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Lecture Note for MAT8030: Advanced Probability

LI Liying∗

December 26, 2024

1 Measure theory preliminaries

In this section we will cover some basic facts in measure theory and see how they integrate into the
modern probability theory. Most of the materials are still within the scope of the celebrated work,
Foundations of the theory of probability, by Kolmogorov in 1933 ([Kol33]).

1.1 Random variables, σ-fields and measures

We start with some examples of random variables (r.v.s) that the reader should be familiar with from
elementary probability. Two types of r.v.s are considered in elementary probability: discrete and
continuous.

Example 1.1 (discrete r.v.s.) • Bernoulli: X ∼ Ber(p), with P(X = 1) = p, P(X = 0) = 1− p.

• binomial: X ∼ Binom(n, p) with P(X = k) =
(
n
k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

• geometry: X ∼ Geo(p), with P(X = k) = (1− p)k−1p, k = 1, 2, . . .

• Poisson: X ∼ Poi(λ), with P(X = k) = λk

k! e
−λ, k = 0, 1, . . .

Example 1.2 (continuous r.v.s) Continuous r.v.s are described by the density function P(X ≤ a) =
∫ a

−∞ p(x) dx.

• exponential: X ∼ Exp(λ), with p(x) = 1[0,∞)(x) · λe−λx.

• uniform: X ∼ Unif[a, b], with p(x) = 1[a,b](x) · 1
b−a .

• normal/Gaussian: X ∼ N (µ, σ2), with p(x) = 1√
2πσ

e−(x−µ)2/2σ2

.

Since density functions may not exist, we also use cumulative distribution functions (c.d.f.) to
describe r.v.s. The c.d.f. of a r.v. X is FX(a) = P(X ≤ a). The sets of the form {X ≤ a} are examples
of events, of which we can evalute the probability. More generally, we can view P(·) as a function of
events, or a set function. A measure P(·) : A 7→ P(A) ∈ [0,∞) is a special set function satisfying the
following three properties:

1. Non-negativity: P(A) ≥ 0 for every A.

2. P(∅) = 0.

3. Countable additivity: for any disjoint A1, A2, . . . ,

P
( ∞⋃

n=1

An

)
=

∞∑
n=1

P(An). (1.1)

∗With contribution from YANG Yuze who typesets some of the note.
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Of these three properties, the last one is the most important. We also call it “σ-additivity”, where
the prefix “σ-” often indicates connnection to some countable condition in measure theory. It is
only with σ-additivity, not finite additivity, that one can establish non-trivial limit theorems for
integration/expectation, and eventually prove big limit theorems in modern probability.

We can derived other important properties of measures from Items 1 and 3.

4. Finite additivity from Items 2 and 3: let An+1 = An+2 = · · · = ∅ in (1.1); then

P
( n⋃

k=1

Ak

)
=

n∑
k=1

P(Ak).

5. Monotonicity from Items 1 and 4: if A ⊂ B, then A ∩ (B \A) = ∅, and hence

P(B) = P(A) + P(B \A) ≥ P(A).

6. Sub-additivity from Items 3 and 5: let Ãn = An \
(⋃n−1

k=1 Ak

)
⊂ An; then

P
( ∞⋃

n=1

An

)
=

∞∑
n=1

P(Ãn) ≤
∞∑
n=1

P(An).

7. Continuity from above from Items 2 and 3: if An ↓ A and P(A1) < ∞, then P(A) =
limn→∞ P(An). (We call it “continuity” since A =

⋂∞
n=1An is the limit of An.) In fact, since A1

is the disjoint union of
A1 = A ∪ (A1 \A2) ∪ (A2 \A3) ∪ · · · , (1.2)

we have

P(A1) = P(A) + P(A \An) +
∞∑
k=n

P(Ak \Ak+1).

All the terms are positive, and the LHS is finite, so the tail of the infinite sum must converges
to 0. Hence,

P(A) = lim
n→∞

P(A1)− P(A \An)−
∞∑
k=n

P(Ak \Ak+1) = lim
n→∞

P(A1)− P(A1 \An) = lim
n→∞

P(An).

Note: we can interprete the decomposition (1.2) as follows: since An is decreasing, any ele-
ment x ∈ A1 either appears in all An, and thus in A, or there exists a largest n such that x ∈ An

but x ̸∈ An+1, and thus x ∈ An \An+1.

8. Continuity from below from Items 2, 3, 5 and 7: if An ↑ A, then P(A) = limn→∞ P(An).

Noting that P(An) is increasing, by sub-additivity,

P(A) ≤ P(A1) +

∞∑
n=2

P(An \An−1) = lim
n→∞

P(An).

If P(A) = ∞, there is nothing else to prove. Otherwise, we have P(A) < ∞ and A − An ↓ ∅.
Then by continuity from above,

0 = P(∅) = lim
n→∞

P(A \An) = lim
n→∞

P(A)− P(An).
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Besides all the above properties of the set function P(·), we also need to impose conditions on
its domain. The domain should behave well under countable union/intersection. This leads to the
definition of σ-algebras.

Definition 1.1 Let Ω be any non-empty set. A collection of its subsets F is a σ-algebra (or σ-field),
if

1. Ω ∈ F ,

2. A ∈ F implies Ac ∈ F ,

3. (closure under countable union) An ∈ F implies
⋃∞

n=1An ∈ F .

Example 1.3 1. The smallest σ-algebra: F = {∅,Ω}.

2. The largest σ-algebra: F = {all subsets of Ω}.

We call a set Ω equipped with a σ-algebra F on it a measurable space, written in a pair (Ω,F).
The definition of the σ-algebra leads to the following properties.

Proposition 1.1 Let F be a σ-algebra. Then

• ∅ ∈ F ,

• A ⊂ B and A,B ∈ F imply B \A ∈ F ,

• (closure under countable intersection) An ∈ F implies
⋂∞

n=1An ∈ F .

Definition 1.2 A probability space (Ω,F ,P) is such that (Ω,F) is a measurable space and P : F →
[0, 1] is a measure with P(Ω) = 1.

A measure µ is finite if µ(Ω) <∞, and σ-finite if there exists An ↑ Ω such that µ(An) <∞. For ex-
ample, the Lebesgue measure on R is not finite but σ-finite, since An = [−n, n] ↑ R and Leb(An) <∞.
We call (Ω,F , µ) a measure space if µ is σ-finite measure on (Ω,F).

Definition 1.3 A random variable (r.v.) X = X(ω) : Ω → R is a map from a probability space (Ω,F ,P)
to R, such that

{ω : X(ω) ≤ a} ∈ F , ∀a ∈ R,

or written more compactly, X−1(−∞, a] ∈ F for all a ∈ R.

The map φ−1 denotes the pre-image map of φ: for a map φ : U → V , we define φ−1 to be

φ−1(W ) := {u ∈ U : φ(u) ∈W}.

The map φ−1 commutes with commom set operations.

Proposition 1.2 • φ−1(W1 ∩W2) = φ−1(W1) ∩ φ−1(W2).

• φ−1(W1 ∪W2) = φ−1(W1) ∪ φ−1(W2).

• φ−1(W c) =
(
φ−1(W )

)c
.
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For a r.v. X on (Ω,F ,P), we can evaluate the probability of events, which are sets of the form

{ω : X(ω) ∈ A} =: X−1(A). (1.3)

To have a probability, the sets in (1.3) must be in the domain of P, which is F . This imposes a
restriction on A. Let us put all such sets A into a collection

B = {A s.t. X−1(A) ∈ F}.

Definition 1.3 implies that B contains all half-infinite interval (−∞, a], and by Proposition 1.2 it
contains all intervals (a, b] since

X−1(a, b] = X−1(−∞, b] \X−1(−∞, a] ∈ F .

In fact, the collection B is a σ-algebra, since we can verify the closure under countable union using
Proposition 1.2:

X−1(In) ∈ F ⇒ X−1
( ∞⋃
n=1

In
)
=

∞⋃
n=1

X−1(In) ∈ F .

In the next section, we will see that B will contain a common sub–σ-algebra, called the Borel σ-
algebra, no matter what the r.v. X is. The Borel σ-algebra is the “smallest” σ-algebra containing all
the intervals (a, b]; it is the most important class of σ-algebras in probability theory.

1.2 Construction of σ-algebra and (probability) measures

The Borel σ-algebra is the smallest σ-algebra containing by open sets. The meaning of “smallest” will
be clear after the following proposition.

Lemma 1.3 1. If F1 and F2 are two σ-algebras on Ω, then F1 ∩ F2 is also a σ-algebra.

2. If Fγ , γ ∈ Γ are σ-algebras on Ω, where Γ is an arbitrary index set (countable or uncountable),
then

⋂
γ∈ΓFγ is also a σ-algebra.

Proposition 1.4 Let A be a collection of subsets in Ω. Then there exists a smallest σ-algebra contain-
ing A, called the σ-algebra generated by A and written σ(A), in the sense that if G ⊃ A is a σ-algebra,
then σ(A) ⊂ G.

Proof: Take σ(A) =
⋂

Fσ-algebra:F⊃A
F . □

Definition 1.4 (Borel σ-algebra) Let M be a metric space (or more generally, a topological space).
ItsBorel σ-algebra B(M) is the σ-algebra generated by all the open sets in M .

Example 1.4 • B(R) = σ
(
(−∞, a], a ∈ R

)
.

• B(Rd) = σ
(
(−∞, a1]× · · · × (−∞, ad], ai ∈ R

)
.

Remark 1.5 Here, one need to first show that any open sets in Rd can be obtained from countable union of
sets of the form (−∞, a1] × (−∞, ad]. The construction requires some ideas from point-set topology, but it is
elementary, and thus omitted here.

Proposition 1.5 A map X(ω) on (Ω,F ,P) is a r.v. if and only if X−1(A) ∈ F for any A ∈ B(R).

Remark 1.6 In fact, this is usually taken as the definition for r.v.s.
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Now let us take about the distribution of a r.v. X. One can check that µ = P ◦X−1 defined by

µ(A) = P
(
{ω : X(ω) ∈ A}

)
, A ∈ B(R),

is a probability measure on (R,B(R)). We call µ the distribution/law of X. Clearly, (R,B(R), µ)
is a probability space. For most practical application, like computing expectation, variance and so
on, it is enough to understand the distribution of a r.v., not the original probability measure P on
some abstract space that can be potentially be complicate. Another obvious advantage is that the
distributions of all r.v.s are probability measures live on the same measurable space (R,B(R)).

Note that the cumulative distribution function (c.d.f.) of a r.v. can be read from its distribution:

FX(a) = P(X ≤ a) = µ
(
(−∞, a]

)
, a ∈ R.

The central topic for this section is to understand how the c.d.f. determines µ. Along the way we
will learn how to construct σ-algebras and (probability) measures. Some of the presentation here is
from [Shi96, Chap. 2.3]. The next theorem is a fundamental and important result.

Theorem 1.6 Every increasing, right continuous function F : R → [0, 1] with F (−∞) = 0 and F (∞) = 1
uniquely determines a probability measure µ on

(
R,B(R)

)
.

We start by introducing some notions on collections of sets.

Definition 1.5 A collection of sets S is a semi-algebra if first, it is closed under intersection, that is,
A ∩ B ∈ S whenever A,B ∈ S and second, for every A ∈ S, its complement Ac is disjoint union of
some A1, A2, . . . , An in S.

A collection of sets S is an algebra, or field, if A,B ∈ S implies A ∩B ∈ S and Ac ∈ S.

We can relate these two notions by the following proposition.

Proposition 1.7 Let S be a semi-algebra. Then

S̄ = {finite disjoint unions of sets in S}

is an algebra.

Example 1.7 All the d-dimensional half-open, half-closed rectangles forms a semi-algebra:

Sd = {∅, (a1, b1]× · · · × (ad, bd], −∞ ≤ ai < bi ≤ ∞}.

Definition 1.6 A collection of sets S is a monotone class, if limn→∞An ∈ S for every monotone
sequence of sets An ∈ S.

Here, for an increasing sequence An ⊂ An+1 ⊂ · · · , we define its limit to be A :=
⋃∞

n=1An, and
for an decreasing sequence An ⊃ An+1 ⊃ · · · , its limit A :=

⋂∞
n=1An.

It is easy to see that any intersection of monotone classes is still an m-class. Therefore, it makes
sense to talk about the smallest monotone classes containing any collection of sets A (c.f. Proposi-
tion 1.4). We denote this smallest monotone class by m(A).

The monotone class condition basically bridges the difference between σ-algebras and algebras.

Proposition 1.8 Let A be a collection of subsets of Ω. Then A is a σ-algebra if and only if A is both
an algebra and a monotone class.

Theorem 1.9 (Monotone Class Theorem) Let A be an algebra. Then σ(A) = m(A).
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Proof: By Proposition 1.8, σ(A) is necessarily a monotone class, and by the minimum property we
have the inclusion m(A) ⊂ σ(A).

To show the other direction σ(A) ⊂ m(A), it suffices to show that m(A) is an algebra, and hence
a σ-algebra (using Proposition 1.8 again). To establish that m(A) is an algebra, we will use the
principle of appropriate sets.

First, m(A) is closed under complement. Let

S = {A : A,Ac ∈ m(A)} ⊂ m(A).

Our goal is to show that m(A) = S. Clearly, by definition we have A ∈ S. Moreover, S is a monotone
class: if An ↑ A and An ∈ S, then (An) and (Ac

n) are both monotone sequences in m(A), and hence
their respective limits A and Ac are in m(A); if An ↓ A it is similar. Therefore, S must contain the
smallest monotone class that contains A, which is m(A). This shows S = m(A), and hence by the
definition of S, the collection of set m(A) is closed under complement.

Second, m(A) is closed under intersection. Since intersection involves two sets, the proof is
slightly more complicated and we will do it in two steps. In the first step, for a fixed A ∈ A, let

SA = {B : B ∈ m(A), A ∩B ∈ m(A)} ⊂ m(A).

It is clear that A ⊂ SA since A is an algebra and m(A) contains A. Also, one can check that SA is a
monotone class since Bn ↓ B or Bn ↑ B implies A ∩ Bn ↓ A ∩ B or A ∪ Bn ↑ A ∪ B. Therefore, we
have m(A) ⊂ SA, and this means that A ∩B ∈ m(A) whenever A ∈ A and B ∈ m(A).

In the second step, let

S = {A ∈ m(A) : A ∩B ∈ m(A), ∀B ∈ m(A)}.

The first step implies that A ⊂ S. Again, it is not hard to check that A is a monotone class.
Hence m(A) = S and this proves that m(A) is closed under intersection.

In conclusion, m(A) is an algebra and hence a σ-algebra, this completes the proof. □

A related concept is the Dynkin system (d-system, λ-class).

Definition 1.7 Let D be a collection of subsets of Ω. We say that D is a Dynkin system if

1. Ω ∈ D,

2. A,B ∈ D, A ⊂ B ⇒ B \A ∈ D,

3. An ↑ A, An ∈ D ⇒ A ∈ D.

We say that A is a π-system if it is closed under intersection. One can check that A is a σ-algebra
if and only if it is both a π-system and Dynkin system. Moreover, analogous to Theorem 1.9, the
following is true.

Theorem 1.10 (π-λ Theorem; Dynkin Theorem) If A is a π-system, then σ(A) is the smallest Dynkin
system containing A.

Proof: The proof can be done via the principle of appropriate sets. □

Given a distribution function F as in Theorem 1.6, we can introduce a (probability) measure µ0
on the algebra

S̄ =
{ n⋃
k=1

(ak, bk], disjoint union
}
,

6
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given by

µ0(A) =
n∑

k=1

[
F (bk)− F (ak)

]
.

It is easy to check that µ0 is finitely additive. An important step is the following.

Proposition 1.11 The finitely additive measure µ0 is σ-additive on S̄, that is, if An ∈ S̄ are disjoint
and

⋃∞
n=1An ∈ S̄, then

µ0

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ0(An).

Proof: We will use the fact that σ-additivity is equivalent to continuity at ∅, that is, µ0 is σ-additive
if and only if limn→∞ µ0(An) = µ0(∅) = 0 whenever An ↓ ∅.

Suppose that there is some L > 0 such that An ∈ [−L,L]. Let ε > 0. We claim that there
exists Bn ∈ S̄ such that Bn ⊂ An and

µ0(An)− µ0(Bn) ≤ ε · 2−n.

The existence of Bn is a consequence of the right continuity of F . In fact, writing An =
⋃m

i=1(a
(n)
i , b

(n)
i ],

and Bn =
⋃m

i=1(a
(n)
i + δ, b

(n)
i ], we have

µ0(An)− µ(Bn) =
m∑
i=1

(
F (b

(n)
i + δ)− F (b

(n)
i )

)
→ 0, δ ↓ 0.

By choosing δ small enough we can make the sum less than ε · 2−n.
Since An ↓ ∅ and Bn ⊂ An, we have Bn ↓ ∅. So Cn = [−L,L]\Bn forms an open cover of [−L,L].

By the Finite Open Cover Theorem, there exists a finite sub-cover, that is, there exists n0 such that

[−L,L] ⊂
n0⋃
n=1

[−L,L] \Bn,

and hence
⋂n0

n=1Bn = ∅. Therefore,

µ0(An0) = µ0

(
An0 \

n0⋂
n=1

Bn

)
≤ µ0

( n0⋃
n=1

(
An \Bn

))
≤

n0∑
n=1

µ0(An \Bn) ≤ ε
∞∑
n=1

2−n ≤ ε.

Since µ0(An) is decreasing and ε is arbitrary, we obtain limn→∞ µ0(An) = 0.
When An are unbounded, since F (−∞) = 0 and F (∞) = 1, for every ε > 0, we can choose L

large enough so that µ0(−L,L] ≥ 1− ε. Let Ãn = An ∩ (−L,L]. Then Ãn ↓ ∅ and Ãn are bounded.
Then limn→∞ µ0(Ãn) = 0 as previously proved, and hence

lim sup
n→∞

µ0(An) ≤ lim sup
n→∞

µ0(Ãn) + lim sup
n→∞

µ0
(
An \ (−L,L]

)
≤ 0 + ε = ε.

Since ε > 0 is arbitrary, we obtain limn→∞ µ0(An) = 0 as desired. □

After establishing σ-additivity of µ0 on S̄ using Proposition 1.11, we can extend µ0 to a probability
measure on σ(S̄) = B(R) with the help of the next theorem.

Theorem 1.12 (Carathéodory’s Extension Theorem) Let µ0 be a σ-additive measure on an algebra A.
Then µ0 has a unique extension to σ(A).
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Here, an extension of µ0 to σ(A) is a measure µ on σ(A) such that µ0(A) = µ(A) for every A ∈ A.

Remark 1.8 We will use Theorem 1.12 in the case where µ0 (and hence the resulting extension µ) is a prob-
ability measure. But the theorem also holds when µ0 is σ-finite, which means that there exist An ↑ Ω such
that µ0(An) <∞.

