derivation of (5.3) using the method of characteristics.
Since

□ = (∂t − ∂x)(∂t + ∂x) = (∂t + ∂x)(∂t − ∂x),

for any F ∈ C1 we have
0 = □F (x− t) = □F (x+ t).

Thus, we postulate that u(t, x) takes the form

u(t, x) = F (x+ t) +G(x− t), (5.4)

that is, the sum of two travelling wave solutions. From the initial conditions, we obtain

{
F (x) +G(x) = g(x),

F ′(x)−G′(x) = h(x),
=⇒


F (x) =

1

2
g(x) +

1

2

∫ x

0
h(y) dy,

G(x) =
1

2
g(x)− 1

2

∫ x

0
h(y) dy.

This gives (5.3). Indeed, this is the unique classical solution.
Uniqueness: Assume that u(t, x) is a classical solution to (5.1) on R1. Since

(∂t − ∂x)[(∂t + ∂x)u] = 0,

we have
(∂t + ∂x)u = F (x+ t) (5.5)

by method of characteristics. To solve (5.5), let

η(t) = u(t, x0 + t).

Then

η(t) = η(0) +

∫ t

0
f(x0 + 2s) ds

= u(0, x0) + F (2t+ x0)− F (x0)

= g(x− t) + F (x+ t)− F (x− t).

Therefore, any classical solution must take the form of (5.4) □

5.1.3 Application of D’Alembert formula

From (5.3), we see that u(t, x0) = 0 if

g(x) = f(x) = 0, ∀|x− x0| ≤ t.

This can be interpreted as the initial data has effect on location of distance less than t at time t, that
is, the wave speed is 1.

In general, for the wave equation

∂ttu = a2∆u, a > 0,
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the wave speed is a. As an example, we recall that from the Maxwell’s equation in the vacuum

∇ · E = 0, ∇× E = −∂B
∂t
, ∇ ·B = 0, ∇×B = µ0ε0

∂E

∂t
,

one can derive
∂ttE = µ0ε0∆E, ∂ttB = µ0ε0∆B.

So the speed of electro-magnetic wave, the light speed, is c =
√
µ0ε0, where µ0 and ε0 are physical

constants that can be measured from experiments.
We can also use Theorem 5.1 to solve wave equation on the half-line using the reflection principle.

Consider the wave equation on R+ with Dirichlet boundary condition:
utt = uxx, t > 0, x > 0,

u(0, x) = g(x), x > 0,

ut(0, x) = h(x), x > 0,

u(t, 0) = 0, t > 0.

(5.6)

Let

ũ(t, x) =

{
u(t, x), x > 0,

−u(t,−x), x < 0,

be the odd extension of u(t, x). Then ũ(t, x) solves the wave equation on R1 with initial conditions

ũ(0, x) = g̃(x), ũt(0, x) = h̃(x),

where g̃ and h̃ are odd extensions of g and h. By Theorem 5.1,

u(t, x) =

{
1
2

(
g(x− t) + g(x+ t)

)
+ 1

2

∫ x+t
x−t h(y) dy, x ≥ t > 0,

1
2

(
g(x+ t)− g(t− x)

)
+ 1

2

∫ x+t
t−x h(y) dy, 0 < x < t.

Similarly, we can use even extensions to treat the Neumann boundary condition

ux(t, 0) = 0.

5.2 Method of spherical mean

For d ≥ 2, we introduce the method of spherical mean to solve the wave equation. As we can see from
(5.2), the spherical symmetry plays a role in the Fourier picture.

For x ∈ Rd and t, r > 0, we define

U(x; t, r) = −
∫
∂Br(x)

u(t, y) dS(y),

G(x; r)−
∫
∂Br(x)

g(y) dS(y),

H(x; r)−
∫
∂Br(x)

h(y) dS(y).

Lemma 5.2 (Euler–Poisson–Darboux Equation) Fix x ∈ Rd. The functions U,G,H solve the Euler–
Poisson–Darboux equation Utt − Urr −

d− 1

r
Ur = 0,

U(0, ·) = G, Ut(0, ·) = H.
(5.7)
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We remark that if ϕ is spherical symmetric, that is, ϕ(x) = ϕ(|x|), then

∆ϕ(x) = (∂rr +
d− 1

r
∂r)ϕ(r), |x| = r.

Proof: We suppress the x-dependence in U . We can write

U(t, r) =
1

|∂B1|

∫
∂B1

u(t, x+ ry) dS(y).

Hence,

∂rU(t, r) =
1

|∂B1|

∫
∂B1

∇(t, x+ ry) · y dS(y)

=
1

|∂B1|

∫
B1

∆u(t, x+ ry) dy

=
r

d
−
∫
Br(x)

∆u(t, y) dy,

where we use the divergence theorem in the second line with the fact that y is the normal vector
on ∂B1. In particular, since u ∈ C2, we see that

lim
r→0+

∂rU(t, r) = 0. (5.8)

By the co-area formula,

∂r

∫
Br

f(x) dx =

∫
∂Br

f(x) dS(x).

Hence,

∂rrU(t, r) = ∂r

[ r

d|Br|

∫
Br(x)

∆u(y) dy
]

=
(1
d
− 1

)
−
∫
Br(x)

∆u(y) dy +−
∫
∂Br(x)

∆u(y) dS(y),

where we use |Br| = αdr
d.

Therefore,

Urr +
d− 1

r
Ur = −

∫
∂Br(x)

∆u(y) dS(y) = −
∫
∂Br(x)

∂ttu(y) dS(y) = Utt.

The initial conditions are straightforward. □

When d = 3, the Euler–Poisson–Darboux equation becomes

Utt − (Urr +
2

r
Ur) = 0.

Let Ũ = rU . Then

∂rŨ = U + r∂rU,

∂rrŨ = 2∂rU + r∂rrU,

∂ttŨ = r∂ttU.
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Hence, Ũtt = Ũrr. Combining with (5.8), Ũ soles the wave equation on R+ with Dirichlet boundary
condition. For r < t, we have

Ũ(x; r, t) =
1

2

[
G̃(r + t)− G̃(t− r)

]
+

1

2

∫ t+r

t−r
H̃(y) dy.

To recover u, we have

u(t, x) = lim
r→0+

Ũ(x; r, t)

r
= G̃′(t) + H̃(t),

We have

G̃(t) =
∂

∂t

(
t−
∫
∂Bt(x)

g(y) dS(y)
)

= −
∫
∂Bt(x)

g(y) dS(y) + t
∂

∂t
−
∫
∂Bt(x)

g(y) dS(y)

= −
∫
∂Bt(x)

g(y) dS(y) +
∂

∂t
−
∫
∂B1

g(x+ ty) dS(y)

= −
∫
∂Bt(x)

g(y) dS(y) +−
∫
∂B1

∇g(x+ ty) · y dS(y)

= −
∫
∂Bt(x)

g(y) dS(y) +−
∫
∂Bt(x)

∇g(y) · y − x

t
dS(y).

Plugging in, we obtain the Kirchhoff’s formula for wave equation solution in R3:

u(t, x) = −
∫
∂Bt(x)

[
th(y) + g(y) +∇g(y) · (y − x)

]
dS(y). (5.9)

When d = 2, we cannot use a change of variable to reduce (5.7) to a wave equation. However, we
can view a function in R2 as a projection of a function in R3. Precisely, let

ū(t, x1, x3, x3) = u(t, x1, x2), ḡ(x1, x2, x3) = g(x1, x2), h̄(x1, x2, x3) = h(x1, x2).

Then ū solves the wave equation in R3, and hence by (5.9),

u(t, x) = ū(t, x̄) =
∂

∂t

[
t−
∫
∂B̄t(x̄)

ḡ dS̄
]
+ t−

∫
∂B̄t(x̄)

h̄ dS̄.

We have

−
∫
∂B̄t(x̄)

ḡ dS̄ =
1

4πt2
−
∫
Bt(x)

2g(y)
√
1 + |∇γ|2 dy,

where γ(y) =
√
t2 − |y − x|2 is the upper sphere centered at (x, 0). Direct computation gives

∇γ =
y − x√

t2 − |y − x|2
, 1 + |∇γ|2 = t2

t2 − |x− y|2
.

Hence,

t−
∫
∂B̄t(x̄)

ḡ dS̄ =
1

2π

∫
Bt(x)

g(y)√
t2 − |y − x|2

dy

=
t2

2
−
∫
Bt(x)

g(y)√
t2 − |y − x|2

dy

=
t

2
−
∫
B1

g(x+ ty)√
1− |y|2

dy.
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Its t-derivative is then given by

1

2
−
∫
B1

g(x+ ty)√√
1− |y|2

dy +
t

2
−
∫
B1

∇g(x+ ty) · y√
1− |y|2

dy

=
t

2
−
∫
Bt(x)

g(y) +∇g(y) · (y − x)√
t2 − |x− y|2

dy.

For the term involving h̄, we have

t−
∫
∂Bt(x)

h̄ dS̄ =
t2

2
−
∫
Bt(x)

h(y)√
t2 − |x− y|2

dy.

