HW1

September 18, 2025

Durrett: 1.1.1, 1.1.2, 1.1.3, 1.1.4, 1.1.5, 1.2.1, 1.2.4

Exercise 1 Let $(\Omega, \mathcal{F}_0, \mathsf{P}_0)$ be a probability space. We say that $A \subset \Omega$ is a P_0 -null set (which may or may not be an element of \mathcal{F}_0), if there exists $N \in \mathcal{F}_0$ such that $A \subset N$ and $\mathsf{P}_0(N) = 0$. Denote by \mathcal{N} the collection of all P_0 -null sets.

1. Let

$$\mathcal{F} = \{A \subset \Omega : \exists B_1, B_2 \in \mathcal{F}_0 \text{ s.t. } B_1 \subset A \subset B_2, \ A \setminus B_1, B_2 \setminus A \in \mathcal{N}\}.$$

Show that \mathcal{F} is a σ -algebra, and it is the smallest σ -algebra containing \mathcal{F}_0 and \mathcal{N} .

- 2. Let $P : \mathcal{F} \to [0,1]$ be defined by $P(A) = P_0(B_1)$ where $A \setminus B_1 \in \mathcal{N}$ and $B_1 \in \mathcal{F}_0$. Show that this definition is independent of the choice of B_1 .
- 3. Show that $(\Omega, \mathcal{F}, \mathsf{P})$ is a probability space. (This is called the *completion* of $(\Omega, \mathcal{F}_0, \mathsf{P}_0)$.)

Exercise 2 We first give two definitions.

We say that \mathcal{A} is a π -system if it is closed under intersection, that is $A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$. We say that \mathcal{D} is a λ -system if

- $\Omega \in \mathcal{D}$,
- $A, B \in \mathcal{D}, A \subset B \implies B \setminus A \in \mathcal{D},$
- $A_n \uparrow A, A_n \in \mathcal{D} \implies A \in \mathcal{D}.$

Since any intersection of λ -systems is still a λ -system, we can define the *smallest* λ -system generated by an arbitrary collection of set A, denoted by $\lambda(A)$.

- 1. Show that \mathcal{A} is a σ -algebra if and only if it is both a π -system and a λ -system.
- 2. Use the method of appropriate sets to show that if \mathcal{A} is a π -system, then $\sigma(\mathcal{A}) = \lambda(\mathcal{A})$.

Exercise 3 Let μ be a measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. We say that $x \in \text{supp } \mu$ (the support of μ), if $\mu(x - \varepsilon, x + \varepsilon) > 0$ for every $\varepsilon > 0$.

- 1. Show that if $\mu\{x\} > 0$, then $x \in \text{supp } \mu$.
- 2. Show that if $\mu = \mu_X$ is the distribution of a continuous r.v. X with continuous density f, and f(x) > 0, then $x \in \text{supp } \mu$.
- 3. Show that $(\operatorname{supp} \mu)^c$ is an open set, that is, if $x \notin \operatorname{supp} \mu$, then there is $\delta > 0$ such that $(x \delta, x + \delta) \notin \operatorname{supp} \mu$.

As a consequence, supp μ is always a closed set.

4. Recall that the Cantor set is defined by $C = [0,1] \setminus \bigcup_{n \geq 1, \ 1 \leq k \leq 2^{n-1}} I_n^{(k)}$, where

$$I_1^{(1)}=(\frac{1}{3},\frac{2}{3}),\quad I_2^{(1)}=(\frac{1}{9},\frac{2}{9}),\quad I_2^{(2)}=(\frac{7}{9},\frac{8}{9}),\quad \dots$$

and the definition of Cantor function φ (see, e.g., Example 1.2.7 in Durrett). The distribution function φ defines a probability measure $\mu = \mu_{\varphi}$ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

(a) Show that C is a closed set and

$$\mathcal{C} = \text{closure of } \bigcup_{n \geq 1, \ 1 \leq k \leq 2^{n-1}} \partial I_n^{(k)}.$$

(b) Show that

$$C = \left\{ \sum_{n=1}^{\infty} \frac{2 \cdot \varepsilon_n}{3^n}, \ \varepsilon_n \in \{0, 1\} \right\}.$$

- (c) Show that $x \in \operatorname{supp} \mu_{\varphi}$ for every $x \in \partial I_n^{(k)}$.
- (d) Show that supp $\mu_{\varphi} = \mathcal{C}$.