Proof of Uniqueness: Let µ, µ̃ be two extensions and S = {A : µ(A) = µ̃(A)}. We will show
(i) A ⊂ S; (ii) A is a monotone class. Then, by Theorem 1.9, S contains σ(A), so µ = µ̃ on σ(A),
which is the uniqueness.

The first statement A ⊂ S follows from definition of the extension.
To prove the second statement, let An ↑ A and An ∈ S. Since µ and µ̃ are measures, and measures

are continuous from below, we have µ(An) → µ(A) and µ̃(An) → µ̃(A), and thus µ(A) = µ̃(A).
Similarly, if An ↓ A and An ∈ S, since µ is the continuous from above, we have µ(An) → µ(A) and
µ̃(An) → µ̃(A), and thus µ(A) = µ̃(A). This completes the proof of uniqueness. □

To prove the existence we need to use the outer measure, which is also a standard procedure in
constructing the Lebesgue measure. We will only sketch the most important steps in this note.

Given a σ-additive measure µ0 on an algebra A, the outer measure, defined for any sets, is

µ∗(A) = inf
{ ∞∑
n=1

µ0(An) : A ⊂
∞⋃
n=1

An, An ∈ A
}
.

For the Lebesgue measure, A consists of nice sets like intervals, rectangles, etc, and the outer measure
is the generalization of length, area, volume and so on. But the outer measure cannot be measure,
since the latter is not defined for arbitrary sets. A key point is to defined what is “measurable” w.r.t.
the outer measure µ∗. We say a set A is measurable, if it satisfies the Carathéodory’s condition:

µ∗(D) = µ∗(D ∩A) + µ∗(D ∩Ac), ∀D. (1.4)

With some more efforts, one can show:

1. every set A ∈ A satisfies (1.4) and µ∗(A) = µ0(A);

2. the collection of sets that satisfy (1.4), denoted by F , forms a σ-algebra, and moreover, µ∗ is a
measure on F .

The desired extension is then defined by µ := µ∗
∣∣
σ(A)

.

Remark 1.9 Typically, σ(A) is a proper subset of F . For example, in the case of constructing Lebesgue measure,
we have F (x) = x and

σ(A) = {Borel sets}, F = {Lebesgue measurable sets}.
In Proposition 1.16 we will see that there exist Lebesgue measurable sets which are not Borel.

However, if we complete (Ω, σ(A), µ), then the result is (Ω,F , µ∗
∣∣
F ). Here, a complete measure space (Ω,F ,P)

means that if B ⊂ A ∈ F such that P(A) = 0, then B ∈ F .

1.3 Decomposition of distribution functions

Let F (x) be an increasing, right continuous function, e.g., the c.d.f. of some r.v. The goal of this
section is to decompose it into the jumping (or discontinuous) part, the absolutely continuous part
and the singularly continuous part, written

F = Fd + Fac + Fsc.

First, let us look at the discontinuous part. Since F is right continuous and increasing, F only has
discontinuity points of the first kind. This leads to the following definition.
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Definition 1.8 A point x is a point of jump/discontinuity of F if F (x)− F (x−) > 0.

Proposition 1.13 The points of jump for an increasing, right continuous function are countable.

Proof: On any compact set [−L,L],

{x ∈ [−L,L] is a jump} =
∞⋃
n=1

{
x ∈ [−L,L] : F (x)− F (x−) >

1

n

}
.

All sets in the union are finite, since each contains at most n
(
F (L)− F (L−)

)
points. The conclusion

then follows. □

Let ai, i = 1, 2, . . . , be the points of jump for the function F (x) and let bi = F (ai) − F (ai−) be
the “size of jumps”. Define

Fd(x) =
∞∑
i=1

bi1[ai,∞)(x).

We call Fd the “jumping part”. The remaining part Fc(x) = F (x)−Fd(x) is increasing and continuous.
Next we need to classify increasing and continuous functions.

Definition 1.9 (Absolute Continuity) An increasing, continuous function F (x) is absolutely contin-
uous if there exist f ∈ L1(R) such that

F (b)− F (a) =

∫ b

a
f(x) dx. (1.5)

Remark 1.10 This is the generalized Newton–Leibniz formula. By Lebesgue Differentiability Theorem, if (1.5)
holds, then F ′ exists almost everywhere and F ′ = f .

On the other hand, using the Vitali covering theorem in real analysis, we know that an increasing
functions is differentiable almost everywhere.

Proposition 1.14 If F is increasing, then F ′ exists almost everywhere.

Note that non-differentiable points in Proposition 1.14 could be points of jumps. But if we are
looking at continuous, increasing functions, we have the following.

Proposition 1.15 An increasing and continuous function F can be uniquely decomposed as

F = Fac + Fsc,

where Fac is absolutely continuous and Fac =
∫ x
−∞ F ′(x) dx, and Fsc is increasing and continuous

but F ′
sc

a.e.≡ 0.

Remark 1.11 The function Fsc appearing in Proposition 1.15 is singularly continuous. One may ask if there
exists non-trivial singularly continuous function. A famous example is the Cantor function, or the “Devil’s
staircase”.

Recall that the Cantor set , denoted by C, is constructed by starting with the interval [0, 1] ⊂ R, then
dividing it into three intervals of equal length and removing the middle interval, and repeating this process of
division and removal. In the end, we obtain

C = [0, 1] \
⋃
n,k

I(k)n ,

9
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where I
(k)
n , 1 ≤ k ≤ 2n−1, n ≥ 1, are the intervals that we remove in the n-th steps, that is,

I
(1)
1 =

(1
3
,
2

3

)
, I

(1)
2 =

(1
9
,
2

9

)
, I

(2)
2 =

(7
9
,
8

9

)
, · · · .

As the complement of an open se the set C is a closed set, and from a direct calculation of the total length of
the removed intervals, one can show that C has Lebesgue measure 0.

The Cantor function, denoted by φ(x), is an increasing function constructed as follows. Set φ(x) = 0 for x ≤
0 and φ(x) = 1 for x ≥ 1. When x ∈ (0, 1), set φ(x) = 1

2 for x ∈ ( 13 ,
2
3 ) = I

(1)
1 , φ(x) = 1

4 for x ∈ ( 19 ,
2
9 ) = I

(1)
2 ,

and φ(x) = 3
4 for x ∈ ( 79 ,

8
9 ) = I

(2)
2 and so on. Then define φ on C by monotonicity. It follows from the

construction that φ is also continuous. See also [Dur19, Fig. 1.5].

We can use the Cantor set and the Cantor function to show the following.

Proposition 1.16 There exists a Lebesgue measurable set which is not Borel measurable.

Proof: We will prove the statement by contradiction.
Let ψ(x) = 1

2

(
x + φ(x)

)
. Then ψ(x) is a continuous, strictly increasing function from [0, 1] onto

itself. Let H = ψ−1. Then H is also continuous and strictly increasing.
It is easy to check that for any E ⊂ [0, 1],

1H(E)

(
H(x)

)
= 1E(x).

Note that the Lebesgue measure of ψ(C) is 1/2. Hence, there exists a set E ⊂ ψ(C) which is NOT
Lebesgue measurable. On the other hand, H(E) = ψ−1(E) ⊂ C is a subset of Lebesgue measure 0 set,
and hence by completeness of the Lebesgue measure space (as a consequence of using outer measure
in Theorem 1.12), it is also Lebesgue measurable.

Now, if all Lebesgue measurable sets are Borel, then 1H(E) will be Borel measurable as the indicator
function of a Borel set. Therefore, 1E = 1H(E)◦H is the composition of two Borel measurable functions,
and is also Borel measurable. But this contradicts with the fact that E is chosen to be non-measurable.
□

In the first part of this section, we classify and decompose the distribution functions. In the second
part, we will do similar things from the perspective of measures.

Let µ be a measure on
(
R,B(R)

)
.

Definition 1.10 A point x is a point of mass if µ({x}) > 0.

Let I =
{
x : µ({x}) > 0

}
be the set of points of mass. We can define µd(A) =

∑
x∈I δx(A) ·µ({x}).

δx(A) =

{
1, x ∈ A,

0, x /∈ A.

is the Dirac measure on x. We call µd the discrete part of the measure µ, and this corresponds to the
jumping part of the distribution functions.

The remaining part µc = µ−µd will not have points of mass. To further decompose it, we need to
introduce the notion of absolute continuity and singularity for measures. Let P,Q are two probability
measures on (Ω,F). For the simplest example, one can take (Ω,F) =

(
R,B(R)

)
.

Definition 1.11 A measure P is absolutely continuous w.r.t. Q, written P ≪ Q, if Q(A) = 0 im-
plies P (A) = 0.

We recall the Radon–Nikodym derivative.

10
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Theorem 1.17 (Radon–Nikodym Theorem) Let ν and µ be two σ-finite measures on a measurable
space (Ω,F) such that ν ≪ µ. Then there exists a function f , measurable w.r.t. F , such that∫

A
f dµ = ν(A).

We call f = dν
dµ the Radon–Nikodym derivative, and µ the reference measure.

For r.v.s, the reference measure is the Lebesgue measure.

Definition 1.12 A r.v. X is continuous if its distribution µ is absolutely continuous with respect to
the Lebesgue measure. In this case, the density of X is dµ

dLeb .

The last definition is mutual singularity.

Definition 1.13 Two measures P,Q are mutuality singular, denoted by P ⊥ Q, if there exists A such
that P (A) = 0 and Q(Ac) = 0.

Example 1.12 Cantor set induce a distribution µC = dφ. Since

µC
(
Cc
)
= 0, Leb

(
C
)
= 0,

we have µC ⊥ Leb. In fact, an increasing function F is singularly continuous if and only if dF ⊥ Leb.

Definition 1.14 A r.v. X is singular if µX ⊥ Leb.

How common are singular measures and Cantor-like sets? Surprisingly, they are ubiquitous in
probability theory. They usually arise from self-similarities or fractal structures, or from infinite
dimensional spaces.

Example 1.13 The example is about Brownian motion, which is a important object to study in stochastic
analysis. Without getting into too many details, a Brownian motion Bt(ω) is a random continuous function.

For each a ∈ R,
Za(ω) := {t : Bt(ω) = a}.

be the level set of the Brownian motion; note the level set is also a random set. For almost every ω and every a,
the level Za(ω) has a similar structure as a Cantor set, in the sense that it is the complement of the union of
nested open intervals, but the interval length is random.

To get singular measures, consider the maximal process B∗
t = sup0≤s≤tBs. Since t 7→ Bt is continuous, the

maximal process B∗
t is increasing and continuous. One can show that dB∗

t ⊥ Leb.

Example 1.14 Let us consider i.i.d. Bernoulli r.v.s Ber(1/3) and Ber(2/3). More precisely, let (Ω,F) be

Ω =
{
ω = (ω1, ω2, · · · ), ωi ∈ {0, 1}

}
, F = P(Ω).

We can define two probability measures on (Ω,F):

1. one corresponding to i.i.d. Ber(1/3): P1(ωi = 1) = 1
3 and P1(ωi = 0) = 2/3;

2. the other one corresponding to i.i.d. Ber(2/3): P2(ωi = 1) = 2
3 and P2(ωi = 0) = 1/3.

Let

A1 =
{

lim
n→∞

1

n

n∑
k=1

ωk =
1

3

}
, A2 =

{
lim
n→∞

1

n

n∑
k=1

ωk =
2

3

}
.

Then by the Strong Law of Large Numbers, we have P1(A1) = 1 and P2(A2) = 1. On the other hand, we
have A1 ∩A2 = ∅. It follows that P1(A2) = 0 and P2(A2

c) = 0, so P1 ⊥ P2.

11
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1.4 Random variables and measurable maps

Let (S,S) be a measurable space. We say that a map φ : (Ω,F) → (S,S) is measurable if φ−1(A) ∈ F ,
∀A ∈ S. Random variables and vectors require such measurability.

Definition 1.15 A r.v. X is a measurable map from (Ω,F) to
(
R,B(R)

)
. A random vector X = (X1, . . . , Xd)

is a measurable map from (Ω,F) to
(
Rd,B(Rd)

)
.

Since the Borel σ-algebra is generated by open sets, we have a simple criterion to check whether
a map defines a r.v.

Proposition 1.18 A map X is a random variable if and only if X−1(O) ∈ F for every open set O.

Definition 1.16 A function f is a Borel measurable if f is measurable map from (R,B(R)) onto itself.

Similar to Proposition 1.18, we have the following.

Proposition 1.19 A function f is Borel measurable if and only if f−1(O) ⊂ B(R) for every open
set O.

To compare with the Lebesgue measurability: f is Lebesgue measurable if and only if f−1(O) is
Lebesgue measurable set for every open set O.

Proposition 1.20 If f is Borel measurable and X is a random variable, then f(X) is a r.v.

Proof: Let O be a open set. Then f−1(O) ∈ B(R) since f is Borel measurable. Hence,{
ω : f

(
X(ω)

)
∈ O

}
= X−1

(
f−1(O)

)
∈ F .

This shows that f(X) is a r.v. □

Remark 1.15 In this example, if “f is Borel measurable” is replaced by “f is Lebesgue measurable”, then the
conclusion is false, as seen from the proof of Proposition 1.16.

We often drop the word “measurable” and simply say “Borel sets” or “Borel functions”.

Proposition 1.21 If f : R → Rd is a Borel map and X = (X1, . . . , Xd) is a random vector,
then f(X) = f(X1, . . . , Xd) is a random variable.

Example 1.16 We can use Proposition 1.21 to create new r.v.s. For example, if X1, X2 are r.v.s, then X1 +X2,
min{X1, X2} are also r.v.s.

Next, we need to understand the limits of r.v.s.

Proposition 1.22 Let Xn, n = 1, 2, . . . be r.v.s. Then

sup
n≥1

Xn, inf
n≥1

Xn, lim sup
n→∞

Xn, lim inf
n→∞

Xn

are r.v.s.

Proof:

(i) Let Y1(ω) = supnXn(ω). We need to show that Y −1
1 (−∞, a] ∈ F for every a ∈ R. Indeed,

Y −1
1 (−∞, a] = {ω : sup

n
Xn(ω) ≤ a} =

∞⋂
n=1

{ω : Xn(ω) ≤ a} ∈ F .

Therefore, Y1(ω) = supnXn(ω) is a r.v.

12
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(ii) Let Y2(ω) = infnXn(ω). We need to show that Y −1
2 ([a,∞)) ∈ F for every a ∈ R. Indeed,

Y −1
2 [a,−∞) = {ω : inf

n
Xn(ω) ≥ a} =

∞⋂
n=1

{ω : Xn(ω) ≥ a} ∈ F .

Therefore, Y2(ω) = infnXn(ω) is a r.v.

(iii) By definition of lim sup, for every ω, we have

lim sup
n→∞

Xn(ω) = inf
n≥1

sup
m≥n

Xm(ω).

By part (i), for every n ≥ 1, the map ω 7→ supm≥nXm(ω) is measurable. Hence, for every a ∈ R,

{ω : lim sup
n→∞

Xn(ω) ≥ a} = {ω : inf
n≥1

sup
m≥n

Xm(ω) ≥ a} =
∞⋂
n=1

{ω : sup
m≥n

Xm(ω) ≥ a} ∈ F .

(iv) By definition of lim inf, for every ω, we have

lim inf
n→∞

Xn(ω) = sup
n≥1

inf
m≥n

Xm(ω).

By part (ii), for every n ≥ 1, the map ω 7→ infm≥nXm(ω) is measurable. Hence, for every a ∈ R,

{ω : lim inf
n→∞

Xn(ω) ≤ a} = {ω : sup
n≥1

inf
m≥n

Xm(ω) ≤ a} =
∞⋂
n=1

{ω : inf
m≥n

Xm(ω) ≤ a} ∈ F .

□

Corollary 1.23 Let Xn, n = 1, 2, . . . , be r.v.s. The set Ω0 = {ω : limn→∞Xn(ω) exists} belongs
to F .

Proof: Note that

Ω0 = {ω : lim
n→∞

Xn(ω)} = {ω : lim sup
n→∞

Xn(ω)− lim inf
n→∞

Xn(ω) = 0}.

By Proposition 1.22, Y1 = lim supn→∞Xn(ω) and Y2 = lim infn→∞Xn(ω) are r.v.s, and hence Y1−Y2
is a r.v. Therefore, Ω0 = {Y1 − Y2 = 0} ∈ F . □

1.5 Integration and expectation

In this section, we will briefly present the theory of integration of measurable functions, or in the
context of probability theory, the mathematical expectation. The main difference is that in probability
theory, the probability measure has total mass 1 and is a finite measure.

Let X be a r.v. on (Ω,F ,P). We will denote its expectation X by E(X), or using a more measure
theory oriented notation, sometimes we also write

EX =

∫
Ω
X(ω)P(dω). (1.6)

13
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The definition of (1.6) is through approximation via simple r.v.s (simple functions in measure
theory). To start, we say that a r.v. X(ω) is simple, if there exists finitely many A1, . . . , An ∈ F and
c1, . . . , cn ∈ R such that

X(ω) =

n∑
k=1

ck1Ak
(ω). (1.7)

In the case of (1.7), unquestionably we should define

E(X) =

n∑
k=1

ckP(Ak).

It is routine to verify common integral properties for expectation of simple r.v.s, e.g., linearity, mono-
tonicity, order preserving, etc, so we omit it in this note.

For a non-negative r.v. X(ω), we define

EX =

∫
Ω
X(ω)P(dω) := sup

{∫
Y (ω)P(dω) : Y simple, 0 ≤ Y (ω) ≤ X(ω)

}
∈ [0,∞]. (1.8)

For the general case, we write X(ω) = X+(ω)−X−(ω), where

X+(ω) = X(ω)1{X>0}, X−(ω) = −X(ω)1{X≤0}

are the positive and negative parts of X. If E(X+) <∞ or E(X−) <∞, then we define

E(X) = E(X+)− E(X−).

Otherwise, EX is undefined since ∞−∞ cannot be defined.

Next, we will discuss conditions that justifies exchanging order of limit and integration, that is,

E lim
n→∞

Xn = lim
n→∞

EXn. (1.9)

Lemma 1.24 Let Xn ↑ X such that Xn ≥ 0 and Xn are simple. Then (1.9) holds.

Remark 1.17 If “Xn ↑ X” is replaced by “Xn ≤ X and Xn → X”, we can still an get increasing sequence by
considering Yn = max1≤k≤nXk. It is easy to see that Yn are also simple and Yn ↑ X.