Combining all these, we obtain the Poisson’s formula that solves the wave equation in R2:

u(t, x) =
1

2
−
∫
Bt(x)

tg(y) + t∇g(y) · (y − x) + t2h(y)√
t2 − |x− y|2

. (5.10)

In both (5.9) and (5.10), we need g ∈ C3 and h ∈ C2 to guarantee that u ∈ C2,2.
There is a key difference between (5.9) and (5.10). In (5.9), the solution u(t, x) depends on

the initial data over the boundary ∂Bt(x), whereas in (5.10), it depends on the entire ball Bt(x).
Physically, this reflects that the phenomenon that three-dimensional waves have both a wavefront and
a waveback, while two-dimensional waves do not.

5.3 Non-homogeneous problem

We will use the Duhamel’s principle to solve the non-homogeneous problem{
uttu = ∆u+ f,

u(0, ·) = 0, ut(0, ·) = 0.
(5.11)

Theorem 5.3 Let v(t, x; s) solves{
vtt(t, x; s) = ∆v(t, x; s), t > s, x ∈ Rd,

v(s, x; s) = 0, vt(s, x; s) = f(s, x).

Then

u(t, x) =

∫ t

0
v(t, x; s) ds

solves (5.11).

Note that the non-homogeneous term f appears in the initial condition for vt, not v. This is
because formally we can write (5.11) as

∂t

[
u
ut

]
=

[
0 1
∆ 0

]
+

[
0
f

]
,

[
u
ut

]
(t = 0) =

[
g
h

]
.

So f is associated with h.
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Proof: We have

∂tu = v(t, x; t) +

∫ t

0
∂tv(t, x; s) ds

=

∫ t

0
∂tv(t, x; s) ds,

∂ttu = ∂tv(t, x; t) +

∫ t

0
∂ttv(t, x; s) ds

= f(t, x) +

∫ t

0
∆v(t, x; s) ds

= f(t, x) + ∆u.

□

We look at some examples. In dimension d = 1, we have

v(t, x; s) =
1

2

∫ x+t−s

x−t+s
f(s, y) dy,

so

u(t, x) =
1

2

∫ t

0

∫ x+t−s

x−t+s
f(s, y) dyds =

1

2

∫ t

0

∫ x+s

x−s
f(t− s, y) dyds.

The domain of dependence is the cone

D = {(s, y) ∈ R+ × R : 0 ≤ s ≤ t, |x− y| ≤ t− s}.

In dimension d = 3, we have

v(t, x; s) = (t− s)−
∫
∂Bt−s(x)

f(s, y) dS(y),

and hence

u(t, x) =

∫ t

0
(t− s)−

∫
∂Bt−s(x)

f(s, y) dS(y)ds

=

∫ t

0

1

4π

∫
∂Bt−s(x)

f(s, y)

t− s
dS(y)ds

=
1

4π

∫
Bt(x)

f(t− |y − x|, y)
|y − x|

dy.

Again, the domain of influence is a cone

D = {(s, y) ∈ R+ × R3 : 0 ≤ s ≤ t, |x− y| ≤ t− s}.

We will see a more clear picture in the next section.

5.4 Energy method

Consider the wave equation 
□u = f, (t, x) ∈ ΩT ,

u = g, (t, x) ∈ ∂pΩT ,

ut(0, x) = h(x), x ∈ Ω.

(5.12)
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Theorem 5.4 The classical solution u ∈ C2(ΩT ) to (5.12) is unique.

Proof:
Let u1 and u2 be two solutions. Then v = u1 − u2 solves (5.12) with f = g = h = 0. We consider

the energy

e(t) =
1

2

∫
Ω
|vt|2 + |∇v|2 dx.

Then

e′(t) =

∫
Ω
vttvt +∇vt · ∇v dx

=

∫
Ω
(∆v)vt − vt∆v dx+

∫
∂Ω

∂v

∂n
· vt dS

= 0.

Since e(0) = 0 and e(t) ≥ 0, this implies e(t) ≡ 0. It follows that v ≡ 0. □

Using a refined form energy, we have the following result about the domain of influence. Fix (t0, x0).
Consider the cone

C = {(t, x) : 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t}.

Proposition 5.5 (Domain of influence) If u ∈ C2, □u = 0 and u = ut = 0 in {t = 0} × Bt0(x0),
then u ≡ 0 in C.

Proof:
Let

e(t) =
1

2

∫
Bt0−t(x0)

|ut(t, x)|2 + |∇u(t, x)|2 dx.

Then by co-area formula,

e′(t) =

∫
Bt0−t(x0)

utt · ut +∇u · ∇ut dx− 1

2

∫
∂Bt0−t

|ut|2 + |∇u|2 dx

=

∫
Bt0−t(x0)

ut ·□u+

∫
∂Bt0−t(x0)

∂u

∂n
ut −

1

2

∫
∂Bt0−t

|ut|2 + |∇u|2 dx

=

∫
∂Bt0−t(x0)

[∂u
∂n
ut −

1

2
|ut|2 + |∇u|2

]
≤ 0.

Here, the last line follows from∣∣∣∂u
∂n
ut

∣∣∣ ≤ 1

2

∣∣∣∂u
∂n

∣∣∣2 + 1

2
|ut|2 ≤

1

2
|∇u|2 + 1

2
|ut|2.

Since e(0) = 0, e(t) ≥ 0 and e′(t) ≤ 0, we have e(t) ≡ 0. It follows that u ≡ 0 in C. □

As a corollary, we have the energy estimate.

Proposition 5.6 If □u = f , then

e(t) ≤ et0
[∫ t

0

∫
Bt0−t(x0)

f2(s, x) dsdx+ e(0)
]
.
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Proof: We have

e′(t) ≤
∫
Bt0−t(x0)

ut(t, x)f(t, x) dx ≤
∫
Bt0−t(x0)

f2(t, x) + e(t).

The conclusion follows from Gronwall’s inequality.
□

5.5 Separation of variables

As an example, we will solve the wave equation with Dirichlet boundary condition on [0, π]:
utt − uxx = 0, t > 0, x ∈ (0, π),

u(t, 0) = u(t, π) = 0, t > 0,

u(0, x) = ϕ(x), x ∈ (0, π),

ut(0, x) = ψ(x), x ∈ (0, π).

(5.13)

Then

u(t, x) =

∞∑
n=1

Tn(t) sin(nx)

where Tn solves
T ′′
n + n2Tn = 0, Tn = ϕn, T ′

n(0) = ψn,

with

ϕn =
2

π

∫ π

0
ϕ(x) sin(ny) dy, ψn =

2

π

∫ π

0
ψ(x) sin(ny) dy.

Hence,
Tn(t) = ϕn cos(nt) + ψn sin(nt).

We can also use odd and 2π-periodic extension to turn the equation into wave equation on R1.
Let Φ and Ψ be the extensions of ϕ and ψ. Then by Theorem 5.1,

u(t, x) =
1

2

[
Φ(t+ x) + Φ(t− x)

]
+

1

2

∫ x+t

x−t
Ψ(y) dy.

One can check

∞∑
n=1

ϕn cos(nt) sin(nx) =

∞∑
n=1

ϕn

[
sin

(
n(t+ x)

)
− sin

(
n(x− t)

)]
= Φ(t+ x)− Φ(t− x),

and a similar identity for the ψ term.
Resonance. Let us include a non-homogeneous term in (5.13), that is,

utt − uxx = f(t, x), t > 0, x ∈ (0, π).

For simplicity we also set ϕ = ψ = 0. Then Tn will solve

T ′′
n + n2Tn(t) = fn(t), fn(t) =

2

π

∫ π

0
f(t, y) sin(ny) dy.

Suppose f(t, x) = eiωtA(x), that is, the external force is period in time, with frequency ω. Then

T ′′
n (t) + n2Tn(t) = An sin(ωt).
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By Duhamel’s principle,

Tn(t) = An

∫ t

0
sin(ωs) sin

(
n(t− s)

)
ds

=
An

2

∫ t

0

[
cos

(
nt− (n+ ω)s

)
− cos

(
nt− (n− ω)s

)]
ds

=

{
C1
n+ω + C2

n−ω , n ̸= ω,
tAn
2 +O(1), n = ω.

In particular, when |ω| = n, that is, the frequency of the external force coincides with one of the
frequency of the system, ω ∈ {1, 2, 3, . . . }, the wave equation solution will tend to ∞ as t→ ∞. This
is the phenomenon of resonance. In particular, there is no maximum principle for the wave equation,
since the solution is not controlled by the initial and boundary data.

6 First-order evolution PDEs

We loosely follow [Eva98, 7.1].

6.1 Set up

Let Ω be a bounded domain. Consider a general elliptic operator in the divergence form

Lu = −
d∑

i,j=1

(
aij(t, x)uxi

)
xj

+
d∑

i=1

bi(t, x)uxi + c(t, x),

where aij = aji.
We want to develop solution theory for the linear evolution PDE

ut + Lu = f(t, x), (t, x) ∈ ΩT ,

u(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = g(x), x ∈ Ω.

