HW7

November 13, 2024

Exercise 1 Let $X \sim \text{Poi}(\lambda)$ and $Y \sim \text{Poi}(\mu)$ be independent. Show that $Z = X + Y \sim \text{Poi}(\lambda + \mu)$. Hint: you can either compute the ch.f. or the probability mass function.

Exercise 2 Let ξ_n , $n \geq 1$, be i.i.d. Ber(p) r.v.'s, and let $N \sim \text{Poi}(\lambda)$ be independent with ξ_n . Let

$$
X = \sum_{n=1}^{N} \xi_n, \quad Y = \sum_{n=1}^{N} (1 - \xi_n).
$$

Compute the joint probability mass function $P(X = k, Y = m)$ and show that X and Y are independent Poisson with parameters $p\lambda$ and $(1-p)\lambda$.

Exercise 3 Let $X \sim \mathcal{N}(0, 1)$. Show that $Y = 1/X^2$ has the density

$$
f(y) = \frac{1}{\sqrt{2\pi y^3}} e^{-\frac{1}{2y}}.
$$

(In fact, Y is a stable law with index $1/2$.)

Exercise 4 1. Recall that X has the Cauchy distribution if it has density

$$
f(x) = \frac{1}{\pi} \frac{1}{x^2 + c^2}, \quad c > 0.
$$

Compute the ch.f. of X.

- 2. Show that if X_1, \ldots, X_n are i.i.d. Cauchy, then $\frac{S_n}{n}$ and X_1 have the same distribution. Hint: compute the ch.f.'s.
- 3. Let X, Y be independent $\mathcal{N}(0,1)$. Show that $Z=\frac{X}{Y}$ $\frac{X}{Y}$ has the Cauchy distribution. Hint: it suffices to compute $P(X \ge aY)$. Note that $X - aY$ is also normal.

Exercise 5 Let X_n be i.i.d., with a continuous density $f(x)$, supported on [−1, 1], with $f(0) > 0$.

1. Show that

$$
\lim_{n \to \infty} n \int_{\mathbb{R}} \left[\cos \frac{\xi}{nx} - 1 \right] f(x) \, dx \to -c|\xi|
$$

for some constant $c > 0$.

2. Show that for every ξ ,

$$
\mathsf{E}e^{i\xi\sum_{m=1}^{\infty}\frac{1}{nX_m}}=\exp\left(n\log\int_{\mathbb{R}}\cos\frac{\xi}{nx}f(x)\,dx\right)\to e^{-c|\xi|}.
$$

Hence, $\frac{1}{n}$ $\frac{1}{\sqrt{1}}$ $\frac{1}{X_1} + \cdots + \frac{1}{X_1}$ X_n $) \Rightarrow$ Cauchy distribution.

Exercise 6 Let X_1, X_2, \ldots be independent random vectors in \mathbb{R}^d , with symmetric distribution, that is, X_n and $-X_n$ have the same distribution. Let $S_n = X_1 + \cdots + X_n$ be the partial sum.

The goal is to establish the following generalization of Kolmogorov's maximal inequality:

$$
\mathsf{P}\Big(\max_{1\leq k\leq n}|S_k|\geq r\Big)\leq 2\mathsf{P}(|S_n|\geq r),\quad \forall r>0.
$$

where |·| is the Euclidean norm.

- 1. Use symmetry and independence to show that (S_k, S_n) and $(S_k, 2S_k S_n)$ have the same distribution for every $k \geq 0$.
- 2. Let $T = \min\{k : |S_k| \geq r\}$. Show that

$$
\mathsf{P}(T = k, |S_n| < r) \le \mathsf{P}(|S_k| \ge r, |S_n| < r) \le \mathsf{P}(|S_k| \ge r, |S_n| \ge r).
$$

3. Conclude the proof of [Eq. \(1\)](#page-1-0) using

$$
\mathsf{P}(T \le n) \le \mathsf{P}(|S_n| \ge r) + \sum_{k=1}^n \mathsf{P}(T = k, |S_n| < r).
$$

Remark: in fact we did not use anything about \mathbb{R}^d . For example, let $X_n = \xi_n \cdot e^{2n\pi ix} \in \mathcal{C}[0,1]$, where ξ_n are i.i.d. $\mathcal{N}(0, 1)$. With a little more effort one can show that $\sum_{n=1}^{\infty}$ $n=1$ $\xi_n e^{2n\pi ix}$ converges almost surely in $C[0, 1]$. This leads to another representation of the Brownian motion.