Proof: From the definition (1.8), we have E(X) ≥ E(Xn). It remains to establish the inequality in
the other direction:

EX ≤ lim
n→∞

EXn. (1.10)

Note that the limit on the right hand side always exists, since Xn, and hence EXn, are increasing in n.
If EX <∞, then for every ε > 0, by the definition of supremum, there exists a non-negative simple

r.v. Yε such that Yε ≤ X and E(Yε) ≥ E(X)− ε. For every δ > 0, let An = {ω : Xn(ω) ≤ Yε(ω)− δ}.
Since Xn(ω) ↑ X(ω) ≥ Yε(ω), we have An ↑ Ω and hence Ac

n ↓ ∅. We have

EXn = EXn1An + EXn1Ac
n
≥ E(Yε − δ)1An

= EYε1An − δP(An)

= EYε − EYε1Ac
n
− δP(An)

≥ EX − ε− sup
ω
Yε(ω) · P(Ac

n)− δ

14



D
RA
FT

Since Yε is simple, it is always bounded, so supω Yε(ω) <∞. Letting n→ ∞, we obtain

lim
n→∞

EXn ≥ EX − ε− δ.

Since ε, δ > 0 are arbitrary, this implies (1.10).
If EX = ∞, then by (1.8), for every M > 0, there exists a simple r.v. YM such that YM ≤ X

and EYM ≥ M . For every ξ > 0, let Bn = {ω : Xn(ω) ≥ YM (ω)− ξ}. Since Xn(ω) ↑ X(ω) ≥ YM (ω),
we have Bn ↑ Ω and hence Bc

n ↓ ∅. Therefore,

EXn = EXn1Bn + EXn1Bn
c ≥ E(YM − ξ)1Bn

= EYM1Bn − ξP(Bn)

= EYM − EYM1Bc
n
− ξP(Bn)

≥M − sup
ω
YM (ω) · P(Bc

n)− ξ

Letting n→ ∞, we obtain limn→∞ EXn ≥M − ξ. Since M, ξ > 0 are arbitrary, this implies (1.10). □

Note that for any non-negative r.v. X, we can explicitly construct simple r.v.s Xn ↑ X as follows,
so that Lemma 1.24 applies:

Xn(ω) =
[2nX(ω)]

2n
∧ n =

n2n−1∑
k=0

k

2n
1{X(ω)∈[ k

2n
, k+1
2n

)} + n1{X(ω)≥n},

where a ∧ b := min(a, b) and [x] denotes the integer part of x. To see that Xn → X, notice that

|X(ω)−Xn(ω)| ≤
1

2n
, uniformly on {ω : X(ω) ≤ n}.

Theorem 1.25 (Monotone Convergence Theorem, MCT) If Xn ≥ 0 and Xn ↑ X, then (1.9) holds.

Proof: Again, it suffices to establish (1.10).

Let Y
(m)
n be simple r.v.s that increase to Xn, and Z(m) = max(Y

(m)
1 , . . . , Y

(m)
m ). Then Z(m) are

simple, and also increasing in m since

Z(m) = max
1≤n≤m

Y (m)
n ≤ max

1≤n≤m
Y (m+1)
n ≤ max

1≤n≤m+1
Y (m+1)
n = Z(m+1).

In addition, we have
Y (m)
n ≤ Z(m) ≤ Xm, ∀m ≥ n ≥ 1.

Taking m→ ∞, we see that
Xn ≤ lim

m→∞
Z(m) ≤ X, ∀n ≥ 1.

Taking n→ ∞, and using that Xn ↑ X, we see that Z(m) ↑ X. Then by Lemma 1.24, we have

EX = lim
m→∞

EZ(m). (1.11)

On the other hand, since Y
(m)
m ≤ Z(m) ≤ Xm, we have

lim
m→∞

EZ(m) ≤ lim
m→∞

EXm. (1.12)

Then (1.10) follows from (1.11) and (1.12), and this completes the proof.
□
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Remark 1.18 In Theorem 1.25, the condition “Xn ≥ 0” can be replaced by

“Xn ≥ −Y , for some Y ≥ 0 with EY <∞”. (1.13)

Indeed, if (1.13) holds, then X̃n = Xn + Y ≥ 0. Since X̃n ↑ X̃ = X + Y , we have

lim
n→∞

(
EXn + EY

)
= lim

n→∞
EX̃n = EX̃ = E(X + Y ).

Since 0 ≤ EY <∞, we can subtract EY from both sides to obtain limn→∞ EXn = limn→∞ EX.

Theorem 1.26 (Fatou’s Lemma) If Xn ≥ 0 (or (1.13) holds), then

lim inf
n→∞

EXn ≥ E lim inf
n→∞

Xn.

Proof: Let
Yn = inf

m≥n
Xm ↑ lim inf

n→∞
Xn.

Since Yn is an infimum we have Yn ≤ Xn. By MCT (Theorem 1.25), we have

E lim inf
n→∞

Xn = lim
n→∞

EYn ≤ lim inf
n→∞

EXn.

□

Theorem 1.27 (Dominated Convergence Theorem, DCT) If Xn → X a.s. and |Xn| ≤ Y for some
r.v. Y with EY <∞, then limn→∞ EXn = EX.

Proof: By the assumption we have |X| ≤ Y . Since 2Y − |Xn − X| ≥ 0, by Fatou’s Lemma
(Theorem 1.26), we have

lim inf
n→∞

E(2Y − |Xn −X|) ≥ E(2Y ).

Since E(2Y ) <∞, we can subtract it from both side and obtain

0 ≥ lim sup
n→∞

E|Xn −X| = 0.

□

Corollary 1.28 (Bounded Convergence Theorem, BCT) If Xn → X and |Xn| ≤M , n ≥ 1 for some
constant M , then limn→∞ EXn = EX.

Proof: Take Y (ω) ≡M . □

Next, we will present some useful inequalities for expectation. We try to give proofs that is general
enough so that we can adapt them to prove statements about other measurable maps.

Proposition 1.29 (Jensen inequality) Let φ : R → R be a convex function. If E|x| <∞, then Eφ(x) ≥
φ(EX).

Proof: Let EX = a ∈ (−∞,∞). By convexity, there exists k ∈ R (taking k ∈ [φ′
−(a), φ

′
+(a)]) s.t.

φ(t) ≥ φ(a) + k(t− a), ∀t.

Plugging in t = X and taking expectation, we have

Eφ(X) ≥ Eφ(a) + kE(X − a) = φ(a)− ka+ kEX = φ(EX).

□
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Example 1.19 Let φ(t) = |t|p, p ≥ 1. Then for every |X|, we have

E|X|p ≥ (E|X|)p.

Proposition 1.30 (Hölder’s inequality) If p, q ∈ [1,∞) with 1
p + 1

q = 1 then

E|XY | ≤ (E|X|p)1/p · (E|Y |q)1/q. (1.14)

When p = q = 2, this is the Cauchy-Schwartz inequality.

Proof: We recall the Young’s inequality : if 1
p + 1

q = 1, then

xy ≤ xp

p
+
yq

q
, x, y ≥ 0. (1.15)

If X and Y are bounded, then we have E|X|p, E|Y |q <∞. Let

X̃ =
|X|

(E|X|p)1/p
, Ỹ =

|Y |
(E|Y |q)1/q

.

By (1.15), we have

EX̃Ỹ ≤ E|X̃|p

p
+

E|Ỹ |q

q
=

1

p
+

1

q
= 1

This is (1.14).
If X and Y are not bounded, consider the truncation XM = |X| ∧M and YM = |Y | ∧M where

M > 0. For every fixed M we have

EXMYM ≤
(
EXp

M

)1/p · (EY q
M

)1/q
.

Taking M ↑ ∞, since XM ↑ X and YM ↑ |Y |, (1.14) follows from the MCT. □

The final result in this section is about change of variables when we switch measures when per-
forming integration. We will use a technique called “functional Monotone Class Theorem”, which will
be useful later for other problems as well.

Theorem 1.31 (Change of variables) Let X be a r.v. and f is a Borel function. Assume either f ≥ 0
or E|f(X)| <∞. Then

Ef(X) =

∫
Ω
f
(
X(ω)

)
P(dω) =

∫
R
f(y)µX(dy), (1.16)

where µX = P ◦X−1 is the distribution of X.

Proof: Let
H = {f : f is Borel measurable s.t. (1.16) holds }.

We want to show that f ∈ H whenever f ≥ 0 or E|f(X)| <∞. We will do this in four steps.

1. 1A ∈ H for every A ∈ B(R).
Indeed, by definition of the expectation and µX , we have

E1A =

∫
Ω

1A

(
X(ω)

)
P(dω) = P(X ∈ A) = µX(A) =

∫
R

1A(y)µX(dy)
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2. Let f1, . . . , fn be functions in H. For any a1, . . . , an ∈ R, we have

a1f1 + · · ·+ anfn ∈ H,

This follows from the linearity of integrals. Combining with Item 1, H contains all simple
functions.

3. H contains all non-negative functions.

Indeed, for every nonnegative function f , there exists a sequence of simple functions fn such
that fn ≥ 0 and fn ↑ f . By Item 2, we have∫

Ω
fn

(
X(ω)

)
P(dω) =

∫
R
fn(y)µX(dy)

By MCT, (1.16) follows from∫
Ω
fn

(
X(ω)

)
P(dω) →

∫
Ω
f
(
X(ω)

)
P(dω),

∫
fn(y)µX(dy) →

∫
f(y)µX(dy).

4. If E|f(x)| <∞, then the positive and negative parts f+, f− ∈ H, and hence f = f+ − f− ∈ H.

□

2 Mode of convergence for random variables

2.1 Definitions

There are four basic modes of convergence for r.v.s. We list their definitions below.

1. Almost sure convergence.

We say that Xn → X almost surely (a.s.), if

P( lim
n→∞

Xn = X) = 1

2. Convergence in probability.

We say that Xn → X in probability (in pr.), if

lim
n→∞

P{|Xn −X| > ε} = 0, ∀ε > 0. (2.1)

3. Weak convergence or convergence in distribution.

We say that Xn → X in distribution, or in law, or weakly, or weakly-*, if for every continuous
and bounded function f , have

lim
n→∞

Ef(Xn) = Ef(X).

We also write this as Xn ⇒ X or Xn ⇒d X. We will explain the origins of all these different
terms in Section 2.4.

4. Convergence in Lp.

We say that Xn → X in Lp if
lim
n→∞

E|Xn −X|p = 0.

Next, we will explore the relations between these different concepts of convergence.
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2.2 Almost sure convergence and convergence in probability

Proposition 2.1 If Xn → X a.s., then Xn → X in pr.

Proof: If Xn → X a.s., then for every ε > 0, we have

P{ lim
n→∞

|Xn −X| > ε} = 0.

On the other hand, since

{ω : lim sup
n→∞

|Xn(ω)−X(ω)| > ε} =

∞⋂
n=1

∞⋃
m=n

{ω : |Xm(ω)−X(ω)| > ε},

we have

P{lim sup
n→∞

|Xn −X| > ε} = P
( ∞⋂
n=1

∞⋃
m=n

{ω : |Xm(ω)−X(ω)| > ε
)

= lim
n→∞

P
( ∞⋃
m=n

{ω : |Xn(ω)−X(ω)| > ε}
)

≥ lim sup
n→∞

P
(
|Xn(ω)−X(ω)| > ε

)
.

Hence, Xn → X in pr. □

Convergence in pr. does NOT imply a.s. convergence. For example, let

(Ω,F ,P) =
(
[0, 1],B([0, 1]),Leb

)
, Xn,k(ω) = 1 k

n
, k+1

n
(ω), 0 ≤ k ≤ n− 1. (2.2)

Then Xn,k → 0 in pr. but not a.s.
However, the other direction holds on a subsequence.

Proposition 2.2 If Xn → X in pr., then there exists a subsequence {Xnk
} such that Xnk

→ X a.s.

To prove this result we need some preparation. Let A1, A2, · · · ∈ F be a sequence of events. We
define the event where An happens infinitely often by

{An, i.o.} =
∞⋂
n=1

∞⋃
m=n

Am = lim sup
n→∞

An. (2.3)

Lemma 2.3 (First Borel–Cantelli Lemma) If
∑∞

n=1 P(An) <∞, then P
(
{An, i.o.}

)
= 0.

Proof: By (2.3), we have

P
(
{An, i.o.}

)
≤ P

( ∞⋃
m=n

Am

)
≤

∞∑
m=n

P(An)

. Since
∑∞

n=1 P(An) <∞, we have

lim
n→∞

∞∑
m=n

P(An) = 0

and the conclusion follows. □

We also have Cauchy’s criterion for convergence in pr.
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Proposition 2.4 There exists a r.v. X such that Xn → X in pr. if and only if for every ε > 0,

lim
N→∞

sup
n,m≥N

P{|Xn −Xm| > ε} = 0

The “only if” part follows immediately from (2.1); we will use this in the proof of Proposition 2.2.
The “if” part in Proposition 2.4 will use Proposition 2.2 and is left as an exercise.
Proof of Proposition 2.2: Since Xn → X in pr., by Proposition 2.4 with ε = 2−k, there
exist Nk ↑ ∞ such that

P{|XNk
−XNk+1

≥ 1

2k
} ≤ 1

2k
, k ≥ 1.

Since
∑∞

k=1 2
−k <∞, by Borel–Cantelli (Lemma 2.3), we have

P
(
{|XNk

−XNk+1
| > 1

2k
, i.o.}

)
= 0,

that is, for almost every ω, there exists k0 = k0(ω) such that

|XNk
(ω)−XNk+1

(ω)| ≤ 1

2k
, ∀k ≥ k0(ω).

For such ω, the infinite series

X∗(ω) = XN1(ω) +
∞∑
k=1

(
XNk+1

(ω)−XNk
(ω)

)
converges absolutely. Hence, XNk

(ω) → X∗(ω) a.s. as k → ∞.
It remains to shwo that X∗ = X almost surely. Indeed, since XNk

→ X∗ almost surely, we have
XNk

→ X∗ in pr. The claim then follows from Proposition 2.5 below, which asserts that the limit in
pr. is unique up to a set of measure zero. □

Proposition 2.5 If Xn → X in pr. and Xn → Y in pr., then X = Y almost surely.

Proof: Since |X − Y | ≤ |Xn −X|+ |Xn − Y |, for every ε > 0,

P
(
|X − Y | ≥ 2ε

)
≤ P(|Xn −X| ≥ ε) + P(|Xn − Y | ≥ ε).

Taking n→ ∞, since Xn → X,Y in pr., the left-hand side must be 0. Therefore,

P(|X − Y | ≠ 0) = lim
n→∞

P
(
|X − Y | ≥ 1/n

)
= 0,

and this completes the proof. □

As a corollary of Proposition 2.2, we have the following.

Proposition 2.6 Almost sure convergence is not expressible via a metric.

Proof: Assume the contrary that there exists a distance d(·, ·) such that Xn → X a.s. if and only
if d(Xn, X) → 0. Let Xn → X in pr. but not a.s. (such example exists by (2.2)). Then, there
exists ε0 > 0 and a sequence (n′) such that

d(Xn′ , X) ≥ ε0 > 0. (2.4)
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But Xn′ still converges to X in pr. since it is a subsequence. By Proposition 2.2, there is a further
subsequence (n′′) ⊂ (n′) such that Xn′′ → X a.s. This implies that d(Xn′′ , X) → 0, which contradicts
with (2.4). □

Note that convergence in pr. is expressible via a metric. For example, Xn → 0 in pr. if and only
if E |Xn|

1+|Xn| → 0. Therefore, a possible metric for convergence in pr. is

d(X,Y ) = E
[ |X − Y |
1 + |X − Y |

]
. (2.5)

Of course, one need to verify that (2.5) satisfies the triangle inequality and indeed defines a metric on
the space of r.v.s.

We can also relax the condition of a.s. convergence in DCT to convergence in pr.

Proposition 2.7 If Xn → X in pr. and |Xn| ≤ Y for some Y with EY <∞, then (1.9) holds.

Proof: For every subsequence (Xnk
) ⊂ (Xn), by Proposition 2.2, there exists a further subse-

quence (Xnkm
) ⊂ (Xnk

) such that Xnkm
→ X almost surely, and hence EXnkm

→ EX by DCT. This
implies EX is the unique possible limit point for the sequence

(
EXn

)
n≥1

, and hence (1.9) holds. □

2.3 Convergence in Lp and uniform integrability

Proposition 2.8 If Xn → X in Lp, then Xn → X in pr.

This proposition follows immediately from the result below.

Lemma 2.9 (Chebyshev’s inequality) For every ε > 0,

P
(
|X| ≥ ε

)
≤ E|X|

ε

Proof: Since
|X| = |X|1{|X|≥ε} + |X|1{|X|≥ε} ≥ |X|1{|X|≥ε} ≥ ε1{|X|≥ε},

taking expectation on both sides, we have E|X| ≥ εP{|X| ≥ ε}, and the conclusion follows. □

Proof of Proposition 2.8: Let Xn → X in Lp. For every ε > 0, by Lemma 2.9, we have

P
(
|Xn −X| ≥ ε

)
= P

(
|Xn −X|p ≥ εp

)
≤ E|Xn −X|p

εp
→ 0.

Therefore, Xn → X in pr. □

Limits in Lp are also unique.

Proposition 2.10 If Xn → X in Lp and Xn → Y in Lp, then X = Y a.s.

Proof: By Proposition 2.8, Xn → X,Y in pr., and hence by Proposition 2.5, X = Y a.s. □

Other than Proposition 2.1 and Proposition 2.8, there are not more implications between the three
modes of convergence. We have seen one counterexample (2.2), and we can obtain other counterex-
amples by modifying (2.2).

1. Xn → X in pr. does not implies Xn → X in Lp. For example, let

Xn,k(ω) = nc1[ k
n
, k+1

n
](ω),

where c ≥ 1/p. We have E|Xn,k|p ≥ 1 but Xn,k → 0 in pr.
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2. Xn → X a.s. does not implies Xn → X in Lp. For example, let

Xn(ω) = nc1[0, 1
n
)(ω),

where c ≥ 1/p. We have Xn(ω) → 0 but E|Xn|p ≥ 1.

3. Xn → X in Lp does not implies Xn → X a.s. For example, let

Xn,k(ω) = nc1[ k
n
, k+1

n
](ω),

where c < 1/p. We have E|Xn,k|p → 0 but Xn ̸→ 0 a.s.

Convergence in Lp and a.s. convergence are equivalent under some integrability condition. Without
loss of generality we can restrict our discussion to p = 1.

Definition 2.1 (Uniform integrability) A collection of r.v.s (Xα)α∈I is uniformly integrable (u.i.), if

lim
n→∞

sup
α∈I

E|Xα|1{|Xα|≥M} = 0. (2.6)

Note that if Xα are u.i., then E|Xα| are uniformly bounded, since

sup
α

E |Xα| ≤M + sup
α∈I

E|Xα|1{|Xα|≥M} <∞.

Uniform integrability can be seen as a necessary and sufficient condition for (1.9) to hold. Therefore,
it will be the last resort if conditions for Theorems 1.25 to 1.27 are not met.