(6.1)

For example, when aij = δij and b = c = 0, Lu = −∆u and (6.1) becomes the heat equation.

Definition 6.1 (Uniform ellipticity) L is uniformly elliptic if there exists θ > 0 such that the smallest
eigenvalue of the matrix A(t, x) =

(
aij(t, x)

)
is at least θ for all (t, x) ∈ ΩT , or equivalently,

d∑
i,j=1

aij(t, x)ξiξj ≥ θ|ξ|2, ∀(t, x) ∈ ΩT , ξ ∈ Rd.

We impose the following assumptions.

1. L is uniformly elliptic.

2. aij , bi, c ∈ L∞(ΩT ).

3. f ∈ L2(ΩT ) and g ∈ L2(Ω).
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We will view u(t, x) as a map from t ∈ [0, T ] to u(t, ·) ∈ H1
0 (Ω), where

H1
0 (Ω) = closure of C∞

c (Ω)

under the H1-norm

∥h∥H1 :=

∫
Ω
|h(x)|2 + |∇h(x)|2 dx.

Roughly speaking, it consists of functions h such that h,∇h ∈ L2(Ω) and vanishes on ∂Ω; this means
that the boundary condition is already encoded in the functional space.

6.2 Weak solutions

We need a notion of solutions that has minimum requirement on the regularity. Assume temporarily
that u is smooth.

We define
[ū(t)](x) := u(t, x), [f̄(t)](x) := f(t, x).

We seek solution ū : [0, T ] → H1
0 (Ω). Note that by Fubini,

f ∈ L2(ΩT ) ⇐⇒ ∥f∥L2(ΩT ) =

∫ T

0
∥f̄(t)∥L2(Ω) dt <∞

Hence f̄(t) ∈ L2(Ω) for almost every t, and we can view f̄ as a map from [0, T ] to L2(Ω).
Let v ∈ H1

0 (Ω). Using integration by parts,∫
Ω
v(x)(ut + Lu) dx =

∫
Ω
v(x)f(t, x) dx

becomes
(ū′, v)L2 +B[ū(t), v; t] = (f̄(t), v)L2 , (6.2)

where

B[u, v; t] :=

∫
Ω

[∑
i,j

aij(t, x)uxiuxj +
∑
i

bi(t, x)uxiv + c(t, x)uv
]
dx.

How to define (6.2) in the weakest sense? For simplicity, let us assume b = c ≡ 0.
For the term (f̄ , v) on the RHS, since f̄(t) ∈ L2(Ω) and v ∈ H1

0 (Ω) ⊂ L2(Ω), their inner prod-
uct (f̄(t), v) is defined.

For the term B[u, v; t], we have

|B[u, v; t]| ≤ sup aij∥u∥H1
0 (Ω)∥v∥H1

0 (Ω).

So we need ū ∈ L2([0, T ];H1
0 (Ω)).

Finally, we need to make sense of∫
Ω
ϕ(x)v(x) dx, ϕ = ū′(t)

for all v ∈ H1
0 (Ω). Then ϕ belongs to the dual space of H1

0 (Ω), denoted by [H1
0 (Ω)]

∗ = H−1(Ω). The
space H−1(Ω) is equipped with the norm

∥ϕ∥H−1(Ω) = sup
v∈H1

0 , ∥v∥
H1
0
=1

⟨ϕ, v⟩.
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Later, we will use ⟨·, ·⟩ to denote the pairing between a Banach space and its dual space, and (·, ·) for
the L2-inner product. From (6.2) we do know that ū′(t) ∈ H−1(Ω), since for v ∈ H1

0 (Ω),

⟨ū′(t), v⟩ ≤ ∥v∥H1
0
·
[
sup|aij |∥u∥H1

0
+ ∥f∥L2

]
.

Definition 6.2 A weak solution to (6.1) is a function ū ∈ L2
(
0, T ;H1

0 (Ω)
)
with ū′ ∈ L2

(
0, T ;H−1(Ω)

)
,

so that the following holds:

1. (6.2) holds for almost every t ∈ [0, T ] and all v ∈ H1
0 (Ω);

2. ū(0) = g.

We will make a comment about the meaning of ū′(t). Since ū ∈ L2
(
0, T ;H1

0 (Ω)
)
, by definition for

almost every t ∈ [0, T ], ū(t) ∈ H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω). Then ū′(t) is defined as the limit of

lim
h→0

ū(t+ h)− ū(t)

h

in H−1(Ω). We also have the following lemma that can make sense of the initial condition in Defini-
tion 6.2.

Lemma 6.1 If ū ∈ L2
(
0, T ;H1

0 (Ω)
)
and ū′ ∈ L2

(
0, T ;H−1(Ω)

)
, then ū ∈ L2

(
0, T ;L2(Ω)

)
and

max
0≤t≤T

∥ū(t)∥L2 ≤ C
[
∥ū∥L2(0,T ;H1

0 )
+ ∥ū′∥L2(0,T ;H−1)

]
. (6.3)

for some constant C = C(T ).

Proof:
First, (6.3) holds for ū ∈ C∞

c

(
0, T ;H1

0

)
with ū′(t) ≡ 0 for t < −1. Indeed,

∥ū(t)∥2L2 = 2

∫ t

−1
⟨ū(s), ū′(s)⟩ ds

≤ 2

∫ t

−1
∥ū(s)∥H1

0
· ∥ū′(s)∥H−1 ds

≤
∫ t

−1
(∥ū(s)∥2H1

0
+ ∥ū′(s)∥2H−1) ds

≤ ∥ū∥2L2(0,T ;H1
0 )

+ ∥ū′∥2L2(0,T ;H−1).

In the general case, consider ūε = ηε ∗ ū. Then by the property of the mollifiers, we have

ūε → ū, in L2(0, T ;H1
0 ) and for almost every t ∈ [0, T ]

and
ū′ε → ū′, in L2(0, T ;H−1) and for almost every t ∈ [0, T ]

By (6.3), {ūε}ε>0 forms a Cauchy sequence in C(0, T ;L2). Since ūε(t) → ū(t) for almost every t ∈ [0, T ],
any limit point of the Cauchy sequence coincides with ū except for a zero measure set of t. In other
words, we can identify ū with an element in C(0, T ;L2). □
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6.3 Uniqueness of weak solution

Theorem 6.2 The unique weak solution to (6.1) with g = f = 0 is ū ≡ 0.

The bilinear form B satisfies the following estimates.

Lemma 6.3 1. There exists a constant M > 0 such that

|B[u, v; t]| ≤M∥u∥H1
0
∥v∥H1

0
, ∀t, ∀u, v ∈ H1

0 (Ω).

2. There exist constant β, γ > 0 such that

B[u, u; t] ≥ β∥u∥2H1
0
− γ∥u∥2L2 , ∀t, ∀u ∈ H1

0 (Ω).

Proof:
Since a, b, c ∈ L∞ and ∥h∥L2 ≤ ∥h∥H1

0
, by Cauchy–Schartz we have

|B[u, v; t]| ≤ d2 sup|aij | · ∥u∥H1
0
∥v∥H1

0
+ d sup|bi| · ∥u∥H1

0
∥v∥L2 + sup|c| · ∥u∥L2∥v∥L2

≤M∥u∥H1
0
∥v∥H1

0
.

This proves the first part.
For the second part, by Poincaré’s inequality (Theorem 4.23) there exists δ > 0 such that

∥∇u∥L2 ≥ δ∥u∥L2 , ∀u ∈ H1
0 (Ω).

Using uniform ellipticity of (aij), we have

B[u, u; t] ≥ θ∥∇u∥2L2 − d sup|b| · ∥∇u∥L2∥u∥L2 − sup|c|∥u∥2L2

≥ (θ − ε)∥∇u∥2L2 − (sup|c|+ d sup|b|/4ε)∥u∥L2

≥ β∥u∥2H1
0
− γ∥u∥2L2 ,

provided ε > 0 is choosen sufficiently small. □

Proposition 6.4 If ū is a weak solution to (6.1), then∫ T

0
⟨ū′(t), v̄(t)⟩+B[ū(t), v̄(t); t] dt =

∫ T

0

(
ū(t), f̄(t)

)
L2 dt (6.4)

for all v̄ ∈ L2
(
0, T ;H1

0 (Ω)
)
.

Proof: Since H1
0 (Ω) is separable, it has an orthonormal basis {wk}∞k=1. By (6.2), (6.4) holds for

v̄(t) = hk(t)wk

for any hk ∈ C∞
0 (R). By linearity, (6.4) holds for

v̄(t) =
N∑
k=1

hk(t)wk, hk ∈ C∞
0 (R). (6.5)

Denote the difference of the LHS and the RHS of (6.4) by F [v̄]. Then the conclusion follows from the
fact that v̄ of the form (6.5) is dense in L2(0, T ;H1

0 ) and

|F [v̄1]− F [v̄2]| ≤ C(ū, f̄)∥v̄1 − v̄2∥H1
0 (Ω).
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□

We are ready to prove Theorem 6.2.
Proof of Theorem 6.2:

In (6.4), letting
v̄(s) = 1[0,t](s)ū(s),

we have ∫ t

0
⟨ū′(s), ū(s)⟩ ds+

∫ t

0
B[ū(s), ū(s); s] ds = 0, ∀t ∈ [0, T ].

Note that the first term equals 1
2∥ū(t)∥

2
L2 . By Lemma 6.3, we have

0 ≥ ∥ū(t)∥2L2 − γ

∫ t

0
∥ū(s)∥2L2 ds.

