HW4

October 15, 2024

Exercise 1 Use Fubini's Theorem to show that if $X \ge 0$ and p > 0, then

$$\mathsf{E} X^p = \int_0^\infty p y^{p-1} \,\mathsf{P}(X > y) \, dy.$$

Hint: $x^p = \int_0^x p y^{p-1} dy, \ x \ge 0.$

Exercise 2 Prove the following general version of L^2 weak law of large numbers. Let $(X_n)_{n\geq 1}$ be independent r.v.'s with

$$\mathsf{E}X_n = 0, \quad \mathsf{E}X_n X_m \le \phi(n-m), \ n \ge m,$$

where $\phi: \mathbb{Z}_{\geq 0} \to \mathbb{R}$ satisfies $\lim_{k \to \infty} \phi(k) = 0$. Show that

$$\frac{X_1 + X_2 + \dots + X_n}{n} \to 0, \quad \text{in probability.}$$

Hint: estimate $\operatorname{Var}(S_n)$ using $\phi(k)$ and show that $\operatorname{Var}(S_n)/n^2 \to 0$.

Exercise 3 Let $(X_n)_{n\geq 1}$ be i.i.d. with

$$\mathsf{P}(X_1 = (-1)^k k) = \frac{c}{k^2 \log k}, \quad k \ge 2,$$

where $c = \left[\sum_{k=2}^{\infty} \frac{1}{k^2 \log k}\right]^{-1} > 0$ is the normalizing constant (its exact value is irrelevant for us).

- 1. Show that $\mathsf{E}|X_1| = \infty$.
- 2. Find a constant μ so that $S_n/n \to \mu$ in probability.

Exercise 4 Let $(X_n)_{n\geq 1}$ be independent. Show that

$$\sup_n X_n < \infty, \text{ a.s.} \quad \Leftrightarrow \quad \sum_{n=1}^\infty \mathsf{P}(X_n > A) < \infty \text{ for some } A > 0.$$

Hint: for the " \Leftarrow " direction use the first Borel-Cantelli; for the " \Rightarrow " direction, use proof by contradiction and show $\sup_{n} X_n \ge A$ a.s. for every A using the second Borel-Cantelli when the condition does not hold. **Exercise 5** Recall from the "St. Petersburg game" we have the i.i.d. r.v.'s $(X_n)_{n\geq 1}$ with distribution

$$\mathsf{P}(X_1 = 2^j) = 2^{-j}, \quad j \ge 1.$$

1. Show that for every M > 0, $\sum_{n=1}^{\infty} \mathsf{P}(X_n \ge Mn \log_2 n) = \infty$.

2. Show that for every M > 0, $\mathsf{P}(\{\omega : X_n(\omega) \ge Mn \log_2 n, \text{ i.o.}\}) = 1$.

3. Show that for every M > 0, $\limsup_{n \to \infty} \frac{X_n}{n \log_2 n} \ge M$ a.s.

4. Show that $\limsup_{n \to \infty} \frac{S_n}{n \log_2 n} = \limsup_{n \to \infty} \frac{X_n}{n \log_2 n} = \infty$ a.s.

Exercise 6 Recall from the coupon collector problem, we have ξ_1, ξ_2, \ldots be i.i.d. uniform on $\{1, 2, \ldots, n\}$, and

$$\tau_k^n = \min\{m \ge 0 : |\{\xi_1, \xi_2, \dots, \xi_m\}| \ge k\}, \quad 0 \le k \le n,$$

be the first time that one collects k distinct coupons (noting that $\tau_0^n = 0$).

For any fixed $r_1, \dots, r_n \ge 1$, by counting, compute directly the probability

$$\mathsf{P}(X_{n,k} = r_k, \ 1 \le k \le n)$$

Conclude that $X_{n,k}$ are independent geometric r.v.'s with parameter $p_k = \frac{n-k+1}{n}$, $1 \le k \le n$. Note that $Y \sim \text{Geo}(p)$ if $\mathsf{P}(Y = r) = (1 - p)^{r-1}p, r \ge 1$.

Hint: this can be reduced to computing the size of a certain subset of $\{1, 2, ..., n\}^{r_1 + \cdots + r_n}$.

Exercise 7 Let $X_n, n \ge 1$, be i.i.d. r.v.'s with c.d.f. F. Recall that the empirical distribution function from the first n samples is given by

$$F_n^{\omega}(x) = \frac{1}{n} \sum_{k=1}^n \mathbb{1}_{\{X_k(\omega) \le x\}}, \quad x \in \mathbb{R}.$$

1. Explain carefully why $F_n^{\omega}(x)$ is a r.v. for each fixed $x \in \mathbb{R}$ and $n \ge 1$.

 $Hint: \ \mathbb{1}_{\{X_k(\omega) \leq x\}} = \mathbb{1}_{(-\infty,x]}(X_k(\omega)) \ and \ \mathbb{1}_{(-\infty,x]}(\cdot) \ is \ a \ Borel \ measurable \ function \ on \ \mathbb{R}.$

- 2. Show that for every ω and $n \ge 1$, the function $x \mapsto F_n^{\omega}(x)$ is increasing and right continuous.
- 3. Show that for every ω ,

$$\sup_{x \in \mathbb{R}} |F_n^{\omega}(x) - F(x)| = \sup_{q \in \mathbb{Q}} |F_n^{\omega}(q) - F(q)|.$$

Hint: use right continuity of F_n *and* F*.*

4. Show that

$$Y_n(\omega) = \sup_{x \in \mathbb{R}} |F_n^{\omega}(x) - F(x)|$$

is a random variable.