Theorem 2.11 If E|Xn| <∞, E|X| <∞ and Xn → X in pr., then the following are equivalent:

1. {Xn}n≥1 are u.i.;

2. Xn → X in L1;

3. E|Xn| → E|X|.

Proof: From 1 to 2. Let

φM (x) = (−M) ∨X ∧M =


−M, x ≤ −M,

x, x ∈ [−M,M ],

M, x ≥M.

(Here, “∨” and “∧” are associative.) By definition we have |X − φM (X)| ≤ |X|1{|X|≥M}, and thus

E|Xn −X| ≤ E|φM (Xn)− φM (X)|+ E|φM (Xn)−Xn|+ E|φM (X)−X|

Taking n→ ∞ and then M → ∞, the first term goes to 0 by DCT, the second goes to zero since Xn

are u.i., and the third goes to zero since E|X| <∞ which follows from Fatou’s lemma and (2.6):

E|X| ≤ lim inf
n→∞

E|Xn| ≤ sup
n

E|Xn| <∞.

From 2 to 3. It follows from |EXn −X| ≤ E|Xn −X|.
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From 3 to 1. Let

ψM (x) =

{
x, x ∈ [0,M − 1],

0, x ≥M.

Let ε > 0. We have

E|Xn|1{|Xn|≥M} ≤ E|Xn| − EψM (|X|)
≤ (E|X|+ ε)−

(
EψM (|X|)− ε

)
, n ≥ n0,

where such n0 exists since E|Xn| → EX by the assumption and EψM (|Xn|) → EψM (|X|) by BCT.
Since ψM (t) → t for every t and ψM (|X|) ≤ E|X|, by DCT there exists M0 > 0 such that

E|X| − EψM (|X|) ≤ ε, M ≥M0,

Combining these we obtain that for every ε > 0, there exist n0 and M0 s.t.

sup
n≥n0

E|Xn|1{|Xn|≥M} ≤ 3ε, M ≥M0.

It follows that (Xn)n≥1 are u.i. □

2.4 Weak convergence

The limit of weak convergence is unique in the sense of distribution of the r.v.s.

Proposition 2.12 If Ef(X) = Ef(Y ) for every bounded continuous function f , then µX = µY as
probability measures on

(
R,B(R)

)
.

Proof: For every open interval (a, b), there exist non-negative bounded continuous function fn such
that fn(x) ↑ 1(a,b)(x). Taking n→ ∞ in Efn(X) = Efn(Y ), by MCT, we have E1(a,b)(X) = E1(a,b)(Y ).
Therefore, µX(I) = µY (I) for every open interval I. Since open intervals generate B(R), it follows
that µX = µY . □

As Proposition 2.12 suggests, the bounded continuous functions appearing in the definition of the
weak convergence merely serve as test functions. In fact, we can characterize the weak convergence
Xn ⇒d X using soly the information of µXn and µX , and that is why we also call it convergence
in distribution. Second, when we consider the weak convergence of Xn to X, the r.v.s can live on
totally different probability spaces, since what is under concern is their distributions µXn and µX
which are probability measures on

(
R,B(R)

)
. Third, it is not true that µXn(A) → µX(A) for every

A ∈ B(R) if Xn ⇒d X, even when A is an open interval. This is the reason why the convergence is
weak. Functional analysis calls such convergence weak-* convergence, which we will sketch below.

Let X be the Banach space of all bounded continuous functions, and X ∗ be its dual space, consisting
of all bounded linear functional from X to R. By Riesz’s representation theorem, X ∗ coincides with
the space of all bounded signed measures on B(R), which contains all the probability measures. For
a generic Banach space X and its dual X ∗, we say that un → u weakly in X , if

ℓ(un) → ℓ(u), ∀ℓ ∈ X ∗,

and we say that ℓn → ℓ weakly-* in X ∗, if

ℓn(u) → ℓ(u), ∀u ∈ X .

Weak and weak-* convergence are equivalent if the space X is reflective, that is, (X ∗)∗ = X .
While reflectivity holds for common Lp spaces, 1 ≤ p < ∞, it is not the case for X ∗ being the space
of bounded continuous functions. So strictly speaking, Xn ⇒d X means µXn → µX weakly-*. It is
in probability context that we drop the “*” and call it weak convergence. For weak convergence of
probability measures, an good reference is [Bil99].
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3 Independence and product measures

3.1 Definitions of independence

Recall from elementary probability that two events A and B are independent if and only if

P(AB) = P(A)P(B).

We can use this to defined independence of r.v.s.

Definition 3.1 Two r.v.s X and Y are independent if

P
(
X ∈ A, Y ∈ B

)
= P

(
X ∈ A

)
P
(
Y ∈ B

)
, ∀A,B ∈ B(R), (3.1)

Using the definition of independence of evnets, Definition 3.1 is the most basic definition for
independence of r.v.s. But in practice there are other more useful definitions.

Let X be a r.v. The σ-algebra generated by X, denoted by σ(X), is the smallest σ-algebra on Ω
which makes X : Ω → R measurable. It is easy to check that σ(X) has the explicit form

σ(X) = {X−1(A), A ∈ B(R)}.

We may also introduce independence of σ-algebras.

Definition 3.2 Two σ-algebras F and G are independent, if

P(AB) = P(A) · P(B), ∀A ∈ F , B ∈ G,

Using the independence of σ-algebras, we can reformulate Definition 3.1 as follows.

Proposition 3.1 Two r.v.s X and Y are independent if and only if σ(X) and σ(Y ) are independent.

In practice, it also useful to characterize independence via expectation.

Proposition 3.2 Two r.v.s X and Y are independent if and textlint error cannot masking code note
does not haveonly if either

Ef(X)g(Y ) = Ef(X)Eg(Y ), ∀f, g bounded and Borel, (3.2)

or,
Ef(X)g(Y ) = Ef(X)Eg(Y ), ∀f, g bounded and continuous. (3.3)

Proof: (3.2) implies (3.1) since we can take f = 1A and g = 1B for any Borel sets A and B. To
show the other direction, we will use the idea of “functional Monotone Class Theorem”.

First, for fixed A ∈ B(R), let

HA =
{
g : g bounded and Borel, s.t. P{X ∈ A}Eg(Y ) = E1A(X)g(Y )

}
.

We claim that HA contains all bounded Borel functions. We will prove this by considering more and
more general functions.

1. HA contains all indicator functions 1B, B ∈ B(R). This follows directly from (3.1).

2. If g1, g2 ∈ HA, then α1g1 + α2g2 ∈ HA. That is, HA is closed under linear combination. This
implies that HA contains all simple functions.
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3. If gn ≥ 0, gn ∈ HA and gn ↑ g, then gn(Y ) ↑ g(Y ) and 1A(X)gn(Y ) ↑ 1A(X)g(Y ). By MCT, we
have

P(X ∈ A)Eg(Y ) = lim
n→∞

P(X ∈ A)Egn(Y ) = lim
n→∞

E1A(X)gn(Y ) = E1A(X)g(Y ).

Therefore, HA contains all non-negative Borel functions, and hence all bounded Borel functions
by linearity.

Second, let

H =
{
f : bounded and Borel s.t. Ef(X) · Eg(Y ) = Ef(X)g(Y )

}
.

Then 1A ∈ H for every A ∈ B(R). Repeating the above argument again, we can show that H contains
all bounded Borel functions. This establishes equivalence between (3.2) and (3.1).

Next, we show that (3.3) and (3.1) are equivalent. First, (3.2) implies (3.3) since continuous
functions are Borel. Second, assuming (3.3), for any open intervals A and B, by choosing bounded,
non-negative continuous functions fn and gn such that fn ↑ 1A and gn ↑ 1B, MCT implies that (3.1)
holds for such A and B. From open intervals to arbitrary Borel sets we need to use the monotone
class theorem. Details are omitted here. □

We can also introduce the notion of a collection of r.v.s being independent.

Definition 3.3 Let I be a countable index set. A collection of r.v.s (Xn)n∈I are independent, if
the σ-algebras

(
σ(Xn)

)
n∈I are independent, that is,

P
(⋂
n∈I

An

)
=

∏
n∈I

P(An), ∀An ∈ σ(Xn).

Definition 3.3 is NOT implied by “pairwise independence” of the r.v.s (Xn)n∈I . A simplest coun-
terexample can be given for I = {1, 2, 3} as follows. Let (Ω,F ,P) = ([0, 1],B([0, 1]),Leb) and

X1(ω) =

{
1, ω ∈ [12 , 1],

−1, ω ∈ [0, 12),
X2(ω) =

{
1, ω ∈ [14 ,

1
2) ∪ [34 , 1],

−1, ω ∈ [0, 14) ∪ [12 ,
3
4),

X3(ω) = X1(ω) ·X2(ω).

It is easy to check that X1, X2 are r.v.s since they are simple functions, and thus X3 is a r.v. since it
is a product of two r.v.s. It is also easy to check that X1, X2, X3 are pairwise independent. However,
they are not independen, since

P(X1 = X2 = X3 = −1) = 0 ̸= 1

8
= P(X1 = −1)P(X2 = −1)P(X3 = −1).

In probability theory, a fundamental model is a sequence of independent and identically distributed
(i.i.d.) r.v.s (Xn)n≥1, which, in addition to Xn being independent, requires that the distribution
of Xn is the same. A natural question that we must answer first before delving into nice theories built
upon i.i.d. r.v.s like the law of large numbers, central limit theorem and so on, is the existence of a
probability space (Ω,F ,P) on which there live independent r.v.sXn with given common distribution µ.

The answer is affirmative, and we will discuss its solution in the rest of this section. We break this
into three cases.

1. The one-dimensional case: given a c.d.f. F (x), how to construct a r.v.X such that P(X ≤ a) = F (a)?
This is done in Section 3.2.1.
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2. The two/finite-dimensional case: given two probability measures µ1 and µ2 on (R,B(R)), how
can we construct two r.v.s X, Y such that L(X) = µ1, L(Y ) = µ2 and X and Y are independent?
We will do this in Section 3.2.2 with the help of product measures.

3. The infinite-dimensional case: given probability measures (µn)n∈I on
(
R,B(R)

)
, how can we

construct r.v.s (Xn)n∈I such that L(Xn) = µn, n ∈ I, and Xn are independent. In particular,
for a sequence of i.i.d. r.v.s, we need I = N. We will do this in Section 3.3 with the help of the
celebrated Kolmogorov’s Extension Theorem Theorem 3.9.

On the other hand, when the common distribution µ is as simple as the Bernoulli distribution, we
have explicit construction of the probability space and r.v.s.

Example 3.1 Let (Ω,F ,P) =
(
(0, 1),B(0, 1),Leb

)
. Every ω ∈ Ω = (0, 1) admits a dyadic expansion:

ω =

∞∑
n=1

ξn(ω)
1

2n
, ξn(ω) ∈ {0, 1}. (3.4)

When ω = k
2n is a dyadic rational, the expansion (3.4) is non-unique; in that case, we will choose the expansion

with an infinite number of 1’s to fix the choice. For example, we choose

1

2
= 0 · 1

21
+ 1 · 1

22
+ 1 · 1

23
+ 1 · 1

24
+ · · · =

∞∑
n=2

1

2n
, rather than

1

2
=

1

2
+

∞∑
n=2

0 · 1

2n
.

One can verify directly that (ξn)n≥1 are i.i.d. Bernoulli r.v.s with parameter 1/2.

3.2 Product measures

3.2.1 Existence of random variables

Let F be an increasing, right continuous function with F (−∞) = 0 and F (∞) = 1. Theorem 1.6
and the usage of Carathéodory’s Extension Theorem there gives the construction of a probability
measure µ on

(
R,B(R)

)
, where µ(−∞, a] = F (a). To construct a r.v. X with distribution µ, we take

(Ω,F ,P) =
(
R,B(R), µ

)
and X(ω) = ω.

Another way to construct a r.v. with given a c.d.f. F (x) is to use the generalized inverse F−1:

F−1(x) = sup{y : F (y) < x}.

One can check that F−1 is increasing and left continuous. In addition, if F is strictly increasing and
continuous, then F−1 is the normal inverse function of F .

Proposition 3.3 Let U ∼ Unif[0, 1] be a r.v. on (Ω,F ,P). Then F−1(U) is a r.v. on (Ω,F ,P) with
c.d.f. F .

Proof: Since F−1 is left continuous and increasing, it is Borel measurable. Hence, ω 7→ F−1
(
U(ω)

)
is measurable and F−1(U) is a r.v. on (Ω,F ,P).

To check that the c.d.f. of F−1(U) is F , we will use without proof that

{y : F−1(y) ≤ x} = {y : y ≤ F (x)}. (3.5)

Indeed, assuming (3.5), we have

P
(
F−1(U) ≤ a

)
= P

(
U ≤ F (a)

)
= F (a).
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as desired. □

Proposition 3.3 plays an important role in computer science when it comes to stochastic simulation.
On computers, one can use pseudo random number generators to produce i.i.d. uniform integers X
in the set {1, 2, . . . , N} where N is sufficiently large. Then, X/N will approximate the uniform
distribution on [0, 1], and thus F−1(X/N) is closed to a r.v. with c.d.f. F . Of course, it is often the
case where F−1 is costly to compute, and some other sampling methods will be efficient. But this
algorithm is useful enough to generate common distributions like the exponential and Gaussian.

3.2.2 Product Measures and Fubini’s Theorem

Let (Ωi,Fi,Pi), i = 1, 2, be two probability spaces. Let

Ω = Ω1 × Ω2 = {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2},
F = F1 ⊗F2 = σ(A×B : A ∈ F1, B ∈ F2).

Then (Ω,F) is a measurable space. A special case is (Ωi,Fi) =
(
R,B(R)

)
where B(R)⊗B(R) = B(R2),

where the equality is due to the fact that open rectangles

(a, b)× (c, d), −∞ < a < b <∞, −∞ < c < d <∞,

form a topological basis for open sets in R2.
Our goal is to construct the product measure P1 × P2 on (Ω,F). We will need to introduce

an appropriate algebra generating F and use Carathéodory’s Extension Theorem (Theorem 1.12).
Consider the collection of “rectangles”

S = {A×B : A ∈ F1, B ∈ F2}.

It is not hard to check that S forms a semi-algebra:

1. (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D),

2. (A×B)c = (Ac ×B) ∪ (A×Bc) ∪ (Ac ×Bc).

The semi-algebra S naturally generates an algebra

S̄ =
{ k⋃
i=1

Ii, Ii ∈ S, Ii disjoint
}
.

We note that unless one of Fi is trivial, S ⊊ σ(S) = F (actually, S ⊊ S̄ for nontrivial Fi).

Remark 3.2 Using standard notion of Cartesian products, one may write “S = F1 × F2”, but it may cause
confusion since some authors also use “F1 ×F2” for the product σ-algebra. Hence, in this note we will use the
tensor product notation “⊗” to emphasize that the product σ-algebra is more than the usual Cartesian product
of σ-algebras.

The unique measure µ defined in the next theorem is the desired product measure P1 × P2.

Theorem 3.4 There exists a unique probability measure µ on (Ω,F) such that

µ(A×B) = P1(A) · P2(B).
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Proof: We can define a finitely additive probability measure µ0 on S̄ by

µ0(D) =
k∑

i=1

P1(Ai) · P2(Bi), D = disjoint union of A1 ×B1, . . . , Ak ×Bk.

The conclusion follows from Theorem 1.12, if we can show that show that µ0 is a σ-additive on S̄. For
this, it suffices to check that if An ×Bn, n = 1, . . . , are disjoint and A×B =

⋃∞
n=1(An ×Bn), then

µ0(A×B) =
∞∑
n=1

µ0(An ×Bn). (3.6)

(This is σ-additivity on S, not on S̄, but here they are equivalent.)
For x ∈ A, let I(x) = {n : x ∈ An}. Then

B =
⋃

n∈I(x)

Bn, ∀x ∈ A, (3.7)

since {x} ×B ⊂
⋃

n∈I(x)(An ×Bn). For x ∈ A, we have

1A(x) · P2(B) = 1A(x) ·
∑

n∈I(x)

P2(Bn) =
∑

n∈I(x)

1An(x) P2(Bn) =
∑
n≥1

1An(x) P2(Bn). (3.8)

The first equality holds since we have (3.7) andBn are disjoint, the second holds since 1A(x) = 1An(x) = 1
for n ∈ I(x), and the third holds since we are adding more zero terms.

Note that (3.8) also holds for x ̸∈ A, since

1A(x) · P2(B) = 0 =
∑
n≥1

1An(x) P2(Bn), x ̸∈ A.

Integrating (3.8) over x ∈ Ω, the left hand side becomes[∫
Ω

1A(x)P1(dx)
]
· P2(B) = P1(A) · P2(B) = µ0(A×B),

and the right hand side becomes∫
Ω

[∑
n≥1

1An(x)P2(Bn)
]
P1(dx) =

∫
Ω

[
lim

N→∞

N∑
n=1

1An(x)P2(Bn)
]
P1(dx)

= lim
N→∞

∫
Ω

[ N∑
n=1

1An(x)P2(Bn)
]
P1(dx)

=

∞∑
n=1

P1(An)P2(Bn) =

∞∑
n=1

µ0(An ×Bn),

where we use MCT in the second line. This proves (3.6) and concludes the proof. □

We can construct two independent r.v.s with given distribution using Theorem 3.4. Let X be a
r.v. on (Ω1,F1,P1) and Y a r.v. on (Ω2,F2,P2). On (Ω,F , µ) = (Ω1×Ω2,F1⊗F2,P1×P2), we define

X̃(ω1, ω2) = X(ω1), Ỹ (ω1, ω2) = Y (ω2).
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Then

P(X̃ ∈ A, Ỹ ∈ B) = µ(X−1(A)× Y −1(B)) = P1(X
−1(A)) · P2(Y

−1(B))

= P1(X ∈ A) · P2(Y ∈ B) = P(X̃ ∈ A) · P(Ỹ ∈ B),

that is, X̃ (respectively, Ỹ ) has the same distribution as X (resp. Y ), and X̃, Ỹ are independent.

Integration on the product measure space can be computed using Fubini’s Theorem below. Fubini’s
Theorem also includes some measurability statements on jointly measurable maps.

Theorem 3.5 (Fubini’s Theorem) Let (Ωi,Fi,Pi), i = 1, 2, be two measure spaces, where Pi are
probability (or σ-finite) measures. Let f : Ω → R be F1 ⊗F2-measurable where Ω = Ω1 ×Ω2. Assume
either

f ≥ 0, (3.9a)

or

∫
|f(ω1, ω2)| (P1 × P2)(dω1dω2) <∞. (3.9b)

Then the following holds.