By Gronwall’s inequality applied to t 7→ ∥ū(t)∥2L2 , we obtain ū(t) ≡ 0. □

6.4 Existence of linear equation: Galerkin approximation

Let {wk}∞k=1 be a basis in H1
0 (Ω) and Ωm = span{w1, . . . , wm}. In practice, the basis can come from a

mesh approxmation, finite-element method, or Fourier series approximation, etc. We want to find the
function ūm ∈ Ωm that is closest to the solution to (6.1), and then take the limit m → ∞. In other
words, ūm satisfies the projection of (6.1) onto Ωm:

⟨ū′m, wj⟩+B[ūm, wj ; t] = (f̄ , wj), ∀1 ≤ j ≤ m. (6.6)

If we write

ūm(t) =
m∑
k=1

dkm(t)wk,

then
m∑
k=1

(dkm)′(t)(wk, wj) +
m∑
k=1

dkm(t)B[wk, wj ; t] = (f̄ , wj).

Equivalently, the vector function d̄(t) =
(
d1m(t), . . . , dmm(t)

)T
satisfies the ODE

Ad̄′ +Bd̄ = F, d̄(0) = gm = πΩmg,

where
Aij = (wi, wj), Bij = B[wi, wj ; t], Fj(t) =

(
f̄(t), wj

)
.

The matrices A,B and F satisfy A−1, B ∈ L∞, F ∈ L2. Multiplying A−1 to the ODE, we obtain

d̄′ +A−1Bd̄ = A−1F.

This is a linear ODE which always has a solution.
Next, we want to take the limit limm→∞ ūm. Naturally we expect to extract the limit in the weak

sense. We need an energy estimate.

Theorem 6.5 (Energy estimate) There exists a constant C, independent of m, such that

max
0≤t≤T

∥ūm(t)∥L2 + ∥ūm∥L2(0,T ;H1
0 )

+ ∥ū′m∥L2(0,T ;H−1) ≤ C
[
∥f∥L2(0,T ;L2) + ∥g∥L2

]
. (6.7)
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Proof: We have (
ū′m(t), ūm(t)

)
+B[ūm(t), ūm(t); t] =

(
f̄(t), ūm(t)

)
.

By Lemma 6.3, we have

d

dt

1

2
∥ūm(t)∥2L2 + β∥ūm(t)∥2H1

0
≤ 1

2
∥f̄(t)∥2L2 + (

1

2
+ γ)∥ūm(t)∥2L2 . (6.8)

For the first term in the LHS of (6.7), let η(t) = ∥ūm(t)∥2L2 and ξ(t) = ∥f̄(t)∥2L2 . From (6.8) we
have

η′(t) ≤ C1η(t) + C2ξ(t),

and hence by Gronwall’s inequality,

η(t) ≤ eC1t
(
η(0) + C2

∫ t

0
ξ(s) ds

)
≤ eC1t

(
∥g∥2L2 + C2∥f̄∥L2(0,T ;L2)

)
, t ∈ [0, T ].

This gives the upper bound of the first term.
For the second term, integrating (6.8) over [0, T ], we obtain

β∥ūm∥2L2(0,T ;H1
0 )

≤ 1

2
∥f∥2L2(0,T ;L2) + C(T + 1) max

0≤t≤T
∥ūm(t)∥2L2 .

This gives the desired upper bound of the second term.
For the third term, we recall that

∥ū′m(t)∥H−1 = sup
{
⟨ū′m(t), v⟩ : v ∈ H1

0 , ∥v∥H1
0
≤ 1

}
.

Let v ∈ H1
0 with ∥v∥H1

0
≤ 1. Decompose v as

v = v1 + v2, v1 ∈ Ωm, v2 ∈ Ω⊥
m.

Then ∥v1∥H1
0
≤ 1 and

⟨ū′m(t), v⟩ = ⟨ū′m, v1⟩ = (f̄(t), v1)−B[ūm(t), v; t]

≤ C
(
∥f̄(t)∥2L2 + ∥ūm(t)∥2H1

0

)
.

Hence,

∥ū′m(t)∥H−1 ≤ C
(
∥f̄(t)∥L2 + ∥ūm(t)∥2H1

0

)
.

Taking square of both sides, integrating over [0, T ] and using the bound on the second term yields the
desired result. □

Theorem 6.6 There exists a weak solution to (6.1).

Proof: From the energy estimate Theorem 6.5, {u′m} is bounded in L2
(
0, T ;H1

0 (Ω)
)
and {ū′m} is

bounded in L2
(
0, T ;H−1(Ω)

)
. Since both spaces are separable Hilbert spaces, by weak compactness

(Theorem 4.22), there exists a subsequence, still denoted by {ūm}, and a function u such that

ūm ⇀ ū in L2(0, T ;H1
0 ), ū′m ⇀ ū′ in L2(0, T ;H−1). (6.9)
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Let

v̄(t) =

N∑
k=1

dk(t)wk (6.10)

where dk(t) are smooth functions. Then v̄ ∈ C1(0, T ; ΩN ). For m ≥ N , by the construction of um we
have ∫ T

0
⟨ūm(t), v̄(t)⟩+B[ūm(t), v̄(t); t] dt =

∫ T

0

(
f̄(t), v̄(t)

)
. (6.11)

By (6.9), we have ∫ T

0
⟨ū′(t), v̄(t)⟩+B[ū(t), v̄(t); t] dt =

∫ T

0

(
f̄(t), v̄(t)

)
dt. (6.12)

Since functions of the form (6.10) is dense in L2(0, T ;H1
0 ), we have

⟨ū′, v̄⟩+B[ū, v̄; t] = (f̄ , v̄), for almost every t ∈ [0, T ].

To show that ū is a weak solution, it remains to check ū(0) = g. In (6.12), taking v̄ ∈ C1(0, T ;H1
0 )

with v̄(T ) = 0, and integrating by parts in t yields∫ T

0
−⟨ū, v̄′⟩+B[ū, v̄; t] dt =

∫ T

0
(f̄ , v̄) dt+

(
ū(0), v̄(0)

)
,

while from (6.11) we can obtain∫ T

0
−⟨ūm, v̄′⟩+B[ūm, v̄; t] dt =

∫ T

0
(f̄ , v̄) dt+

(
ūm(0), v̄(0)

)
,

Taking m→ ∞ and using weak convergence (6.9), we obtain(
ū(0), v̄(0)

)
=

(
g, v̄(0)

)
.

Since this holds for all v̄(0), we must have ū(0) = g. This completes the proof. □

6.5 Existence of nonlinear equation: fixed point method

In this section we consider a nonlinear system
ut = −Lu+ f(u),

u(0, x) = g(x) ∈ L2(Ω), x ∈ Ω,

u(t, x) = 0, x ∈ ∂Ω,

(6.13)

where
Lu = −

∑
i,j

(aij(x)uxi)xj ,

and f : R → R is a Lipschitz function with Lipchitz constant L.
The tool we will use is the Banach Fixed Point Theorem.

Theorem 6.7 (Banach Fixed Point Theorem) Let X be a Banach space (complete, normed linear
space) and A : X → X a possible nonlineaer operator that satisfies

∥A[u]−A[ũ]∥ ≤ γ∥u− ũ∥, ∀u, ũ ∈ X,

for some constant γ < 1. Then A has a unique fixed point, that is, solution to the equation Au = u.
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Proof: Pick any u0 ∈ X. Then {An[u0]} is a Cauchy sequence in X since

∥An[u0]−An+m[u0]∥ ≤ (γn + γn+1 + · · ·+ γn+m)∥A[u0]− u0∥ ≤ Cγn∥A[u0]− u0∥.

Since X is a complete metric space, there exists u such that An[u0] → u, and hence by continuity,

u = lim
n→∞

A[An[u0]] = A[ lim
n→∞

An[u]] = A[u].

□

As a classical application, we consider the ODE

ẋ(t) = f(t, x), x(0) = a,

where f is bounded and Lipchitz in x. The space X = C[0, T ] ∩ {x(0) = a} is a Banach space under
the maximum norm. Let

A[x](t) =

∫ t

0
f
(
s, x(s)

)
ds.

Then ∣∣A[x](t)−A[x̃](t)
∣∣ ≤ ∫ T

0

∣∣f(s, x(s))− f
(
s, x̃(s)

)∣∣ ds ≤ LT sup
0≤s≤T

|x(s)− x̃(s)|.

