HW5

November 27, 2025

Durrett: 3.4.2, 3.4.4, 3.4.5, 3.4.9, 3.4.10, 3.4.12, 3.10.5, 3.10.8,

Exercise 1 1. Recall that X has the Cauchy distribution if it has density

$$f(x) = \frac{1}{\pi} \frac{1}{x^2 + c^2}, \quad c > 0.$$

Compute the ch.f. of X.

Hint: It is easier to use the residue theorem from complex analysis.

- 2. Show that if X_1, \ldots, X_n are i.i.d. Cauchy, then $\frac{S_n}{n}$ and X_1 have the same distribution. Hint: compute the ch.f.
- 3. Let X, Y be independent $\mathcal{N}(0,1)$. Show that $Z = \frac{X}{Y}$ has the Cauchy distribution. Hint: it suffices to compute $P(X \ge aY)$, where you can use that X - aY is Gaussian.

Exercise 2 Let X_n be i.i.d., with a continuous density f(x), supported on [-1,1], with f(0) > 0.

1. Show that

$$\lim_{n \to \infty} n \int_{\mathbb{R}} \left[\cos \frac{\xi}{nx} - 1 \right] f(x) \, dx \to -c|\xi|$$

for some constant c > 0.

2. Show that for every ξ ,

$$\mathsf{E}e^{i\xi\sum_{m=1}^{n}\frac{1}{nX_{m}}} = \exp\left(n\log\int_{\mathbb{R}}\cos\frac{\xi}{nx}f(x)\,dx\right) \to e^{-c|\xi|}.$$

Hence, $\frac{1}{n} \left(\frac{1}{X_1} + \dots + \frac{1}{X_n} \right) \Rightarrow$ Cauchy distribution.

Exercise 3 Let $X_1, X_2, ...$ be independent random vectors in \mathbb{R}^d , with symmetric distribution, that is, X_n and $-X_n$ have the same distribution. Let $S_n = X_1 + \cdots + X_n$ be the partial sum.

The goal is to establish the following generalization of Kolmogorov's maximal inequality:

$$\mathsf{P}\Big(\max_{1\leq k\leq n}|S_k|\geq r\Big)\leq 2\mathsf{P}(|S_n|\geq r),\quad \forall r>0. \tag{0.1}$$

where $|\cdot|$ is the Euclidean norm.

1. Use symmetry and independence to show that (S_k, S_n) and $(S_k, 2S_k - S_n)$ have the same distribution for every $k \geq 0$.

2. Let $T = \min\{k : |S_k| \ge r\}$. Show that

$$P(T = k, |S_n| < r) \le P(|S_k| \ge r, |S_n| < r) \le P(|S_k| \ge r, |S_n| \ge r).$$

3. Conclude the proof of (0.1) using

$$P(T \le n) \le P(|S_n| \ge r) + \sum_{k=1}^n P(T = k, |S_n| < r).$$

Remark: in fact, our argument does not rely on any specific properties of \mathbb{R}^d . For example, consider $X_n = \xi_n \cdot e^{2n\pi i x} \in \mathcal{C}[0,1]$, where ξ_n are i.i.d. $\mathcal{N}(0,1)$. With additional effort, one can show that $\sum_{n=1}^{\infty} \xi_n e^{2n\pi i x}$ converges almost surely in $\mathcal{C}[0,1]$. This leads to another representation of the Brownian motion.