1. For every ω1 ∈ Ω, the function f(ω1, ·) is F2-measurable. And if (3.9b) holds,∫
Ω2

|f(ω1, ω2)|P2(dω2) <∞, for almost every ω1 ∈ Ω. (3.10)

2. The function g(ω1) =
∫
Ω2
f(ω1, ω2)P2(dω2) is F1-measurable. And if (3.9b) holds,∫

Ω1

|g(ω1)|P1(dω1) <∞. (3.11)

3. The double integral is equal to either iterated integral, that is,∫∫
Ω1×Ω2

f(ω1, ω2) (P1 × P2)(dω1dω2) =

∫
Ω1

P1(dω1)

∫
Ω2

f(ω1, ω2)P2(dω2)

=

∫
Ω2

P2(dω2)

∫
Ω1

f(ω1, ω2)P1(dω1).

(3.12)

Proof: Let H be the collection of all F1 ⊗ F2-measurable functions f such that Items 1 to 3 hold.
As usual, we will show that H contains more and more general functions, in particular, all F1 ⊗ F2-
measurable functions f such that either (3.9a) or (3.9b) holds.

1. Indicator functions of rectangles are in H.
Let f(ω1, ω2) = 1A(ω1)1B(ω2) where A ∈ F1 and B ∈ F2. We have

f(ω1, ·) =

{
0, ω1 /∈ A,

1B(·) ω1 ∈ A,

so f(ω1, ·) is F2-measurable for every ω1. In addition, direct computation gives

g(ω1) =

{
0, ω2 /∈ A

P2(B), ω2 ∈ A
= 1A(ω1) · P2(B),

and hence g is F1-measurable. It is easy to verify (3.10) to (3.12).
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2. The indicator function 1D(ω1, ω2) ∈ F for every D ∈ F .
We will use the method of appropriate sets. Let

G = {D ∈ F1 ⊗F2, 1D ∈ H}.

We note that G contains the algebra S̄ as a consequence of the first part, and that G is a
monotone class, since the measurability conditions are preserved by taking limits, and the integral
conditions are preserved by the MCT. Hence, by the monotone class theorem G = F1 ⊗F2.

3. Simple functions of the form φ(ω) =
∑n

i=1 ci1Di(ω) are in H, since Items 1 to 3 are preserved
by taking finite linear combination.

4. All nonnegative, F1 ⊗F2-measurable functions f are in H.
Recall that there exist simple functions {fn} such that fn(ω) ↑ f(ω) for every ω. We have
already shown that fn ∈ H.

Since for every ω1, the function fn(ω1, ·) is F2-measurable, the limit f(ω1, ·) = limn→∞ fn(ω1, ·)
is also F2-measurable. By MCT,

g(ω1) =

∫
Ω2

f(ω1, ω2)P2(dω2) = lim
n→∞

∫
Ω2

fn(ω1, ω2)P2(dω2) = lim
n→∞

gn(ω1).

Since gn(ω1) are F1-measurable, their increasing limit g(ω1) is also F1-measurable. Finally, by
MCT applied to both (gn) and (fn),∫

Ω1

g(ω1)P1(dω1) = lim
n→∞

∫
gn(ω1)P1(dω1) = lim

n→∞

∫
Ω
fn(ω1, ω2) (P1 × P2)(dω1dω2)

=

∫
Ω
f(ω1, ω2) (P1 × P2)(dω1dω2),

and then by symmetry in ω1 and ω2,∫
Ω
f(ω1, ω2) (P1 × P2)(dω1dω2) =

∫
Ω2

P2(dω2)

∫
Ω1

f(ω1, ω2)P1(dω1).

This verifies (3.12) and thus f ∈ H.

5. For general function f , we consider f = f+ − f−. To show that f ∈ H, everything is straight-
forward except (3.10).

Applying Fubini’s Theorem to |f | ≥ 0, we have∫
Ω1

P(dω1)
[∫

Ω1

|f(ω1, ω2)P2(dω2)
]
=

∫
Ω
f(ω1, ω2) (P1 × P2)(dω1dω2) <∞.

This implies (3.10).

□

Let D ⊂ Ω. The cross section of D at x is defined by

Dx = {y : (x, y) ∈ D}.

As a corollary of Theorem 3.5, we obtain measurability of the cross section.
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Proposition 3.6 Let D ∈ F1 ⊗F2. Then Dx ∈ F2 for every x ∈ Ω1.

Proof: Note that y ∈ Dx if and only if 1D(x, y) > 0. For every x ∈ Ω1, by Theorem 3.5, the
function 1D(x, ·) is F2-measurable, and thus

Dx = {y : 1D(x, y) > 0} ∈ F2.

□

We recall that the completion of a probability space (Ω,F ,P) is a complete probability space (Ω, F̄ , P̄)
such that

F̄ = {A : ∃B1 ⊂ A ⊂ B2, B1, B2 ∈ F s.t. P(B1) = P(B2), P(B1\B2) = 0},

and for A ∈ F̄ , we define P̄(A) = P(B1) where B1 is given above. Note that B(R) = {Lebesgue sets}.

Proposition 3.7
B(R)⊗ B(R) ̸= B(R2),

and in general,
F1 ⊗F2 ̸= F1 ⊗F2.

Proof: Let A ⊂ [0, 1] be a non-Lebesgue set and D = A× {0}. We have D ⊂ [0, 1]× {0} and

Leb([0, 1]× {0}) = lim
n→∞

Leb([0, 1]× [0, 1/n]) = lim
n→∞

1

n
= 0.

Hence D ∈ B(R2) by the definition of completion. But D /∈ B(R)⊗B(R), otherwise by Proposition 3.6,

A = {x ∈ R : (x, 0) ∈ D} = D0 ∈ B(R),

which is absurd. □

Remark 3.3 In general, completion of probability spaces has to done in the final step, after the construction of
product spaces.

There is a version of Fubini’s Theorem stated for the completion of the σ-algebra F1 ⊗F2. The
proof is technical, but this version will be useful in the study of some subtle measurability problems.
This is also the Fubini’s Theorem that one learns from a real analysis course, in which Lebesgue sets
rather than Borel sets are the primary interest. We include it here and sketch the main technicalities
in the proof, from which the reader can also learn how to deal with zero measure sets.

Theorem 3.8 (Fubini’s Theorem for complete measure spaces) Let f : Ω → R be F1 ⊗F2-measurable.
Assume either (3.9a) or (3.9b). Then

1. There exists a set N ∈ F1 with P(N) = 0, such that for every ω1 ∈ N c, the function f(ω1, ·)
is F2-measurable. When (3.9b) holds, the set N can be chosen such that for ω1 ∈ N c,∫

|f(ω1, ω2)|P2(dω2) <∞.

2. Let

g(ω1) =

{∫
Ω2
f(ω1, ω2)P2(dω2), f(ω1, ·) is F̄2-measurable,

undefinded, otherwise.

Then g(ω1) is F1-measurable. If (3.9b) holds, then (3.11) is true.
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3. (3.12) holds.

Proof: Let H be the collection of F1 ⊗F2-measurable functions such that the Fubini’s Theorem
holds.

There are two keys steps. First, we need to show that 1D ∈ H for any D ∈ F1 ⊗F2. Second, we
need to show that H is closed under taking limit, that is, if fn ∈ H, fn ≥ 0, fn ↑ f , then f ∈ H.

To prove the first step, let D ∈ F1 ⊗F2. By the definition of completion, there exists D± ∈ F1⊗F2

such that
D− ⊂ D ⊂ D+, (P1 × P2)(D

+\D−) = 0.

By definition of the cross section, for every ω1 ∈ Ω1, we haveD
−
ω1

⊂ Dω1 ⊂ D+
ω1
. In addition, by Propo-

sition 3.6 and Theorem 3.5j, for every ω1 ∈ Ω1, we haveD
±
ω1

∈ F2 and that q(ω1) = P2(D
+
ω1
)− P2(D

−
ω1
)

is F1-measurable, and∫
q(ω1)P1(dω1) =

∫
[P2(D

+
ω1
)− P2(D

−
ω1
)]P1(dω1)

=

∫ (
1D+(ω)− 1D−(ω)

)
(P1 × P2)(dω1dω2) = (P1 × P2)(D

+ \D−) = 0.

(3.13)

Since q(ω1) ≥ 0, (3.13) implies that there exists N ∈ F1 with P1(N) = 0 such that

q(ω1) = P2(D
+
ω1
)− P2(D

−
ω1
) = 0, ∀ω1 ̸∈ N.

Hence, for ω1 /∈ N , the set Dω1 is F2-measurable since

P2(D
+
ω1
) = P2(D

−
ω2
), D−

ω1
⊂ Dω1 ⊂ D+

ω1
.

Note that g(ω1) is defined on N c, so

{ω1 : g(ω1) not definded} ⊂ N,

and it is an element of F1 by definition. It is easy to verify (3.12).
For the second step, let H ∈ fn ↑ f and let Nn ∈ F1 be the corresponding zero measure sets

corresponding to fn. Let N =
⋃∞

n=1Nn. Then N ∈ F1 and P1(N) = 0. If ω1 /∈ N , then ω1 /∈ Nn for
every n, and hence fn(ω1, ·) is F2-measurable, the f(ω1, ·) as the limit of fn(ω1, ·) is F2-measurable,
for ω1 /∈ N . It is easy to check the other conditions. □

3.3 Measures on R∞ and Kolmogorov’s Extension Theorem

We can generalize the notion of product measures to a finite number of probability spaces. Hence,
we can construct a finite number of independent r.v.s with given distribution. More precisely, given
probability spaces (R,B(R), µi), 1 ≤ i ≤ n, let

(Ω,F ,P) = (Rn,B(Rn),
n

×
i=1

µi).

We write an element of Ω as ω = (ω1, . . . , ωn). Let Xi be r.v.s defined by Xi(ω) = ωi, 1 ≤ i ≤ n.
Then {Xi}1≤i≤n are independent and L(Xi) = µi.

In this section, we illustrate how to construct an infinite sequence of independent r.v.s. It is
important to understand the structure of the measure space

(
R∞,B(R∞)

)
.

32



D
RA
FT

The space R∞ forms a metric space with the metric

d(x, y) =
∞∑
n=1

2−n(1 ∧ |xn − yn|) ≤ 1, x = (x1, x2, . . . ) ∈ R∞.

We say that O ⊂ R∞ is an open set, if for every x ∈ O, there exists δ > 0 such that

{y : d(x, y) < δ} ⊂ O.

It is also useful to introduce the projection: πn : Rm → Rn, n ≤ m ≤ ∞, where πnx is the first n
coordinates of x. The convergence in R∞ can be characterized by convergence in finite dimensional
spaces:

d(x(m), x(0)) → 0, m→ ∞ ⇔ πnx
(m) → πnx

(0), ∀n ≥ 1. (3.14)

With the definition of open sets, we can define the Borel σ-algebra B(R∞). It is not hard to check
that, instead of open balls, B(R∞) can also be generated by

B(R∞) = σ
(
On × R∞, On open set in Rn

)
. (3.15)

In general, set of the form
π−1
n A = A× R∞, A ∈ B(Rn)

are called cylinder sets.
For n ≥ 1, let µn be probability measures on

(
Rn,B(Rn)

)
. We say that µn satisfies the consistency

condition, if
µn+1 ◦ π−1

n = µn, (3.16)

The condition (3.16) is the same as

µn+1(A× R) = µn(A), ∀A ∈ B(Rn),

or,
µn+m ◦ π−1

n = µn, ∀m,n ≥ 1. (3.17)

Theorem 3.9 (Kolmogorov’s Extension Theorem) Assume (3.17). There exists a unique measure µ
on (R∞,B(R∞)) such that µ ◦ π−1

n = µn for every n ≥ 1, that is,

µ(A× R∞) = µn(A), ∀A ∈ B(Rn). (3.18)

To construct an infinite sequence of independent r.v.s, we will use Theorem 3.9 in the following
way. Given

(
R,B(R), λi

)
, i ≥ 1, let

µn =
n

×
i=1

λi

be probability measures on
(
Rn,B(Rn)

)
. Then µn satisfies the consistency condition (3.17) by prop-

erties of the product measures. Then by Theorem 3.9, there exists a unique probability measure µ
on (R∞,B(R∞)) so that (3.18) holds. Let

Xn(ω) = ωn, n ≥ 1.

Then (Xn)n≥1 are independent r.v.s on
(
R∞,B(R∞), µ

)
.

Next, we will prove Theorem 3.9. Before that, we need to understand compact sets in R∞.
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Proposition 3.10 Let Fm, m ≥ 1, be nonempty compact sets in Rm such that

Dm = π−1
m (Fm) = Fm × R∞

are decreasing in m. Then
⋂∞

m=1Dm ̸= ∅.

Proof: For every m ≥ 1, pick x(m) ∈ Dm. Since Dm are decreasing cylinder sets, for every n ≥ 1,
we have (πnx

(m))m≥n ⊂ πn(Dn) = Fn is a bounded sequence in Rn.
Bounded sequences in Rn have convergence subsequence. Therefore, there exists (m1

k)k≥1 so

that π1x
(m1

k) converges in R1, and (m2
k)k≥2 ⊂ (m1

k)k≥1 so that π2x
(m2

k) converges in R2 and so on.

Let y(k) = x(m
k
k) be the diagonal sequence. For every n ≥ 1, the sequence (πny

(k))k≥1 converges in Rn

by construction. By (3.14), there exists y∗ ∈ R∞ such that y(k) → y∗ in R∞. Noting that πny
(k) ∈ Fn

for k ≥ n, we have y∗ ∈ Dn for every n, and thus y∗ ∈
⋂∞

n=1Dn. This proves the conclusion. □

Remark 3.4 A similar argument shows that the metric we put on R∞ is such that for any Ln ∈ (0,∞), the
product set

∞×
n=1

[−Ln, Ln]

is sequentially compact in R∞.

We also need a small lemma about the regularity of Borel sets in Rd.

Proposition 3.11 Let λ be a probability measure on
(
Rd,B(RD)

)
. Let A ∈ B(Rd). For every ε > 0,

there exists a closed set Fε and an open set Gε such that

Fε ⊂ A ⊂ Gε, λ(Gε)− λ(Fε) < ε.

In addition, Fε can be chosen to be compact since

lim
L→∞

λ(Fε ∩ [−L,L]d) = λ(Fε).

Proof: Let S be the collection of sets A that satisfy the condition. Then S contains all open sets, and
thus all rectangles (a1, b1)× · · · × (ad, bd). It is not hard to show that S forms a σ-algebra. Therefore,
S ⊃ B(R). □

Proof of Theorem 3.9: Let C = {cylinder sets}. We have the following.

1. C is an algebra.

2. The condition (3.18) specifies the measure µ on C.

3. (3.15) implies that B(R∞) = σ(C).

4. The consistency condition (3.17) implies that (3.18) defines a finitely additive measure µ on C.

Putting all these together, we can use the Carathéodory’s Extension Theorem to construct the desired
measure µ, provided that we verify that µ is σ-additive on C.

To show σ-additivity, it suffices to show continuity at ∅, that is, µ(Dn) → 0 for every C ∋ Dn ↓ ∅.
Without loss of generality, we can assume that Dn = π−1

n (Bn) where Bn ∈ B(Rn). We will prove
by contradiction.

Assume the contrary that there exists δ > 0 such that µ(Dn) = µn(Bn) ≥ δ for every n. By
Proposition 3.11, there exist compact sets Fn ⊂ Bn such that µn(Bn \ Fn) ≤ δ2−n−1, n ≥ 1.
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Let Ên = π−1
n (Fn) ∈ C. Then µ(Dn \ Ên) = µn(Bn \ Fn) ≤ δ2−n−1. The sets Ên may not be

decreasing, but if we set

En =
n⋂

m=1

Êm, n ≥ 1,

then En are decreasing. In addition,

µ(Dn \ En) ≤ µ
( n⋃
m=1

(Dn \ Ên)
)
≤

n∑
m=1

δ

2m+1
≤ δ

2
.

Hence, µ(En) ≥ µ(Dn) − δ/2 ≥ δ/2 for all n ≥ 1. In particular, En ̸= ∅ for all n, and hence we can
apply Proposition 3.10 to conclude that

⋂∞
n=1En ̸= ∅. But

∞⋂
n=1

En ⊂
∞⋂
n=1

Dn = ∅,

and we arrive at a contradiction. □

Remark 3.5 Instead of
(
R∞,B(R∞)

)
, Kolmogorov’s Extension Theorem can also be stated for general measur-

able spaces (×∞
n=1

Sn,
⊗∞

n=1 Sn). To verify the σ-additivity needed for Carathéodory’s Extension Theorem,
some topological information is needed for the spaces (Sn,Sn). A sufficient condition is that all (Sn,Sn) are
Borel spaces: a measurable space (S,S) is called Borel if there is a one-to-one map φ : (S,S) → ([0, 1],B[0, 1])
so that φ and φ−1 are both measurable. In particular, all complete and separable metric spaces equipped with
Borel σ-algebras are Borel.

Remark 3.6 One can also consider Kolmogorov’s Extension Theorem on
(
RT ,B(RT )

)
, where T is any index set,

and the Borel σ-algebra B(RT ) is generated by all “(finite-dimensional) cylinder sets”

π−1
t1,t2,...,tn(An), An open set in Rn, t1, . . . , tn ∈ T.

All cylinder sets form an algebra, and a probability measure µ on this space exists, provided that its “finite-
dimension distributions” µ◦π−1

t1,...,tn satisfy the consistency condition. Every probability measure on
(
RT ,B(RT )

)
gives rise to a stochastic process on T .

However, measure spaces constructed in this way is not immediately suitable for the study of stochastic
processes. For example, if T = R, then a probability measure on

(
RT ,B(RT )

)
will model a random function

fω : R → R. However, simple events, like {ω : fω continuous}, will not be measurable. This is the main obstacle
in the construction of Brownian motions and stochastic analysis. Some discuss in this direction can be found
in [Shi96, Chap. II.2.5] and [KS, Chap. 2.2].

4 Law of large numbers

The goal of this section is to establish the following strong law of large numbers (SLLN).

Theorem 4.1 (Strong law of large number) Let X1, X2, . . . be i.i.d. with E|Xi| < ∞. Let EXi = µ
and Sn = X1 + · · ·+Xn. Then Sn/n→ µ a.s. as n→ ∞.

The above theorem is called “strong” because almost sure convergence is the best that one can
hope. Similar statements where the convergence holds in a weaker sense, like in Lp or in probability
are called “weak” law of large numbers.

In Theorem 4.1, the first moment condition E|X1| <∞ will be optimal. But we will also introduce
proofs under weaker assumptions, as an opportunity to introduce useful probabilistic techniques that
may be useful for other problems.
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4.1 L2-weak law of large numbers

Let Xn, n ≥ 1, be i.i.d. r.v.s. For the discussion of law of large numbers, we assume, without loss of
generality, that all Xn are centered, namely, µ := EXn = 0. Otherwise, we can always center the r.v.s
by setting X̃i = Xi − µ and consider the centered case. For centered r.v.s, we have

EX2
i = Var(Xi), EXiXj = Cov(Xi, Xj), i ̸= j.