Hence,
∥A[x]−A[x̃]∥ ≤ LT∥x− x̃∥.

Choosing T < 1/L and applying Theorem 6.7, we obtain a solution to the ODE on [0, T ]. Iterating
this over [T, 2T ], [2T, 3T ], . . . yields global in t existence of solutions.

We will apply Theorem 6.7 to obtain a weak solution to (6.13).
Proof:

We take X = C
(
0, T ;L2(Ω)

)
, and w = A[u] to be the weak solution of

wt = −Lw + f(u), w(0) = g,

so that w ∈ L2
tH

1
0 and w′ ∈ L2

tH
−1. For Theorem 6.6 to apply, first we need to check that h(t, x) =

f
(
u(t, x)

)
∈ L2

tL
2
x provided that u ∈ CtL2

x. Indeed, by Lipschtiz continuity we can assume

|f(z)|2 ≤ C(1 + z2)

for some constant C; we have∫ T

0

∫
Ω
h2(t, x) dxdt =

∫ T

0

∫
Ω
f2

(
u(t, x)

)
dxdt

≤
∫ T

0

∫
Ω
C
(
1 + u2(t, x)

)
≤ C(1 + ∥u∥2L2

tL
2
x
).

Next, to apply Theorem 6.7, we need to show that for T sufficiently small, u 7→ w = A[u] is a
contraction. Let w1 = A[u] and w2 = A[ũ]. By definition of weak solutions, for all v ∈ H1

0 (Ω) we have

⟨w̄′
1 − w̄′

2, v⟩+B[w̄1 − w̄2, v] =
(
f(u)− f(ũ), v

)
.
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Using a similar argument to Proposition 6.4, we have

d

dt
∥w̄1 − w̄2∥2L2 + β∥w̄1 − w̄2∥2H1

0
≤ L∥u− ũ∥L2∥w̄1 − w̄2∥L2

≤ L

4ε
∥u− ũ∥2L2 + εL∥w̄1 − w̄2∥2L2

≤ L

4ε
∥u− ũ∥2L2 + εLδ∥w̄1 − w̄2∥2H1

0
,

where δ is the constant from the Poincaré’s inequality in Ω. By choosing ε sufficiently small, we can
make εLδ ≤ θ, and hence

d

dt
∥w̄1 − w̄2∥2L2 ≤ L

4ε
∥u− ũ∥2L2 .

Integrating over [0, t] yields

∥w̄1(t)− w̄2(t)∥2L2 ≤ LT

4ε
∥u− ũ∥2X , ∀t ∈ [0, T ].

If LT/4ε < 1, then u 7→ w = A[u] is a contraction. In particular, there exists a solution u = A[u] up
to time T1 = L/8ε.

Since u is a weak solution up to time T1, we have u ∈ L2(0, T ;H1
0 ) and hence ∥ū(t)∥H1

0
< ∞ for

almost every t ≤ T1. In particular, there exists t0 ∈ [T1/2, T1] such that ∥ū(t0)∥H1
0
< ∞. Using ū(t0)

as the initial condition, we obtain a solution on [T1/2, 3T1/2]. Interating this argument we obtain a
solution for all time.

□

7 Hamilton–Jacobi equations

7.1 Set up and method of characteristics

Hamilton–Jacobi equation takes the form

ut +H(ux, x) = 0. (7.1)

For example, from the Burgers equation

vt + v · ∂xv = 0,

we can integrate once to get

ut +
1

2
(ux)

2 = 0, v = ux.

More generally, the RHS of (7.1) can be a function F (t, x), which is equivalent to have a Hamilto-
nian H(ux, x, t) = H(ux, x)− F (t, x).

Next, we will use the method of characteristic to solve

ut +H(ux, x, t) = 0. (7.2)

Comparing with the Burgers equation, we should make differentiate the equation in x to make (7.2)
a semi-lineaer equation. Indeed, differentiating once in x and writing v = ux, we obtain

vt + ∂pH(v, x, t) · vx + ∂xH(v, x, t) = 0.
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Let η(s) be the characteristic and
p(s) = v

(
s, η(s)

)
.

We have
η̇(s) = ∂pH

(
p(s), η(s), s

)
, ṗ(s) = −∂xH

(
p(s), η(s), s

)
. (7.3)

(7.3) is called the Hamiltonian’s PDE.

Proposition 7.1 (Preservation of Hamiltonian) Assume H(p, x, s) = H(p, x). Then H
(
p(s), η(s), s

)
is constant.

Proof: Let H(s) = H
(
p(s), s, η(s)

)
. We have

Ḣ(s) = ∂pH · ṗ(s) + ∂xH · η̇(s)
= ∂pH · (−∂xH) + (∂xH) · (∂pH) = 0.

□

Physically, H(p, x, s) = H(p, x) means that the forcing F (t, x) = F (x) is conservative, so the
Hamiltonian, i.e., the energy, is perserved.

7.2 Calculus of variation and Lagrangian mechanics

We know that intersection of characteristics may cause problems, so we aim to try another represen-
tation of the solution.

We introduce the Lagrangian L(q, x, t) and the variational problem

inf
w∈A

I[w] = inf
w∈A

∫ t

0
L
(
ẇ(s), w(s), s

)
ds,

where the admissible set
A = {w ∈ C2[0, t] : w(0) = y, w(t) = x}.

The idea of Lagrangian mechanics is that the minimizer of the variational problem t 7→ w(t) should
give the trajectory of the system in the phase space.

Suppose that η is the minimizer. For any v ∈ C2
0 [0, t], the function i(ε) = I[η + εv] achieves the

minimum at ε = 0, and hence i′(0) = 0. Direct computation gives

0 = i′(0) =
d

dε

∣∣
ε=0

∫ t

0
L(η̇ + εv̇, η + εv, s) ds

=

∫ t

0

[
(∂qL) · v̇ + (∂xL)v

]
ds

=

∫ t

0

[ d
ds

(−∂qL) + ∂xL
]
v ds.

Since this holds for all v ∈ C2
0 [0, t], we must have

−∂xL+
d

ds
(∂qL) ≡ 0. (7.4)

This is the Euler–Lagrange equation.
For example, to model a particle moving in a potential, we have

L(q, x, s) =
1

2
mq2 − Φ(s, x).
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Then
∂xL = −∂xΦ(s, x), ∂qL = mq.

(7.4) becomes

Φ′(s, η(s))+ d

ds

(
mη̇(s)

)
= 0 =⇒ mη̈(s) = −Φ′(s, η(s)),

that is, the accelaration times mass is the the external force which is the negative gradient of the
potential field.

To make a connection to the Hamilton’s PDE (7.3), we define

p(s) = ∂qL(η̇, η, s).

Suppose p = ∂qL(q, x, s) can be solved by

q = q(p, x, s),

and let
H(p, x) = p · q(p, x, s)− L

(
q(p, x), x, s

)
.

Then the Euler–Lagrangian equation (7.4) becomes (7.3). Indeed, we have

η̇(s) = q
(
p(s), η(s), s

)
, ṗ(s) = ∂xL,

by the definition of q(·) and the Euler–Lagrange equation, while

∂pH = q(p, x, s) + p · ∂q
∂p

− ∂qL · ∂q
∂p

= q,

and

∂xH
(
p(s), η(s), s

)
= p · ∂q

∂x
− ∂L

∂q

∂q

∂x
− ∂xL = −∂xL.

7.3 Legendre transform

The functions L and H are associated by the so-called Legendre transform, or convex dual.
Let L(q) : Rd → R be a convex function with super-linear growth at ∞, that is,

lim
|q|→∞

L(q)

|q|
= +∞.

Its Legendre transform L∗(p) is defined by

L∗(q) = sup
q∈Rd

{p · q − L(q)}.

If the function L(q) is sufficiently nice so that the supremum can ba acheived, then the Legendre
transform takes a simpler form. Indeed, suppose that q∗ is the point of maximum; then

∂

∂q

∣∣
q=q∗

(
p · q − L(q)

)
= 0 =⇒ p = ∂qL(q

∗).

Hence,
L∗(q) = p · q∗ − L(q∗),

where q∗ solves p = ∂qL(q
∗).

The Legendre transform is really a duality.
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Proposition 7.2 The function p 7→ H(p) is convex with super-linear growth, and L = H∗ = L∗∗.

We recall a fact about convex functions.

Lemma 7.3 Let {φα}α∈A be a family of convex functions. Then

φ∗(x) = sup
α∈A

φα(x)

is also convex.

Proof: We recall that a function f is convex, if and only if for all x0, y0 satisfies φ(x0) > y0, there
is a hyperplane y = ℓ(x) passing through y0 such that φ(x) ≥ ℓ(x) for all x.

If φ∗(x0) > y0, then by definition, there exists φα such that φα(x0) > y0, and hence there is a
hyperplane y = ℓ(x) such that φα ≥ ℓ, so φ∗ ≥ φα ≥ ℓ as desired. □

Proof:
Since q 7→ p · q − L(q) are a family of convex (in fact, linear) functions, the convexity p 7→ H(p)

follows from Lemma 7.3.
For λ > 0, we have

H(p) ≥ λ|p| − L(λ) ≥ λ|p| −max
|q|≤λ

L(q).

