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Durrett: 3.4.2, 3.4.4, 3.4.5, 3.4.9, 3.4.10, 3.4.12, 3.10.5, 3.10.8,

Exercise 1 1. Recall that X has the Cauchy distribution if it has density

f(x) =
1

π

1

x2 + c2
, c > 0.

Compute the ch.f. of X.

Hint: It is easier to use the residue theorem from complex analysis.

2. Show that if X1, . . . , Xn are i.i.d. Cauchy, then Sn
n and X1 have the same distribution.

Hint: compute the ch.f.

3. Let X,Y be independent N (0, 1). Show that Z = X
Y has the Cauchy distribution.

Hint: it suffices to compute P(X ≥ aY ), where you can use that X − aY is Gaussian.

Exercise 2 Let Xn be i.i.d., with a continuous density f(x), supported on [−1, 1], with f(0) > 0.

1. Show that

lim
n→∞

n

∫
R

[
cos

ξ

nx
− 1

]
f(x) dx → −c|ξ|

for some constant c > 0.

2. Show that for every ξ,

Eeiξ
∑n

m=1
1

nXm = exp
(
n log

∫
R
cos

ξ

nx
f(x) dx

)
→ e−c|ξ|.

Hence, 1
n

(
1
X1

+ · · ·+ 1
Xn

)
⇒ Cauchy distribution.

Exercise 3 Let X1, X2, . . . be independent random vectors in Rd, with symmetric distribution, that
is, Xn and −Xn have the same distribution. Let Sn = X1 + · · ·+Xn be the partial sum.

The goal is to establish the following generalization of Kolmogorov’s maximal inequality:

P
(
max
1≤k≤n

|Sk| ≥ r
)
≤ 2P(|Sn| ≥ r), ∀r > 0. (0.1)

where |·| is the Euclidean norm.

1. Use symmetry and independence to show that (Sk, Sn) and (Sk, 2Sk −Sn) have the same distri-
bution for every k ≥ 0.
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2. Let T = min{k : |Sk| ≥ r}. Show that

P(T = k, |Sn| < r) ≤ P(|Sk| ≥ r, |Sn| < r) ≤ P(|Sk| ≥ r, |Sn| ≥ r).

3. Conclude the proof of (0.1) using

P(T ≤ n) ≤ P(|Sn| ≥ r) +

n∑
k=1

P(T = k, |Sn| < r).

Remark: in fact, our argument does not rely on any specific properties of Rd. For example,
consider Xn = ξn · e2nπix ∈ C[0, 1], where ξn are i.i.d. N (0, 1). With additional effort, one can show
that

∑∞
n=1 ξne

2nπix converges almost surely in C[0, 1]. This leads to another representation of the
Brownian motion.

2