We write Sn = X1 + · · ·+Xn.
The r.v.s (Xi)i∈I with EX2

1 <∞ is uncorrelated if

E(XiXj) = EXiEXj whenever i ̸= j. (4.1)

We note that the second moment condition EX2
i <∞ ensures that expectations in (4.1) are all defined.

When µ = 0, (4.1) becomes
E(XiXj) = 0, ∀i ̸= j. (4.2)

Let a family of random variables (Xn)n≥1 with EX2
1 < ∞ be uncorrelated. By linearity of expec-

tation, we have
ESn = EX1 + · · ·+ EXn = nµ = 0.

Using definition of the variance, we have

Var(Sn) = ES2
n = E(

n∑
i=1

Xi)(
n∑

j=1

Xj) =
n∑

i=1

EX2
i = nEX2

1 . (4.3)

A key observation is that the variance grows linearly in n, although it is the expectation of the sum
of n2 terms. Assuming EX4

1 <∞, we can further estimate the fourth moment of Sn:

ES4
n =

∑
i1,i2,i3,i4

EXi1Xi2Xi3Xi4 =
n∑

i=1

EX4
i + 6

∑
i<j

EX2
iX

2
j

≤ nEX4
1 + 3

∑
i<j

E(X4
i +X4

j ) = (3n2 − 2n)EX4
1 ≤ Cn2.

(4.4)

Here, in the first line, if an index appears in i1, i2, i3, i4 once, then by (4.2), the expectation EXi1Xi2Xi3Xi4

will be zero and we can drop such terms from the sum; in the second line we use the elementary in-
equality 2ab ≤ a2+b2. Again, we see that the growth rate of ES4

n is O(n2) which is much less than the
number of terms, n4. The discrepancy will get larger if we estimate higher moments of Sn. But the
fourth moment is sufficient for us to use Borel–Cantelli to get the first strong law of large numbers.

Proposition 4.2 Let X1, X2, . . . be i.i.d. EX4
1 <∞. Then Sn/n→ 0 a.s.

Proof: Since EX4
1 <∞, by (4.4) and Chebyshev’s inequality (Lemma 2.9), for some constant C > 0

we have

P(|Sn| > nε) = P(|Sn|4 > n4ε4) ≤ Cn2

n4ε4
≤ C

n2ε4
.

Since
∑∞

n=1
1
n2 <∞, by Borel–Cantelli lemma (Lemma 2.3), we have

P({|Sn| > nε i.o.}) = 0.
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It follows from the ε-δ language formulation of limit{
lim
n→∞

Sn
n

̸= 0
}
=

∞⋃
m=1

{
|Sn
n
| > 1

m
i.o.

}
.

Hence, by sub-additivity,

P
({

lim
n→∞

Sn
n

̸= 0
})

≤
∞∑

m=1

P
({

|Sn
n
| > 1

m
i.o.

})
= 0,

and this completes the proof. □

Proposition 4.2 is enough for most practical examples, since most r.v.s in real life are bounded
and thus have fourth moment. In fact, in (4.4) and Proposition 4.2, we did not rely on Xn having
identical distribution; all we need is the independence of Xn and a uniform bound on their fourth
moment. Similarly, assuming a uniform second moment condition, we can obtain the following weak
law of large numbers without independence.

Theorem 4.3 (Weak law of large numbers) Let X1, X2, . . . be uncorrelated with EX2
i ≤ C for

some C > 0. Then as n→ ∞, Sn/n→ 0 in L2 and in pr.

Proof: Since Xi are uncorrelated, using (4.3) we have ES2
n ≤ Cn, and hence ES2

n/n
2 ≤ C/n. It

follows that Sn/n→ 0 in L2. By Proposition 2.8, this implies convergence in pr. □

Using the second moment condition, it is also possible to obtain almost sure convergence.

Theorem 4.4 (SLLN with EX2
1 <∞) Let Xn, n ≥ 1, be i.i.d. with EX2

1 <∞. Then Sn
n → 0, a.s.

Proof: Let M = EX2
1 . By (4.3) and Chebyshev’s inequality, we have

P(|Sn2 | > n2ε) = P(|Sn2 |2 > n4ε2) ≤ nM

n4ε2
≤ M

n3ε2
,

which is summable. Hence, by Borel–Cantelli lemma,
Sn2

n2 → 0 a.s. Let

Dn(ω) = max
n2≤k<(n+1)2

|Sk2 − Sn2 | = max
1≤k≤2n

|Xn2+1 + · · ·+Xn2+k|.

For every ω, we have

|Dn(ω)|2 ≤
(
|Xn2+1|+ · · ·+ |Xn2+2n|

)2 ≤ 2n(X2
n2+1 + · · ·+X2

n+2n)

and hence ED2
n ≤ 2nM . Then, by Chebyshev’s inequality, we have

P(Dn ≥ n1+ε) ≤ ED2
n

n2+2ε
≤ 2M

n1+2ε
.

It follows from Borel-Cantelli lemma P({Dn ≥ n1+ε, i.o.}) = 0.
To summarize, for almost every ω, we have

1. limn→∞
S2
n

n2 = 0.

2. There exists n0 = n0(ω), for every n ≥ n0, |Dn| ≤ n1+ε.
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When the two conditions above hold for ω, by

Sn2 −Dn

(n+ 1)2
≤ Sk

k
≤ Sn2 +Dn

n2
, n2 ≤ k < (n+ 1)2,

and the Squeeze Theorem, we have Sk/k → 0. This completes the proof. □

Remark 4.1 1. We only need EXiXj = 0, i ̸= j (uncorrelated) and supn EX
2
n <∞.

2. The above condition can be further weaken to allow some finite-range correlation:

|EXiXj | ≤M · 1{|i−j|≤L}

for some L > 0 and M > 0.

Example 4.2 (Normal number) Every ω ∈ [0, 1) admits a decimal expansion

ω = 0.x1x2x3x4 · · · , xi = xi(ω) ∈ {0, 1, . . . , 9}.

Let

ν
(n)
k (ω) =

∣∣{1 ≤ i ≤ n : xi = k}
∣∣ = n∑

i=1

1{xi(ω)=k}

be the number of occurrence of number k in the first n digits. It is clear that xi(ω) are i.i.d., uniformly on
{0, 1, . . . , 9}. Then ξi = 1{Xi(ω)=k} are i.i.d. Ber(1/10), and in particular |ξi| ≤ 1. For every k, by SLLN, for
almost every ω ∈ [0, 1),

ν
(n)
k (ω)

n
=

∑n
i=1 ξi
n

→ Eξi =
1

10
, k ∈ {0, . . . , 9}. (4.5)

A number ω is called a normal number (Borel, 1909) if for its fractional part, the limit (4.5) holds. As a
consequence of the SLLN, almost every number in [0, 1) is normal. However, we do not know whether common
transcendental numbers like π or ε are normal.

We can also strengthen the definition slightly. A number ω ∈ [0, 1) is completely normal, if for every

pattern k⃗ = (k1, k2, . . . , kr) ∈ {0, . . . , 9}r,

ν
(n)

k⃗
(ω)

n
:=

∣∣{1 ≤ i ≤ n : (xi, . . . , xi+r−1) = k⃗}
∣∣

n
→ 1

10r
, n→ ∞.

Using the remark after Theorem 4.4 with L = r and M = 1, almost every ω ∈ [0, 1) is also completely normal.
As an illustration, if a monkey is typing randomly before a typewriter, then after waiting long enough it

will produce all Shakespeare’s works (more than once), since any pattern k⃗, even as long as all Shakespeare’s
works, has a small but positive probability of occurrence. This seems paradoxical, but note that the waiting
time will be much longer than the age of the universe in this case, so it will not happen in real life.

Example 4.3 (Empirical distribution function) Let X1, X2, . . . be i.i.d. samples with c.d.f. F and let

Fn(x) = n−1
n∑

m=1

1{Xm≤x}, ∀x ∈ R

be the empirical distribution function from n samples. For every x, the indicators ξn(ω) := 1Xn(ω)≤x are i.i.d.
r.v.s since they are Borel functions of Xn. By SLLN, we have

Fn(x) =

∑n
m=1 ξm
n

a.s.−→ Eξn = P({Xn ≤ x}) = F (x).

Theorem 4.5 (Glivenko–Cantelli theorem) As n→ ∞, supx|Fn(x)− F (x)| → 0 a.s.

(To fill in the proof.)
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Example 4.4 (Waiting time Paradox) This is example is related to the renewal theory.
LetX1,X2, . . . are i.i.d. Suppose that the n-th bus from the bus terminal at time Sn, where Sn = X1 + · · ·+Xn.

For simplicity assume that P{Xn = a} = P{Xn = b} = 1
2 for some a < b. We are trying to compute the “average

waiting time” for a person randomly arriving at the terminal before departure.
We first compute how many buses departing in the time interval [0, T ]. Let

N = NT (ω) = the number of buses departing in [0, T ] = max{n : Sn(ω) ≤ T}.

Since
X1 + · · ·+XNT

NT
<

T

NT
<
X1 + · · ·+XNT+1

NT + 1
· NT + 1

NT

it follows from the Squeeze Theorem and SLLN that

T

NT
→ EX1 =

a+ b

2
, a.s.,

and hence
NT

T
→ 1

EX1
=

2

a+ b
, a.s. (4.6)

We interpret the “average waiting time” as follows. Let a person arrive at the bus stop at time ξ ∼ U [0, 1],
where ξ is independent of (Xn)n≥1 (we can realize this by accommodate ξ and (Xn)n≥1 on a bigger product
probability space). The average waiting time Q is given by

Q =
1

T

∫ T

0

(Snξ
− ξ) dξ,

where nξ = min{m : Sm > ξ} is the departure time of the next bus after time ξ. Noting that nξ = n
if ξ ∈ [Sn−1, Sn), we have

Q =
1

T

NT∑
n=1

∫ Sn

Sn−1

(Sn − ξ) dξ =
1

T

NT∑
n=1

(S2
n − S2

n−1)

2
=

1

T

NT∑
n=1

X2
n

2
.

it follows from the SLLN for X2
i and (4.6)

Q =
1

T

NT∑
n=1

X2
n

2
=
X2

1 + · · ·+X2
NT

XT
· NT

2T

a.s.→ EX2
I · 1

a+ b
=

a2 + b2

2(a+ b)
=

1

2

(
a · a

a+ b
+ b · b

a+ b

)
. (4.7)

How to understand (4.7)? If the time for the next departure is τ , then for a person arriving at a random
time the average waiting time should be τ/2. One would think naively that since τ takes the value a and b with
probability 1/2, then the average waiting time should be (a+ b)/2. But this is WRONG. Indeed, the number
of intervals with length a and b are around 50%, but since their lengths are different, the random arrival time
hitting these two types of intervals are also different, or more precisely, proportional to their lengths. Therefore,
the probability of the arrival time hitting [Sn−1, Sn) with Xn−1 = a is asymptotically a

a+b , and
b

a+b otherwise.
This explains the rightmost decomposition in (4.7).

4.2 Weak law for triangular arrays

A lot of classical limit theorems in probability concern arrays Xn,k, 1 ≤ k ≤ n, of random variables
and investigate the limiting behavior of their row sums Sn = Xn,1 + · · ·+Xn,n.

Proposition 4.6 Let (Xn,k)
n
k=1 be independent and µn = ESn, σ

2
n = Var(Sn). If σ2n/b

2
n → 0, then

Sn − µn
bn

→ 0, in probability.
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Proof: Chebyshev’s inequality gives that for every ε > 0,

P
(∣∣∣Sn − µn

bn

∣∣∣ ≥ ε
)
≤ Var(Sn)

ε2b2n
=

σ2n
ε2b2n

→ 0.

□

Example 4.5 (Coupon collector) Let ξ1, ξ2, . . . be i.i.d. uniform on {1, 2, . . . , n}. The numbers 1, . . . , n are
thought of as “coupons” while ξm is the m-th coupon that one collects. Let

τnk = min{m : m ≥ 0, |{ξ1, . . . , ξm}| ≥ k}

be the first time that one collects k different coupons. For example, we always have τn1 = 1. We Set τn0 = 0 for
consistency of notation.

For 1 ≤ k ≤ n, let Xn,k = τnk − τnk−1 represent the time spent to collect the k-th coupon. We claim the
following two facts without proof:

1. Xn,k is independent of Xn,1, . . . , Xn,k−1;

2. Xn,k has a geometric distribution with parameter 1− (k − 1)/n.

Let Sn = Xn,1+Xn,2+ · · ·+Xn,n = τnn . We want to understand the asymptotic behavior of Sn, the time spent
to collect all coupons.

To use the result from Proposition 4.6, we need to compute ESn and Var(Sn). Note that if Y ∼ Geo(p),
then EY = 1/p and EY 2 ≤ 1/p2. We have

ESn =

n∑
k=1

Xn,k =

n∑
k=1

(1− k − 1

n
)−1 = n

n∑
m=1

m−1 ∼ n log n, (4.8)

and

Var(Sn) =

n∑
k=1

Var(Xn,k) ≤ n2
n∑

m=1

1

m2
≤ Cn2.

Hence, for bn = n log n, σn/bn → 0, and it follows from Proposition 4.6

Sn − ESn

bn
→ 0 in probability.

Noting (4.8), we have Sn

bn
→ 1 in probability.

Let E|X| <∞ and (Xn,k)
n
k=1, 1 ≤ k ≤ n be independent. Let bn > 0 with bn → ∞. We introduce

the “truncation” of Xn,k as follows:

X̄n,k = Xn,k1(|Xn,k|≥bn) =

{
Xn,k, if |Xn,k| ≤ bn

0, if |Xn,k| > bn.
(4.9)

The truncation will help us to obtain the weak law to random variables without a finite second moment.

Theorem 4.7 (Weak LLN for triangular arrays) Let Xn,k, 1 ≤ k ≤ n, be independent. Let bn > 0
with bn → ∞ and Xn,k be defined in (4.9). Suppose that as n→ ∞,

1.
∑n

k=1 P(|Xn,k| > bn) → 0, and

2. b−2
n

∑n
k=1 EX̄

2
n,k → 0.

Then
(Sn − an)/bn → 0 in probability,

where Sn = Xn,1 + · · ·+Xn,n and an =
∑n

k=1 EX̄n,k.
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Proof: For every ε > 0, we have

P(|Sn − an
bn

| > ε) ≤ P(Sn ̸= S̄n) + P(| S̄n − an
bn

| > ε)

To estimate the first term, we note that

P(Sn ̸= S̄n) ≤ P(
n⋃

k=1

{X̄n,k ̸= Xn,k}) ≤
n∑

k=1

P(|Xn,k| > bn) → 0

by the first condition. For the second term, we use Chebyshev’s inequality to obtain

P(| S̄n − an
bn

| > ε) ≤ 1

ε2
E| S̄n − an

bn
|2 = Var(S̄n)

ε2b2n

=

∑n
k=1Var(X̄n,k)

ε2b2n
≤

∑n
k=1 E(X̄n,k)

2

ε2b2n
→ 0

by the second condition, and the proof is complete. □

Theorem 4.8 Let X1, X2, . . . be i.i.d. with E|Xi| < ∞. Let Sn = X1 + · · · +Xn and let µ = EX1.
Then Sn/n→ µ in probability.

Proof: Let Xn,k = Xk and bn = n. We need to check the two conditions of Theorem 4.7.
For the first condition, by DCT, we have

n∑
k=1

P(|Xk| > n) = nP(|X1| > n) ≤ E|X1|1{|X1|≥n} → 0, (4.10)

since 1{|X1|≥n}|X1|
a.s.→ 0 and E|X1| <∞.

For the second condition, we have

1

n2

n∑
k=1

E|Xk|21{|Xk|≤n} =
1

n
E|X1|21{|X1|≤n}

and

E|X1|21{|X1|≤n} =
n∑

k=1

E|X1|21{|X1|∈[k−1,k]}

≤
n∑

k=1

k2P(|X1| ∈ [k − 1, k])

= P(|X1| ∈ [0, 1]) +

n∑
k=1

((k + 1)2 − k2)P(|X1| ∈ [1, n])

≤ P(|X1| ∈ [0, 1]) +

n∑
k=1

3kP(|X1| ≥ k)

By Stolz’s theorem, we have 1
n

∑n
k=1 3kP(|X1| ≥ k) → limn→∞ nP(|X1| ≥ n) = 0, again by (4.10).

Note that an = nµn where µn = EX11{|X1|≤n} ̸= µ due to the truncation. But by DCT,

µn = EX11(|X1|≤n) → EX1 = µ.

□
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Example 4.6 (St. Petersburg’s game) Let X1, X2, . . . be independent random variables with

P(Xi = 2j) = 2−j for j ≥ 1. (4.11)

Imagine you are playing a game continuously tossing a coin. You win 2j dollars if it takes j + 1 tosses to get a
head, but if you can a head the first toss you leave without any reward. Now we want to determine what is the
“fair” entry fee to play this game. Since EX1 = ∞, the LLN is useless, as it is not reasonable to ask ∞ dollars
for the entry fee!

Now we will try to use Theorem 4.7 to find out how much we should ask for the entry fee. The answer will
depend on the total number of games to be played. Indeed, we are trying to find cn where Sn/ncn → 1.

In the setting of Theorem 4.7, let Xn,k = Xk. We need to determine bn = ncn. We observe that if m is an
integer

P(X1 ≥ 2m) =

∞∑
j=m

2−j = 2−m+1

Let m(n) = log2 n+K(n) where K(n) → ∞ and is chosen so that m(n) is an integer (and hence the displayed
formula is valid). Letting bn = 2m(n), we have

EX̄2
n,k =

m(n)∑
j=1

22j · 2−j ≤ 2m(n)
∞∑
k=0

2−k = 2bn

The last two steps are to evaluate an and to apply the theorem.

EX̄n,k =

m(n)∑
j=1

2j2−j = m(n)

so an = nm(n). We have m(n) = log2 n+K(n), so if we pick K(n)/ log2 n→ 0 then an/n log2 n→ 1 as n→ ∞.
Now we have

Sn − an
n2K(n)

→ 0 in probability

If we suppose that K(N ≤ log2 log2 n) for large n then the last conclusion holds with the denominator replaces
by n log2 n, and it follows that Sn/(n log2 n) → 1 in probability.

4.3 First proof of SLLN

4.3.1 Some preparation

We recall the (first) Borel-Cantelli Lemma: if
∑∞

n=1 P(An) < ∞ then P(An i.o.) = 0. For the other
direction, we have the following.

Theorem 4.9 (Second Borel–Cantelli lemma) If the events An are independent and
∑∞

n=1 P(An) = ∞,
then P({An, i.o.}) = 1

Proof: By definition of the i.o. sets, we have

{An i.o.}c =
∞⋃
n=1

∞⋂
n=m

Ac
n.