Hence,

lim inf
|p|→∞

H(p)

|p|
≥ lim inf

|p|→∞
λ−

max|q|≤λ L(q)

|p|
≥ λ

for every λ. Therefore, H is super-linear.
By the definition, we have

H(p) + L(q) ≥ p · q, ∀p, q ∈ R.

So
L(q) ≥ p · q −H(p), ∀p =⇒ L(q) ≥ H∗(q).

On the other hand, since L(q) is convex, there exists a hyperplane passing through q that is below L(·).
We write this hyperplane as

ℓ(r) = a · (r − q) + L(q) ≤ L(r).

Then

H∗(q) = sup
p∈Rd

{p · q −H(p)}

= sup
p∈Rd

{
p · q − sup

r∈Rd

{p · r − L(r)}
}

= sup
p

inf
r
{p · (q − r) + L(r)}

≥ inf
r
{a · (q − r) + L(r)} ≥ L(q).

This completes the proof. □

91



7.4 Solve Hamilton–Jacobi via variational formula

We propose that the solution to

∂tu+H(∂xu, x, t) = 0, u(0, x) = g(x), (7.5)

is given by

u(t, x) = inf
{∫ t

0
L
(
ẇ(s), w(s), s

)
ds+ g

(
w(0)

)
: w Lipschitz, w(t) = x

}
, (7.6)

where L(q, x, t) = H∗(p, x, t). We will discuss in what sense (7.6) gives the solution to (7.5).

7.4.1 Hopf–Lax Formula

In this section we assume
H(p, x, t) = H(p), L(q, x, t) = L(q),

where H and L are convex functions with super-linear growth and they are the Legendre transform
of each other.

Lemma 7.4 (Hopf–Lax formula) If g has at most linear growth, then u in (7.6) is given by

u(t, x) = min
y

{
tL

(x− y

t

)
+ g(y)

}
. (7.7)

Proof:
Considering the straight line

w0(s) = y +
s(x− y)

t
, s ∈ [0, t],

we have

u(t, x) ≤
∫ t

0
L
(
ẇ0(s)

)
ds+ g

(
w0(0)

)
= tL

(x− y

t

)
+ g(y).

On the other hand, since L is convex, for any Lipschitz function w, by Jensen’s inequality,

L
(x− y

t

)
= L

(1
t

∫ t

0
ẇ(s) ds

)
≥ 1

t

∫ t

0
L
(
ẇ(s)

)
ds.

Hence,

inf
{∫ t

0
L
(
ẇ(s)

)
ds+ g

(
w(0)

)
: w Lipschitz, w(t) = x

}
= inf

y

{
tL

(x− y

t

)
+ g(y)

}
.

The second infimum can be acheived since g has at most linear growth while L has super-linear growth.
This completes the proof. □

Lemma 7.5 (Dynamic programming) For s ∈ (0, t),

u(t, x) = inf
y

{
(t− s)L

(x− y

t− s

)
+ u(s, y)

}
.
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Proof:
For every ε > 0, by Lemma 7.4, there exists z such that

u(s, y) ≤ sL
(y − z

s

)
+ g(z) ≤ u(s, y) + ε.

Hence,

u(t, x) ≤ t
(x− z

t

)
+ g(z)

≤ (t− s)L
(x− y

t− s

)
+ sL

(y − z

s

)
+ g(z)

≤ u(s, y) + (t− s)L
(x− y

t− s

)
+ ε.

Since ε > 0 is arbitrary, we obtain

u(t, x) ≤ inf
y

{
(t− s)L

(x− y

t− s

)
+ u(s, y)

}
.

For the other direction, let

y =
s

t
x+

t− s

t
z.

Then

(t− s)L
(x− y

t− s

)
+ u(y, z)

≤ (t− s)L
(x− y

t− s

)
+ sL

(x− z

s

)
+ g(z)

= tL
(x− z

t

)
+ g(z)

≤ u(t, x) + ε.

This completes the proof. □

Lemma 7.6 Assume that g is Lipschtiz. Then u is Lipschitz in t and x and

lim
t→0

u(t, x) = g(x).

Proof:
Suppose

u(t, x) = tL
(x− y

t

)
+ g(y).

Let x′ = x+ h. Then

u(t, x′) ≤ tL
(x′ − (y + h)

t

)
+ g(y + h)

≤ u(t, x) + g(y + h)− g(y)

≤ u(t, x) + Lip(g) · |x− x′|.

Switching the roles of x and x′ we obtain

|u(t, x)− u(t, x′)| ≤ Lip(g)|x− x′|.
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For the Lipchitz continuity in t, it suffices to show that if (7.7) holds, then

|u(t, x)− g(x)| ≤ Ct.

where C is uniform in a neighborhood of x. Then the Lipschitz continuity in t follows from this and
Lemma 7.5.

For one direction, we have
u(t, x) ≤ tL(0) + g(x).

For the other direction, we have

u(t, x) ≥ g(x) + min
y

{
−Lip(g)(x− y) + tL

(x− y

t

)}
≥ g(x)− tmax

z
{Lip(g)|z| − L(z)}

≥ g(x)− t max
|w|≤Lip(g)

H(w).

The conclusion follows. □

The next result justifies calling (7.7) a solution to (7.5).

Theorem 7.7 If u is differentiable at (t, x), then

∂tu+H(∇u) = 0

holds at (t, x).

Proof:
For h > 0 and q ∈ Rd, we have

u(t+ h, x+ hq)− u(t, x) = min
y

{
hL

(x+ hq − y

h

)
+ u(t, y)

}
− u(t, x)

≤ hL(q).

Letting h ↓ 0, we obtain
∂tu+ q · ∇u ≤ L(q).

Hence,
∂tu+H(∇u) = ∂tu+max

q
{q · ∇u− L(q)} ≤ 0.

Let z ∈ Rd be such that

u(t, x) = tL
(x− z

t

)
+ g(z).

Let h > 0 and

s = t− h, y =
t− h

t
x+

h

t
z.

(so that (0, z), (s, y), (t, x) are coliear). Then

u(t, x)− u(s, y) ≥ tL
(x− z

t

)
+ g(z)− sL

(y − z

s

)
− g(z)

= (t− s)L
(x− y

t− s

)
.

Letting h ↓ 0, we obtain

∂tu+ q · ∇u− L(q) ≥ 0, q =
x− z

t
,

and hence
∂tu+H(∇u) = ∂tu+max

q
{q · ∇u− L(q)} ≥ 0.

This completes the proof. □

94



7.4.2 General case

In this section we consider the Hamilton–Jacobi equation

∂tu+H(∇u) = F (t, x), u(0, x) = g(x). (7.8)

We will prove that

u(t, x) = inf
{
g
(
w(0)

)
+

∫ t

0

[
L
(
ẇ(s)

)
+F

(
s, w(s)

)]
ds : w [[roam:Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients]], w(t) = x

}
,

(7.9)
solves (7.9). When F ≡ 0, (7.9) reduces to (7.7).

We start with the dynamic programming principle.

Lemma 7.8 Let s ∈ (0, t). Then

u(t, x) = inf
{
u
(
s, w(0)

)
+

∫ t

s

[
L
(
ẇ(r)

)
+ F

(
r, w(r)

)]
dr : w Lipschitz, w(t) = x

}
.

Proof: Let

As,t
z,y = inf

{∫ t

s

[
L
(
ẇ(r)

)
+ F

(
r, w(r)

)]
dr : w Lipschitz, w(t) = y, w(s) = z

}
.

Then A is sub-additive, that is,

At1,t2
x1,x2

+At2,t3
x2,x3

≥ At1,t3
x1,x3

= inf
x2

{At1,t2
x1,x2

+At2,t3
x2,x3

}, ∀t1 < t2 < t3.

Also,
u(t, x) = inf{g(y) +A0,t

y,x : y ∈ Rd}. (7.10)

We have for every y and z,

u(t, x) ≤ g(y) +A0,t
y,x

≤ g(y) +A0,s
y,z +As,t

z,y.

Taking the infimum in y and using (7.10), we have

u(t, x) ≤ inf{u(s, z) +As,t
z,y}.

For the other direction, for every ε > 0, there exists y∗ such that

g(y∗) +A0,t
y∗,x ≤ u(t, x) + ε,

and there exists z∗ such that
A0,t

y∗,x + ε ≥ A0,s
y∗,z∗ +As,t

z∗,x.

Hence,

u(t, x) ≥ A0,t
y∗,x + g(y∗)− ε

≥ A0,s
y∗,z∗ +As,t

z∗,x + g(y∗)− 2ε

≥ u(s, z∗) +As,t
z∗,x − 2ε.

Since ε > 0 is arbitrary, this completes the proof. □

95



Lemma 7.9 If g and F (t, ·) are Lipschitz, and F is bounded, then u given by (7.10) is Lipschitz in t
and x.

Proof:
Assume

|g(x)− g(x̂)|, |F (t, x)− F (t, x̂)| ≤ K|x− x̂|.

For the Lipschitz continuity in x, it suffices to show that A0,t
y,x is Lipschitz in y and x. For

every ε > 0, there exists w Lipschitz such that∣∣∣ ∫ t

0

[
L
(
ẇ(s)

)
+ F

(
s, w(s)

)]
ds−A0,t

y,x

∣∣∣ ≤ ε.

For x̂ ̸= x, we define
ŵ(s) = w(s) + x̂− x,

so that
ŵ′(s) = w′(s), ŵ(t) = x̂, ŵ(0) = ŷ := y + x̂− x.

Then

u(t, x̂) ≤ A0,t
ŷ,x̂ + g(ŷ)

≤
∫ t

0
L
(
ŵ′(s)

)
+ F

(
s, ŵ(s)

)
ds+ g(ŷ)

≤ ε+K|x− x̂|+A0,t
y,x +

∣∣∣ ∫ t

0
F
(
s, ŵ(s)

)
− F

(
s, w(s)

)
ds
∣∣∣+ g(y)

≤ ε+ (K +Kt)|x− x̂|+A0,t
y,x + g(y)

First taking the infimum over y, then letting ε ↓ 0, we obtain

u(t, x̂) ≤ K(t+ 1)|x− x̂|+ u(t, x).

Switching the roles of x and x̂ we get the other inequality, and combining them we obtain the Lipchitz
continuity of u in x.

For t > s, we have

u(t, x)− u(s, x) ≤ As,t
x,x ≤ (t− s)∥F∥L∞ + (t− s)L(0),

and

u(t, x)− u(s, x) ≥ −K|x− y|+ (t− s)L
(x− y

t− s

)
≥ −(t− s) sup

z
{K · |z| − L(z)}

≥ −(t− s) max
|w|≤K

H(w).

This completes the proof. □

Theorem 7.10 If u(t, x) is differentiable at (t, x), then it satisfies (7.8) at (t, x).
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Proof: For h > 0 and q ∈ Rd, we have

u(t+ h, x+ hq)− u(t, x) ≤ At,t+h
x,x+hq ≤ hL(q) + h ·

(
F (t, x) + o(1)

)
.

Taking h→ 0+ and using the differentiability at (t, x), we have

∂tu+∇u · q ≤ L(q) + F (t, x).

Since this inequality holds for all q ∈ Rd, we have

∂tu(t, x) +H
(
∇u(t, x)

)
≤ F (t, x).

For the other direction, let s = t − h, h > 0, and assume that the infimum in Lemma 7.8 can be
acheived (this can be proved using that F is bounded and L has super-linear growth). Let y ∈ Rd be
such that

u(t, x) = u(s, y) +As,t
y,x.

Writing x− y = qh, we have

u(t, x)− u(s, y) = As,t
y,x ≥ hL(q) + h

(
F (t, x) + o(1)

)
,

since for all w Lipschitz, by convexity of L the following inequality holds:∫ t

s
L
(
ẇ(r)

)
dr ≥ (t− s)L

(w(t)− w(s)

t− s

)
.

Using differentiability at (t, x), we have

u(t, x)− u(s, y) = u(t, x)− u(t− h, x− qh) = h∂tu+∇u · qh+ o(h) ≥ hL(q) + h
(
F (t, x) + o(1)

)
.

Dividing both side by h, we obtain

∂tu(t, x) +∇u(t, x) · qh ≥ L(qh) + F (t, x) + o(1), ∀h > 0,

where q depends on h since y depends on h. Hence,

H
(
∇u(t, x)

)
= sup

q
{∇u(t, x) · q − L(q)} ≥ F (t, x)− ∂tu(t, x).

This completes the proof. □

7.4.3 Semi-concavity

We say that a function f is semi-concave if there exists a constant C such that

f(x+ z) + f(x− z)− 2f(x) ≤ C|z|2.

If f ∈ C2, this condition is equivalent to f ′′ being bounded from above.
The variational solution will be semi-concave.

Theorem 7.11 If for some θ > 0,∑
i,j

∂pipjHξiξj ≥ θ|ξ|2, ∀ξ ∈ Rd, (7.11)

and F has bounded second derivative, then there exists C > 0 such that

u(t, x+ z) + u(t, x− z)− 2u(t, x) ≤ C

t
|z|2, z ∈ Rd.
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We need a lemma quatifying the convexity of H and L. We omit its proof here.

Lemma 7.12 Assume (7.11). Then

H
(p1 + p2

2

)
≤ 1

2
H(p1) +

1

2
H(p2)−

θ

8
|p1 − p2|2,

1

2
L(q1) +

1

2
L(q2) ≤ L

(q1 + q2
2

)
+

1

8θ
|q1 − q2|2.

Proof:
Let z ∈ Rd. For any Lipschitz w with w(0) = y and w(t) = x, we define

w±(s) = w(s)± s

t
· z,

which moves the endpoint w(t) to x± z. Since

ẇ±(s) = ẇ(s)± z

t
,

by Lemma 7.12, we have∫ t

0
L
(
ẇ−(s)

)
ds+

∫ t

0
L
(
ẇ+(s)

)
ds− 2

∫ t

0
L
(
ẇ(s)

)
ds ≤ 1

8θ

∫ t

0

z2

t2
ds =

1

8θ

z2

t
.

Also,∫ t

0
F
(
s, w−(s)

)
ds+

∫ t

0
F
(
s, w+(s)

)
ds− 2

∫ t

0
F
(
s, w(s)

)
ds ≤

∫ t

0

∣∣∣sz
t

∣∣∣2∥F∥C2 ds =
∥F∥C2

3

z2

t
.

Hence,

u(t, x+ z) + u(t, x− z) ≤ 2
[∫ t

0
L
(
ẇ(s)

)
+ F

(
s, w(s)

)
ds+ g

(
w(0)

)]
+
C

t
z2

for all Lipschitz w. Taking infimum over w we obtain the desired result. □

If we imposing the concavity condition, then any solution u that satisfies (7.9) almost everywhere
will be unique. See [Eva98, 3.3.3.b, Theorem 7].

7.5 Conservation laws and Rankine–Hugoniot condition

From the method of characteristics, we know that the solution to

∂tu+
[
H(u)

]
)x = 0, u(0, x) = g(x) (7.12)

may not non-smooth. (7.12) is the derivative of (7.5) with H(p, x, t) = H(p). Equations of the form
(7.12) is called conservation law.

We want to define a notion of weak solution to (7.12). Let v ∈ C∞
0 (R2). Assuming u is smooth,

using integration by parts we have

0 =

∫ ∞

0
dt

∫
R

(
ut + [H(u)]x

)
v dx

= −
∫ ∞

0
dt

∫ ∞

−∞
uvt dx−

∫ ∞

−∞
g(x)v(0, x) dx−

∫ ∞

0
dt

∫ ∞

−∞
H(u)vx.
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We say that u is a weak solution to (7.12) if for all v ∈ C∞
0 (R2),∫ ∞

0
dt

∫ ∞

−∞
(uvt +H(u)vtx) dxdt+

∫ ∞

−∞
g(x)v(0, x) dx = 0. (7.13)

Let u be a weak solution, and assume that u is C1 in Vℓ ∩ Vr, but has discontinuity on the curve

C = Vℓ ∩ Vr = {(t, x) : x = s(t)}.

Since u is C1 in Vℓ ∪ Vr, it satisfies (7.12) in this region. We want to derive a condition on the jump
of u along γ. Let v ∈ C∞

c (R2). Without loss of generality assume v vanishes outside Vℓ ∪ Vr and
near t = 0.

Using integration by parts, we have∫∫
Vℓ

uvt +H(u)vt dtdx = −
∫∫

Vℓ

(
ut +H(u)x

)
v dtdx+

∫
C
νℓ · (uv,H(u)v) =

∫
C
νℓ ·

(
uℓv,H(uℓ)v

)
dS.

Similarly, ∫∫
Vr

uvt +H(u)vt dtdx =

∫
C
νr ·

(
urv,H(ur)v

)
dS.

But on C, νr = −νℓ, so (
ur − uℓ, H(ur)−H(uℓ)

)
· νℓ = 0, on C.

Hence, we arrive at the Rankine–Hugoniot condition:

[[H(u)]] = ṡ[[u]], (7.14)

where [[f ]] denotes the jump of f .

For Burgers equation, H(u) = u2

2 , and (7.14) becomes

uℓ + ur
2

= ṡ.

7.6 Viscosity solution

For ε > 0, let uε solve

uεt +H(∇uε, x) = ε∆uε + F (t, x), uε(0, x) = g(x),

where F is a continuous function. This is a nonlinear parabolic equation, but using general theory (like
those presented in the previous section), one can show that there exists a solution uε ∈ C∞(

(0,∞)×Rd
)
.

We want to define the limit of uε as ε ↓ 0 as the solution. The general picture is, uε → u uniformly on
compact sets, but uεx and uεt are not controlled. Hence the corresponding conservation law equation
(7.12) will have jumps.