Using independence, it follows that

P
( ∞⋂
n=m

Ac
n

)
= lim

M→∞

M∏
n=m

P(Ac
n) = lim

M→∞

M∏
n=m

(
1− P(An)

)
= 0,

where the last limit is due to
∑∞

n=1 P(An) = ∞. □

The following proposition states that the E|X1| <∞ is also necessary for the existence of limn→∞ Sn/n.
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Proposition 4.10 If X1, X2 . . . are i.i.d. and E|Xi| = ∞, then P
(
limSn/n exists ∈ (−∞,∞)

)
= 0.

Proof: Let An = {|Xn| ≥ n}. We claim that on the event {An, i.o.}, a finite limit limn→∞ Sn/n
cannot exist. Indeed, by Cauchy criterion, if such limit exists, for ε0 = 1

2 , there exists n0 = n0(ω)

such that |Xn/n| = |Sn
n − Sn−1

n | < 1
2 for every n > n0. This contradicts with |Xn| ≥ n for an infinite

number of n’s.
By Theorem 4.9, since

∞ = E|X1| ≤
∞∑
n=0

P(|X1| > n) =
∞∑
n=1

P(|X1| ≥ n)

and X1, X2 . . . are i.i.d., it follows that P({An, i.o.}) = 1. This completes the proof. □

Example 4.7 (St. Petersburg’s game (continued)) Let Xn, n ≥ 1, be i.i.d. with distribution given by (4.11). By
Proposition 4.10, since EX1 = ∞, we know that Sn/n does not have a limit. But if we are more careful about
the estimate, we have

P(|Xn| ≥ n log2 n) =
∑

j≥j0=[log2(n log2 n)]

2−j ∼ 2− log2(n log2 n) =
1

n log2 n

which is not summable (one can compare this with
∫∞
1

dx
x log2 x ). Hence, almost surely, for an infinite number

of n’s, it happens that (Sn+1 − Sn)/n log2 n ≥ 1, and hence Sn/n log2 n ̸→ 1.

With the finite first moment assumption, we need to truncate the r.v.s first. Let Yn = Xn1{|Xn|≤n}
and Tn = Y1 + · · ·+ Yn be the partial sum of (Yn)n≥1. We still have the independence of Yn, but they
are no longer identically distributed. With the truncation we can estimate the second moment of Yn.
The following proposition show that the limits of Tn/n and Sn/n are the same,

Proposition 4.11 Tn/n→ µ a.s. if and only if Sn/n→ µ a.s.

Proof: We have

∞∑
n=1

P(Xn ̸= Yn) =
∞∑
n=1

P(|Xn| ≥ n) =

∞∑
n=1

∫ ∞

0
1{y≥n}µ|x| dy

=

∫ ∞

0

∞∑
n=1

1(y≥n)µ|x| dy

≤
∫ ∞

0
[y]µ|x| dy = E[|X1|] ≤ E|X1|+ 1 <∞.

By Borel–Cantelli lemma, we have P({Xn ̸= Yn, i.o.}) = 0. Therefore, almost surely, there ex-
ists n0 = n0(ω) such that Xn = Yn for all n ≥ n0, and when this happens, we have limn→∞

Tn
n =

limn→∞
Sn
n , provided either of the two limits exists. This completes the proof. □

For the proof of the SLLN we will need the following technical result.

Proposition 4.12
∑∞

k=1
1
n2 Var(Yk) ≤ 4E|X1| <∞.

Proof: We start with

Var(Yn) ≤ E|Yn|2 =
∫ ∞

0
2yP(|Yn| > y) dy ≤

∫ n

0
2yP(|X1| > y) dy.
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Treating the sum as integration w.r.t. to the counting measure on N and using Fubini’s theorem (since
everything is non-negative), we have

∞∑
n=1

1

n2
EYn

2 ≤
∞∑
n=1

1

n2

∫ ∞

0
1{y≤n}2yP(|X1| > y) dy

=

∫ ∞

0

[ ∞∑
k=1

1

n2
1{y≤n}

]
· 2yP(|X1| > y) dy.

Since E|X1| =
∫∞
0 P(|X1| > y) dy, it suffices to show

2y
∑
n≥y

1

n2
≤ 4, ∀y > 0. (4.12)

Noting that
1

n2
≤ 1

n(n− 1)
=

1

n− 1
− 1

n
,

for y ≥ 2, we have

2y
∑
n≥y

1

n2
≤ 2y

∑
n≥y

(
1

n− 1
− 1

n
) ≤ 2y

y − 1
≤ 4,

and for 1 < y < 2, we have

2y
∑
n≥y

1

n2
= 2y

∞∑
n=2

(
1

n− 1
− 1

n
) ≤ 2y ≤ 4.

If 0 < y ≤ 1, then

2y
∑
n≥y

1

n2
≤ 2

∞∑
n=1

1

n2
≤ 2 · π

2

6
≤ 4.

These establish (4.12) and complete the proof. □

4.3.2 Etemadi’s argument

The argument presented in this section was due to Etemadi (1981).
We have seen in the proof of Theorem 4.4, it is useful to first consider almost sure convergence

along a subsequence (nk), then use other means to control what happens for n ∈ (nk, nk+1). Etemadi’s
idea is to use monotonicity of the partial sum when the summands are non-negative to control the
intermediate terms.

Let us assume first that Xn ≥ 0 (and hence Yn ≥ 0), and that for some subsequence (nk),

Tnk
/nk → µ, a.s., (4.13)

and see how far we can get. Since Yn are non-negative, for n ∈ (nk, nk+1) we have

Tnk

nk+1
=
Tnk

nk
· nk
nk+1

≤ Tn
n

≤
Tnk+1

nk
=
Tnk+1

nk+1
· nk+1

nk
. (4.14)

Taking the limit k → ∞, we have

µ · lim inf
k→∞

nk
nk+1

≤ lim inf
n→∞

Tn
n

≤ lim sup
n→∞

Tn
n

≤ µ · lim sup
k→∞

nk+1

nk
. (4.15)
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Intuitively, the condition nk+1/nk ≈ 1 will force lim inf and lim sup of Tn/n to be close, similar to
the argument of the squeeze theorem. In fact, for any polynomial growth nk = kp, p ≥ 1, the limit
limk→∞ nk+1/nk is 1, and (4.14) implies limn→∞ Tn/n = µ. We have used such nk in the proof of
Theorem 4.4; as we will see, such growth cannot guarantee (4.14) when assuming merely finite first
moment.

Let us go through our usual argument of combining Chebyshev’s inequality and Borel–Cantelli
lemma to see what is needed for the subsequence of (nk) to guarantee (4.13). For every ε > 0, by
Chebyshev’s inequality, we have

∞∑
n=1

P(|Tnk
− ETnk

| > εnk) ≤
1

ε2

∞∑
n=1

Var(Tnk
)/n2k =

1

ε2

∞∑
n=1

1

n2k

nk∑
m=1

Var(Ym)

=
1

ε2

∞∑
m=1

Var(Ym)
∑

nk≥m

1

n2k

(4.16)

where we have used Fubini’s theorem to interchange the two summations of nonnegative terms. Now,
in light of Proposition 4.12, we are hoping for∑

nk≥m

1

n2k
≤ C

m2
. (4.17)

If nk grows polynomially fast, that is, nk ∼ kp for some p > 0, then (4.17) cannot hold. For (4.17) to
holds, we need to control the sum by the first (and largest) term, so nk must grow exponentially. That
means α = lim infk→∞ nk+1/nk > 1. Using (4.14), we can close the argument by taking α arbitrarily
close to 1.
First proof of Theorem 4.1: Assume first Xn ≥ 0.

Take nk = [αk], k ≥ 1, where α > 1 and [·] denotes the integer part. Let k0 be the smallest k
such that nk ≥ m. Then k0 ≥ logαm. Since the sum of a geometric series is dominated by the largest
term, we have ∑

nk≥m

1

n2k
≤

∞∑
k=k0

1

[αk − 1]2
≤ Cα

1

α2k0
≤ Cα

m2
.

for some constant Cα > 0. By (4.16) and Borel–Cantelli lemma, we have

Tnk
− ETnk

nk
→ 0, a.s.

By Stolz lemma and DCT,

lim
n→∞

ETn
n

= lim
n→∞

EYn = lim
n→∞

EX11{X1≤0} = EX1 = µ.

Recalling nk = [αn], from (4.15) we have

µ

α
≤ lim inf

n→∞

Tn
n

≤ lim sup
n→∞

Tn
n

≤ αµ. (4.18)

Since (4.18) holds for arbitrary α > 1, by letting α ↓ 1 we see that limn→∞ Tn/n = µ a.s., and by
Proposition 4.11 limn→∞ Sn/n = µ a.s. as desired.

For general Xn, let Xn = X+
n −X−

n be the decomposition into positive and negative parts, and let
S±
n be the partial sums of X±

n . Then

lim
n→∞

Sn
n

= lim
n→∞

S+
n − S−

n

n
= EX+

1 − EX−
1 = EX1, a.s.
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The proof is complete. □

As a corollary, we can also treat the case when EX1 = ±∞.

Corollary 4.13 Let X1, X2, . . . be i.i.d. with EX+
i = ∞ and EX−

i <∞. Then Sn/n→ ∞ a.s.

Proof: Let M > 0 and XM
i = Xi ∧M . The XM

i are i.i.d. with E|XM
i | <∞. Let SM

n be the partial
sum of XM

i . Using Theorem 4.1 and Xi ≥ XM
i , we have

lim inf
n→∞

Sn/n ≥ lim
n→∞

SM
n /n = EXM

1 , a.s.

The MCT implies E(XM
1 )+ ↑ EX+

1 = ∞ as M ↑ ∞, so EXM
i = E(XM

i )+ − E(XM
i )− ↑ ∞. Hence

lim infn→∞ Sn/n ≥ ∞ a.s., and the conclusion follows. □

4.4 Second proof of SLLN

In the section we follow Komolgorov’s treatment of the SLLN.

4.4.1 Tail σ-algebras and zero-one law

In this section we will have a small detour to introduce the tail σ-algebras and Kolmogorov’s zero-one
law. These results are not directly used in the proof of SLLN, but they give useful intuition.

We first do some measure theory.
Let (Yn)n∈I be r.v.s on (Ω,F ,P) where I is a countable index set. We introduce the “smallest

σ-algebra” with respect to which all Yn are measurable. It is defined by

σ(Yn, n ∈ I) = σ(Y −1
n (A), A ∈ B(R), n ∈ I). (4.19)

The σ-algebra in (4.19) is generated by the semi-algebra

S =
{ ⋂
n∈I1

Y −1
n (An) : An ∈ B(R), I1 ⊂ I finite

}
. (4.20)

We check that S is a semi-algebra using the following lemma.

Lemma 4.14 Let I be a countable index set and Fn, n ∈ I, be σ-algebras. Then

S1 = {
⋂
n∈I1

Bn, Bn ∈ Fn, I1 ⊂ I finite}

is a semi-algebra.
In particular, when Fn = σ(Yn), S defined in (4.20) is a semi-algebra.

Proof: Let
A =

⋂
n∈I1

An, Ã =
⋂

m∈I2

Ãm, (4.21)

be two sets in S1. We can replace I1 and I2 by their union J = I1 ∪ I2 by adding Ω in both of the
intersection in (4.21) if necessary. Note that J is the union of two finite sets I1 and I2 and thus is also
finite. We have

A ∩ Ã =
⋂
n∈J

(An ∩ Ãn) ∈ S1.

This shows that S1 is closed under intersections.
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It remains to show that the complement of every set in S1 can be written as a finite disjoin union
of sets in S1. This follows from

(An1 ∩ · · · ∩Ank
)c = (Ac

n1
) ∪ (An1 ∩Ac

n2
) ∪ · · · ∪ (An1 ∩ · · · ∩Ac

nk
).

□

Proposition 4.15 If Fn, n ∈ I and Gm, m ∈ J are independent where I, J are countable, then

σ(Fn, n ∈ I) and σ(Gm, m ∈ J)

are independent.
In particular, if Xn, n ∈ I and Ym, m ∈ J are all independent, then σ(Xn, n ∈ I) and σ(Ym, m ∈

J) are independent.

Proof: Recall that two σ-algebras F and G are independent if P(A ∩ B) = P(A)P(B) for every
A ∈ F and B ∈ G. By Lemma 4.14, F and G are generated by the semi-algebras

S1 = {
⋂
n∈I1

An, An ∈ Fn, I1 ⊂ I finite}, S2 = {
⋂

m∈J1

Bm, Bm ∈ Gm, J1 ⊂ J finite}.

To show independent of F and G, it suffices to show that

P(A ∩B) = P(A)P(B), ∀A ∈ S1, B ∈ S2. (4.22)

Extending (4.22) to arbitrary A and B can be done by the usual appropriate set arguments and
continuity of probability measures.

For A ∈ S1 and B ∈ S2, the independence of Fn and Gm implies

P(A ∩B) = P(
⋂
n∈I1

An ∩
⋂

m∈J1

Bm) =
∏
n∈I1

P(An)
∏

m∈J1

P(Bm)

= P(
⋂
n∈I1

An)P(
⋂

m∈J1

Bm) = P(A)P(B).

This establishes (4.22) and completes the proof. □

Let (Xn)n≥1 be independent on (Ω,F ,P). Let us introduce

Fn = σ(X1, . . . , Xn), F>n = σ(Xn+1, Xn+2, · · · ) = σ(Xm, m > n).

The σ-algebra Fn, containing information before time n, should be regarded as the “past”, while F>n

should be regarded as the “future”. By Proposition 4.15, Fn and F>n are independent for all n ≥ 1,
which agrees with our intuition.

Definition 4.1 (Tail σ-algebra) The tail σ-algebra is T =
⋂∞

n=0F>n.

The tail σ-algebra should be regarded as the “remote future”, as it does not concern anything
happening in finite time.

Example 4.8 (Examples of sets in T ) 1. {limn→∞ Sn exists} ∈ T .

2. {lim supn→∞
Sn

n > x} ∈ T for any x.
We will verify for the first set. Since limm→∞ Sm exists if and only if limm→∞(Sn+m − Sn) exists, for all

n ≥ 0, we have

{ lim
m→∞

(Sn+m − Sn) exists} = { lim
m→∞

(Xn+1 +Xn+2 + · · ·+Xn+m) exists} ∈ F>n.

Hence, {limm→∞ Sm} ∈
⋂

n≥0 F>n = T .
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An important observation of Kolmogorov was that the tail σ-algebra is trivial, and thus it makes
sense to study the almost sure convergence of random series.

Theorem 4.16 (Kolmogorov’s zero-one law) If X1, X2, . . . are independent and A ∈ T then P(A) =
0 or 1.

Proof: For all m ≥ n, since Fn and F>m are independent, so we have Fn ⊥
⋂

m≥nF>m, that is,
for all n ≥ 1, Fn ⊥ T . Let F∞ = σ(X1, X2, . . . ). For all n ≥ 1, since T and σ(Xn) are independent,
so we have T ⊥ σ(X1, X2, . . . ) = F∞, and thus T =

⋂∞
n=0F>n ⊂ F∞.It follows that T ⊥ T . For all

A ∈ T , A is independent to itself, that is,

P(A ∩A) = P(A) = P(A)2

it follows that P(A) = 1 or 0. □

4.4.2 Kolmogorov’s proof

Proposition 4.17 (Kolmogorov’s maximal inequality) Let X1, . . . , Xn be independent with EXi = 0
and Var(Xi) <∞. Then

P( max
1≤k≤n

|Sk| ≥ x) ≤ Var(Sn)

x2
. (4.23)

Remark 4.9 1. Note that Chebyshev’s inequality can only give (4.23) without the maximum inside the prob-
ability, so Proposition 4.17 is highly non-trivial.

2. In fact, (Sn)n≥1 forms a martingale and Proposition 4.17 is a special case of the Doob’s maximal inequality
for martingales. In the proof, we will also use the idea of “stopping time”, which is common in martingale
analysis

Proof: Let T (ω) = min{k : k ≥ 1, |Sk(ω)| ≥ x} to be the first time that |Sk| exceeds x. More
precisely,

{T (ω) = k} = {|S1|, |S2|, . . . , |Sk−1| < x, |Sk| ≥ x},

for k ∈ {1, . . . , n} and T = ∞ if the event in (4.23) does not happen. By definition we have {T =
k} ∈ σ(X1, . . . , Xk) =: Fk for k{1, . . . , n}.

We have

ES2
n ≥

n∑
k=1

ES2
n1{T=k} =

n∑
k=1

ES2
n1{T=k}.

For k ≤ n, we have

ES2
n1{T=k} = E

(
Sk + (Sn − Sk)

)2
1{T=k}

≥ ES2
k1{T=k} + 2ESk1{T=k} · (Sn − Sk) + E(Sn − Sk)

21{T=k}

≥ ES2
k1{T=k} + 2ESk1{T=k} · E(Sn − Sk)

= ES2
k1{T=k} ≥ x2P(T = k).

Here, in the third line we use the independence of Sk1{T=k} ∈ σ(X1, . . . , Xk) and Sn − Sk ∈
σ(Xk+1, . . .). Summing over k ∈ {1, . . . , n}, we have

ES2
n ≥ x2P(T ≤ n),

and this gives (4.23). □
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Proposition 4.18 (Kolmogorov’s one-series theorem) Let X1, X2, . . . be independent with EXn = 0.
If

∞∑
n=1

EXn
2 <∞, (4.24)

then
∑∞

n=1Xn(ω) converges a.s.

Proof: For every ε > 0, by Proposition 4.17, for all M,N > 0, we have

P( max
M≤n≤N

|Sn − Sm| ≥ ε) ≤ Var(Sn − Sm)

ε2
.

Letting N → ∞, by MCT, we have

P(uM := sup
n≥M

|Sn − SM | ≥ ε) ≤
∑∞

n=M EX2
n

ε2
,

which goes to 0 by (4.24). Let ũM = supm,n≥M |Sn − Sm|. Then for every ε > 0,

lim
m→∞

P(ũM ≥ ε) ≤ 2 lim
m→∞

P(uM ≥ ε

2
) = 0.

Hence, for every ε > 0, we have P(limn→∞ ũM ≥ ε) = 0 since ũM is decreasing. Therefore, ũM ↓ 0 as
M → ∞ almost surely, and limn→∞ Sn exists by Cauchy criterion. □

Example 4.10 It is well known that alternating harmonic series
∑∞

n=1
(−1)n

n converges conditionally. What if
we put random ± signs before the harmonic series?

To model it, let (ξn)n≥1 be i.i.d. with P{ξn = ±1} = 1
2 . By Proposition 4.18, since

∑∞
n=1 E

|ξn|2
n2 =∑∞

n=1
1
n2 <∞, we have

∑∞
n=1

ξn
n converges a.s. In fact, the conclusion holds for

∑∞
n=1 ξn/n

p with p ∈ (1/2, 1].