We want to give a direct characterization of the vanishing viscosity limit u = limε↓0 u
ε.

Let v ∈ C∞([0,∞) × Rd) satisfy u − v has strict local maximum at (t0, x0). First, we claim that
for ε sufficiently small, uε − v has a local maximum at (tε, xε) and (tε, xε) → (t0, x0). Indeed, for r
small enough,

(u− v)(t0, x0) > max
∂Br(t0,x0)

(u− v)(t, x),

and hence by uniform convergence,

(uε − v)(t0, x0) > max
∂Br(t0,x0)

(uε − v)(t, x).
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Therefore, the maximum of (uε − v) on Br(t0, x0) is not on ∂Br(t0, x0). Let (tε, xε) be the point of
maximum in Br(t0, x0). Then this point will satisfy the claim.

Since (tε, xε) is a local maximum for uε − v, at this point we have

∂tu
ε = ∂tv, −∆uε ≥ −∆v, ∇uε = ∇v.

Hence,
vt(tε, xε) +H(∇v(tε, xε), xε) ≤ ε∆v(tε, xε) + F (tε, xε).

Since v is smooth and (tε, xε) → (t0, x0), we have

vt(t0, x0) +H
(
∇v(t0, x0), x0

)
≤ F (t0, x0).

We can further replace the “strict local maximum” by “local maximum”, since if u − v has a local
maximum at (t0, x0), then u− ṽ where

ṽ = v + δ
(
|x− x0|2 + |t− t0|2

)
, δ > 0,

will have a strict local maximum at (t0, x0). To summarize, assuming uε → u on compact sets, then

v ∈ C∞, u− v has local max at (t0, x0) =⇒ vt +H(∇v, x) ≤ F (t, x) at (t0, x0). (7.15)

Similarly,

v ∈ C∞, u− v has local min at (t0, x0) =⇒ vt +H(∇v, x) ≥ F (t, x) at (t0, x0). (7.16)

Definition 7.1 A bounded, uniformly continuous function u on [0,∞)× Rd is a viscosity solution to

ut +H(∇u, x) = F (t, x) (7.17)

if (7.15) and (7.16) hold.

Theorem 7.13 If u is a viscosity solution and u is differentiable at (t0, x0), then (7.17) holds at (t0, x0).

We cite a result without proof.

Lemma 7.14 If u is differentiable at (t0, x0), there exists v ∈ C1 such that

(u− v)(t0, x0) = 0, u− v has a strictly local maximum at (t0, x0).

Proof:
Let v be given by Lemma 7.14 and

vε = ηε ∗ v,

where ηε is some C∞
c mollifiers. Then vε ∈ C∞

vε → v, ∇vε → ∇v, vεt → vt,

uniformly near (t0, x0). Moreover, there exist (tε, xε) where u − vε achieves the local maximum,
with (tε, xε) → (t0, x0). Then, by the definition of viscosity solution we have

∂tv
ε(tε, xε) +H

(
∇v(tε, xε), xε

)
≤ F (tε, xε).

Taking the limit ε→ 0+, we obtain

vt(t0, x0) +H
(
∇v(t0, x0), x0

)
≤ F (t0, x0).
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Since u− v is differentiable at (t0, x0) and achieves a local maximum, we have

ut(t0, x0) = vt(t0, x0), ∇u(t0, x0) = ∇v(t0, x0).

Hence,
ut(t0, x0) +H

(
∇u(t0, x0), x0

)
≤ F (t0, x0).

We can get the other direction of the inequality in a similar way. Therefore, u solves (7.17) at (t0, x0),
as desired. □

Proposition 7.15 The variational formula (7.10) indeed gives a viscosity solution to (7.17).

Proof: By Lemma 7.8, if u− v has a local maximum at (t0, x0), then

v(t0, x0)+u(t0−h, x)− v(t0−h, x) ≤ u(t0, x0) = inf
{
u(t0−h, y)+At0−h,t0

y,x0

}
≤ u(t0−h, x)+At0−h,t0

x,x0
.

Hence, for x close to x0,

v(t0, x0)− v(t0 − h, x) ≤ At0−h,t0
x,x0

≤ h · L
(x0 − x

h

)
+ hF (t0, x0) + o(h).

Let x = x0 + qh. Then

vt(t0, x0) + q · ∇v(t0, x0)− L(q) ≤ F (t0, x0), ∀q.

Therefore,
vt(t0, x0) +H

(
∇v(t0, x0)

)
≤ F (t0, x0).

If u− v has a local minimum at (t0, x0), then

u(t0, x0)− v(t0, x0) ≤ u(t0 − h, x)− v(t0 − h, x), ∀x.

Assuming that the infimum in Lemma 7.8 can be achieved, for every h > 0, there exists q = qh such
that

u(t0, x0) = u(t0 − h, x0 − qh) +At0−h,x0

x0−qh,x0
.

Hence,
At0−h,t0

x0−qh,x0
≤ v(t0, x0)− v(t0 − h, x− qh).

The LHS is
hL(q) + hF (t0, x0) + o(h),

while by the differentiability, the RHS is

vt(t0, x0) · h+ vx(t0, x0) · qh+ o(h).

Therefore,

F (t0, x0) ≤ vt(t0, x0) + vx(t0, x0) · qh − L(qh) + oh(1) ≤ vt(t0, x0) +H
(
∇v(t0, x0)

)
+ oh(1).

Letting h ↓ 0 yields the desired inequality. □

Finally, we have the uniqueness of the solution.
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Theorem 7.16 Assume that H(p, x) satisfies

|H(p, x)−H(q, x)| ≤ K|p− q|, |H(p, x)−H(p, y)| ≤ K|x− y|(1 + |p|).

for some constant K > 0. Then There exists at most one viscosity solution to (7.17).

Proof: Let u and ũ be two viscosity solution. If ũ ̸= u, let

σ := sup(u− ũ) > 0.

We introduce

Φ(t, s, x, y) = u(t, x)− u(s, y)− λ(t+ s)− 1

ε2
(
|x− y|2 + |t− s|2

)
− ε

(
|x|2 + |y|2

)
, (7.18)

with ε, λ small. For all ε, λ ∈ (0, 1), Φ achieves the maximum; let (t0, s0, x0, y0) be the point of
maximum.

We have some bounds on t0, s0, x0, y0. First, due to the fourth term in (7.18), we have

|x0 − y0|, |t0 − s0| ≤ O(ε). (7.19)

Second, (7.19) implies

ε
(
|x|2 + |y|2

)
= O(1) =⇒ ε

(
|x|+ |y|

)
= O(ε1/2).

Since Φ(t0, s0, x0, y0) ≥ Φ(t0, t0, x0, x0), we have

1

ε2
(
|x0 − y0|2 + |t0 − s0|2

)
≤ ũ(t0, x0)− ũ(s0, y0) + λ(t0 − s0) + ε(x0 + y0) · (x0 − y0).

By (7.19), the RHS goes to 0 as ε ↓ 0, so we can improve (7.19) to

|x0 − y0|, |t0 − s0| ≤ o(ε).

Third, there exists µ > 0 such that
t0, s0 ≥ µ

for ε, λ sufficiently small; indeed, for ε and λ sufficiently small, we can have

Φ(t0, s0, x0, y0) ≥ sup
[0,T ]×Rn

Φ(t, t, x, x) ≥ σ

2
> 0,

while
lim sup
µ→0+

sup
t,s≤µ

Φ(t, s, x, y) = 0,

since u(0, x) = ũ(0, x̃) and u, ũ are uniformly continuous.
We now proceed to the proof of uniqueness. Since (t, x) 7→ Φ(t, s0, x, y0) has a maximum at the

point (t0, x0), we have
u− v has a maximum at (t0, x0)

where

v(t, x) := ũ(s0, y0) + λ(t+ s0) +
1

ε2
(
|x− y0|2 + |t− s0|2

)
+ ε

(
|x|2 + |y|2

)
.

Since v ∈ C∞ and u is a viscosity solution, we have

vt(t0, x0) +H
(
∇v(t0, x0), x0

)
≤ F (t0, x0),
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that is,

λ+
2(t0 − s0)

ε2
+H

(2(x0 − y0)

ε2
− 2εx0, x0

)
≤ F (t0, x0).

Similarly, we have

−λ+
2(t0 − s0)

ε2
+H

(2(x0 − y0)

ε2
− 2εy0, y0

)
≥ F (s0, y0).

Taking the difference, and using the condition on H, we have

2λ ≤ F (t0, x0)− F (s0, y0) +H
(2(x0 − y0)

ε2
− 2εy0, y0

)
−H

(2(x0 − y0)

ε2
− 2εx0, x0

)
≤ F (t0, x0)− F (s0, y0) + C|x0 − y0|

( 2

ε2
|x0 − y0|+ 2ε

(
|x0|+ |y0|

))
+ 2Cε

(
|x0|+ |y0|

)
.

Taking ε ↓ 0, we obtain λ ≤ 0, which is a contradiction. □
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