The next result is an immediate corollary of Proposition 4.18 and treat the case of non-centered
r.v.s.

Proposition 4.19 (Kolmogorov’s two-series theorem) Let X1, X2, . . . are independent with E|Xn| <
∞. If

∞∑
n=1

EXn exists,
∞∑
n=1

EX2
n <∞,

then
∑∞

n=1Xn(ω) converges a.s.

For the almost sure convergence of random series, the final theorem provides necessary and suffi-
cient conditions.

Theorem 4.20 (Kolmogorov’s three-series theorem) Let A > 0. Let X1, X2, . . . be independent and
Yi = Xi1(|Xi|≤A). Then,

∑∞
n=1Xn converges a.s. if and only if all of the following conditions hold:

∞∑
n=1

P(|Xn| ≥ A) <∞, (4.25a)

∞∑
n=1

EYn exists, (4.25b)

∞∑
n=1

Var(Yn) <∞. (4.25c)
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Proof: The “if” part. By Borel-Cantelli lemma, (4.25a) implies that P({|Xn| > A, i.o.}) = 0.
On the event {|Xn| > A, i.o.}c, there exists n0 = n0(ω) such that Yn = Xn for every n > n0, and
hence

∑∞
n=1Xn converges if and only if

∑∞
n=1 Yn does; on the other hand, the latter random series

converges a.s. by Proposition 4.19, (4.25b) and (4.25c).
The “only if” part. Assume now that

∑∞
n=1Xn converges a.s. If (4.25a) fails, by the second

Borel-Cantelli lemma ( Theorem 4.9), we have P({|Xn| ≥ A, i.o.}) = 1. But on {|Xn| ≥ A, i.o.}c, the
series

∑∞
n=1Xn(ω) cannot converge as the Cauchy criterion is violated. Hence, (4.25a) must holds.

Then, as has been proven, (4.25a) implies that
∑∞

n=1 Yn also converges a.s.
Now we have

∣∣Yn − EYn
∣∣ ≤ 2A. By Lemma 4.21 proven below, we have

P
(

max
M≤n≤N

∣∣∣ n∑
k=M

Yk

∣∣∣ ≤ 1
)
≤ (2A+ 1)2∑N−1

n=M Var(Yn)
. (4.26)

If (4.25c) fails and
∑∞

n=1Var(Yn) = ∞, then (4.26) implies

P
(
sup
n≥M

∣∣∣ n∑
k=M

Yk

∣∣∣ ≤ 1
)
= 0, ∀M ≥ 1,

which implies that
∑∞

n=1 Yn diverges a.s. and leads to a contradiction. Thence, (4.25c) also holds.
It remains to show (4.25c). By Proposition 4.18, (4.25c) implies that

∑∞
n=1

(
Yn − EYn

)
converges

a.s., and hence
∞∑
n=1

EYn =
∞∑
n=1

Yn −
∞∑
n=1

(
Yn − EYn

)
also converges. This completes the proof of the “only if” part. □

For (4.26) we use the following results, which says if a random walk have large variance in each step,
then it is unlikely that it will stay in a small region; this is the opposite direction of Proposition 4.17.

Lemma 4.21 Let Z1, . . . , Zn be independent with EZi = 0 and |Zi| ≤ L for some L > 0. Let
Sn = Z1 + · · ·+ Zn. Then for every ε > 0,

P
(
max
1≤k≤n

|Sk| ≤ ε
)
≤ (L+ ε)2

Var(Sn)
.

Proof: Let
T = min{k : |Sk| > ε} ∈ {1, 2, . . . , n,∞},

with the convention T = ∞ if max1≤k≤n |Sk| ≤ ε. We note that {T = k}, {T ≥ k+1} ∈ σ(X1, . . . , Xk)
for every 1 ≤ k ≤ n.

Let ak = ES2
k1{T≥k+1}, 0 ≤ k ≤ n. Since {T ≥ k + 2} = {T ≥ k + 1} \ {T = k + 1}, we have

ak+1 = ES2
k+11{T≥k+1} − ES2

k+11{T=k+1}. (4.27)

Using independence of Xk+1 and Sk,1{T≥k+1} (both measurable w.r.t. σ(X1, . . . , Xk)), the first term
in (4.27) is bounded below by

ES2
k+11{T≥k+1} = ES2

k1{T≥k+1} + 2EXk+1 · ESk1{T≥k+1} + EX2
k+1 · P(T ≥ k + 1)

≥ ak + EX2
k+1 · P(T ≥ k + 1).

(4.28)

For the second term in (4.27), since

{T = k + 1} = {|S1| ≤ ε, . . . , |Sk| ≤ ε, |Sk+1| > ε},
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when T = k + 1, we have |Sk+1| ≤ |Sk|+ |Xk+1| ≤ L+ ε, and hence

ES2
k+11{T=k+1} ≤ (L+ ε)2P(T = k + 1). (4.29)

Combining (4.28) and (4.29), we have

(ak+1 − ak) + (L+ ε)2P(T = k + 1) ≥ EX2
k+1 · P(T ≥ k + 1), k = 0, . . . , n− 1.

Summing the above inequality over k, and using that P(T ≥ k + 1) ≥ P(T = ∞), we have

Var(Sn) · P(T = ∞) ≤ (L+ ε)2P(T ≤ n) + ES2
n1{T≥n+1}.

Noting that when T ≥ n+1, S2
n ≤ ε2, the last term in the last display is bounded by ε2 ·P(T ≥ n+1),

so we get
Var(Sn) · P(T = ∞) ≤ (L+ ε)2.

The desired inequality follows. □

Proposition 4.22 (Kronecker’s lemma) If an ↑ ∞ and
∑∞

n=1 xn/an converges, then

a−1
n

n∑
m=1

xm → 0

Proof: Let Sn :=
∑n

m=1 xm/am and S := limn→∞ Sn Using Summation by parts (a.k.a. Abel’s
transformation) we have

1

an

n∑
m=1

am(Sm − Sm−1) = Sn −
n∑

m=1

(am − am−1)

an
Sm−1

By using Generalized Stolz’s Lemma (Lemma 4.23) below with ρn,k = (ak − ak−1)/an, we have

lim
n→∞

1

an

n∑
m=1

am(Sm − Sm−1) = lim
n→∞

Sn − lim
n→∞

n∑
m=1

(am − am−1)

an
Sm−1 = S − S = 0.

□

Lemma 4.23 (Generalized Stolz) Let ρn,k ≥ 0, 1 ≤ k ≤ n, be such that

lim
n→∞

n∑
k=K

ρn,k = 1, lim
n→∞

K−1∑
k=1

ρn,k = 0,

for every K > 0. Then

lim
n→∞

n∑
k=1

ρn,kxk = lim
n→∞

xn

provided that second limit exists.
In particular, when ρn,k = 1/n, this is the Stolz’s Lemma.
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Proof: Let L = limn→∞ xn. For simplicity we assume |L| <∞, but the lemma also holds for L = ∞
or −∞.

For every ε > 0, there exists K > 0 such that xk ≥ L− ε for k ≥ K. Hence, we have

n∑
k=1

ρn,kxk ≥ −(sup
m

|xm|)
K−1∑
k=1

ρn,k + (L− ε)
n∑

k=K

ρn,k.

Taking n→ ∞ and using the assumption on ρn,k we get lim infn→∞
∑n

k=1 ρn,kxk ≥ L−ε, and since ε >
0 is arbitrary we have lim infn→∞

∑n
k=1 ρn,kxk ≥ L. Similarly, we can show lim supn→∞

∑n
k=1 ρn,kxk ≤

L. The conclusion follows. □

We can now give the proof of Theorem 4.1.
Proof of Theorem 4.1: By Proposition 4.10, it suffices to show that (Tn − µn)/n → 0, a.s.,
where Tn =

∑n
k=1 Yn and Yn = Xn1{|Xn|≤n}. By Proposition 4.22, it suffices to show that

∑∞
n=1

Yn
n

converges a.s., and this follows from Proposition 4.18 and Proposition 4.12. □

The above proof also gives us a way to estimate the rate of convergence, as the next result shows.

Proposition 4.24 Let X1, X2, . . . are i.i.d. r.v.s with EXi = 0 and EX2
i = σ2 < ∞. Let Sn = X1 +

· · ·+Xn. Then, for every ε > 0,
Sn√

n(log n)1/2+ε
→ 0 a.s.

Proof: Let an = n
1
2 (log n)

1
2
+ε, n ≥ 2. We have

∞∑
n=2

Var(
xn
an

) = σ2
∞∑
n=2

1

a2n
= σ2

∞∑
n=2

1

n(log n)1+2ε
<∞.

By Proposition 4.18, the series
∑∞

n=1
xn
an

converges a.s., and it follows from Proposition 4.22 that
1
an

∑n
k=1 xn → 0 a.s. □

To conclude our discussion of the SLLN, we cite a result given by Feller (see also [Dur19, Thm
2.5.13]), which says when the r.v.s are not integrable, SLLN cannot hold.

Proposition 4.25 Let X1, X2, . . . are i.i.d. r.v.s with E|X1| = ∞. Let an be a sequence of positive
numbers with an/n increasing. Then lim supn→∞|Sn|/an = 0 or ∞ according as

∑∞
n=1 P(|X1| ≥ an) <

∞ or = ∞.

5 Weak convergence and central limit theorem

Let P(R) be the set of all probability measures on
(
R,B(R)

)
. To goal of this section is to study the

weak convergence of probability measure. To start, we mention the total variation distance, a natural
metric on P(R).

Definition 5.1 Let µ, ν ∈ P(R). The total variation distance between µ and ν is given by

∥µ− ν∥TV := 2 · sup
A∈B(R)

|µ(A)− ν(A)| ∈ [0, 2]. (5.1)

It is not hard to check that (5.1) defines a metric: (a) it is positive definite: ∥µ − ν∥TV ≥ 0,
with ∥µ − ν∥TV = 0 if and only if µ(A) = ν(A) for all A, which means µ = ν; (b) it is symmetric:
∥µ− v∥TV = ∥ν − µ∥TV ; (c) it satisfies the triangle inequality by taking supremum of |µ(A)−ν(A)| ≤
|µ(A)− λ(A)|+ |λ(A)− µ(A)|.
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Example 5.1 Let µ and ν are mutually singular (see Definition 1.13) and let A ∈ B(R) be such that µ(A) = 0
and ν(A) = 1. Then |µ(A) − ν(A)| = 1, and hence ∥µ − ν∥TV = 2 since 2 is the maximum for total variation
distance.

Example 5.2 Let µ and ν are absolutely continuous and f, g ∈ L1(R) be their densities. Then

∥µ− ν∥TV = ∥f − g∥L1(R),

where the supremum in (5.1) is achieved by A = {x : f(x) ≥ g(x)} in (5.1). More generally, let F and G be the
c.d.f.s of µ and ν; then

∥µ− ν∥TV = sup
t1<···<tn

n−1∑
i=1

∣∣∣(F −G)(ti+1)− (F −G)(ti)
∣∣∣,

which is the total variation of F −G over R.

By (5.1), convergence in total variational distance implies convergence of the set function.

Proposition 5.1 If ∥µn − µ∥TV → 0, then

lim
n→∞

µn(A) = µ(A), ∀A ∈ B(R).

In particular, by taking A = (−∞, x],

lim
n→∞

Fµn(x) = Fµ(x), ∀x. (5.2)

However, as can be seen from the next two examples, the convergence in total variation distance
is too restrictive.

Example 5.3 Let µn = δ1/n and µ = δ0. We expect µn → µ since 1/n→ 0. On the other hand, ∥µn−µ∥TV = 2
so no convergence in total variation distance.

Example 5.4 Let µn = Unif
{
0, 1

n , . . . ,
n−1
n

}
. We expect µn → µ = Unif[0, 1], which will justify the standard

procedure to generate Unif[0, 1] r.v.s on computers mentioned at the end of Section 3.2.1. On the other hand,
we have µn(Q) = 1 while µ(Q) = 0, so µn and µ are mutually singular and thus ∥µn − µ∥TV ≡ 2.

Weak convergence is one way to give a more relaxed mode of convergence for measures.

5.1 Definition of weak convergence

Throughout this section, µn, µ will be probability measures and Fn, F be their c.d.f.s.

Definition 5.2 (Weak convergence) We say that µn converge to µ weakly, written µn ⇒ µ, if

lim
n→∞

Fn(x) = F (x), almost every x. (5.3)

With abuse of notation we also write Fn ⇒ F for (5.3).
Let Xn, X be r.v.s. We say that Xn converge to X in distribution/law, or weakly, written Xn ⇒ X,

if µXn ⇒ µX .

By directly computing the c.d.f’s, one can verify that

δ1/n ⇒ δ0, Unif
{
0,

1

n
, . . . ,

n− 1

n

}
⇒ Unif[0, 1].

(5.3) is weaker than (5.2) since it allows an exceptional set of measure zero. The first question we
ask is the uniqueness of such limit.
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Proposition 5.2 If Fn ⇒ F and Fn ⇒ G, then F = G.

Proof: Implicitly here, we require that both F and G are c.d.f.s, that is, right continuous and
increasing functions. We know that such functions are determined by its value on a dense set. By
the assumption, there exist zero measure sets N1 and N2 such that Fn(x) → F (x) for x ̸∈ N1

and Fn(x) → G(x) for x ̸∈ N2, and hence F (x) = G(x) for x ̸∈ N1 ∪N2. The measure of N1 ∪N2 is 0,
and the complement of any zero measure set is dense, so F = G as desired. □

In fact, we know precisely what is the exceptional set in (5.3).

Proposition 5.3 (Also an alternative definition for Fn ⇒ F ) The condition (5.3) is equivalent to

lim
n→∞

Fn(x) = F (x), ∀ continuous point x of F . (5.4)

Proof: (5.3) follows from (5.4) since discontinuous point of c.d.f. is at most countable, and a
countable set has measure 0.

For the other direction, let x0 be a continuous point of F . For every ε > 0, there exists δ > 0 such
that |F (x) − F (x0)| < ε for |x − x0| < δ. Then, we can find y1 ∈ (x0 − δ, x0) and y2 ∈ (x0, x0 + δ)
such that y1 and y2 are not in the exceptional set in (5.3). We also have, by the monotonicity of Fn,

F (x0)− ε < F (y1) = lim
n→∞

Fn(y1) ≤ lim inf
n→∞

Fn(x0)

≤ lim sup
n→∞

Fn(x0) ≤ lim
n→∞

Fn(y2) = F (y2) < F (x0) + ε. (5.5)

By letting ε ↓ 0, we obtain limn→∞ Fn(x0) = F (x0). □

The real power of weak convergence is the extraction of convergence subsequence (so-called se-
quential pre-compactness) under minimum assumption.

Definition 5.3 We say that (µn)n∈I is tight, if for every ε > 0, there exists a compact set K = Kε

such that
µn(K

c) ≤ ε, ∀n ∈ I. (5.6)

Compact sets in R are bounded closed sets, and the above condition can be reformulated as the existence
of L > 0 such that

µn[−L,L]c < ε, ∀n ∈ I. (5.7)

Note that using (5.6), the notion of tightness can be generalized to arbitrary metric spaces. [We
will take up this again in XXX.]

Theorem 5.4 (Helly selection theorem) If (µn)n≥1 is tight, then there exists a subsequence (µnk
)k≥1

and a probability measure µ∞ such that µnk
⇒ µ∞.

Proof: For every q ∈ Q, the sequence
(
Fn(q)

)
n≥1

⊂ [0, 1] has a convergent subsequence. Such
subsequence depends on q ∈ Q, but since Q is countable, by a standard diagonal sequence argument,
there exists a common subsequence (Fnk

)k≥1 such that

lim
k→∞

Fnk
(q) =: F̄ (q), ∀q ∈ Q.

The limiting function F̄ is increasing on Q, so we can use it to define a right continuous, increasing
function by

F (x) := inf{F̄ (q) : q ≥ x}.
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We first show that limk→∞ Fnk
(x) = F (x) for every continuous point of F . Let x0 be a continuous

point of F . Then for every ε > 0, there exists δ > 0 such that |F̄ (q)− F (x0)| < ε for all |q − x0| < δ.
Pick any q1 ∈ (x0 − δ, x0) ∩Q and q2 ∈ (x0, x0 + δ). Similar to (5.5), we have

F (x0)− ε < F̄ (q1) ≤ lim inf
k→∞

F (x0) ≤ lim sup
k→∞

F (x0) ≤ F̄ (q2) < F (x0) + ε.

By sending ε→ 0 we prove the desired limit.
Second, we need to show that F is a c.d.f. It suffices to verify F̄ (−∞) = 0 and F̄ (∞) = 1, for

which we will use tightness. Indeed, since (µn)n≥1 is tight, for every ε, there exists L ∈ Q such
that Fn(L)− Fn(−L) ≥ 1− ε (see (5.7)). Letting n = nk → ∞, we have

F̄ (L)− F̄ (−L) ≥ 1− ε.

Therefore,
lim

q→−∞
F̄ (q) = −∞, lim

q→∞
F̄ (q) = ∞,

and this show that F is a c.d.f. □

Remark 5.5 Tightness is necessary to prevent the “escape of mass to infinity”. Consider µn = Unif[n, n + 1],
then Fn(x) → 0 for every x, but the limiting function is 0, and cannot be a distribution function.

Proposition 5.5 (necessity of tightness) If µn ⇒ µ, then (µn)n≥1 is tight.

Proof: This will be an easy consequence of Theorem 5.7, but we give another proof here by analyzing
the c.d.f.s.

The first observation is that a single probability measure is tight. Therefore, for every ε > 0,
there exists L > 0 such that ±L are both continuous points of F and F (−L) ≤ ε/4, F (L) ≥ 1 −
ε/4. Since limn→∞ Fn(±L) = F (±L), there exists n0 such that Fn(−L) ≤ ε/2 and Fn(L) ≥ 1 −
ε/2. Also, for each 1 ≤ k ≤ n0, there exist Lk such that Fk(−Lk) ≤ ε/2, Fk(Lk) ≥ 1 − ε/2.
Let L̄ = max{L,L1, . . . , Ln0}. Then µn[−L̄, L̄]c ≤ ε for all n ≥ 1, and this proves the tightness. □

Without the tightness, the convergence in the first part in the proof of Theorem 5.4 is sometimes
called vague convergence.

Definition 5.4 We say that Fn → F vaguely if limn→∞ Fn(x) = Fn(x) for almost every x.
It may happen that F is a sub-probability measure, that is,

lim
n→+∞

F (x)− lim
n→−∞

F (x) < 1.

We can reformulate the previous results.

Proposition 5.6 Every sequence of probability measures (µn)n≥1 has a vaguely convergent subse-
quence. The limit is a probability measure if and only if the subsequence is tight.

5.2 Other characterizations of weak convergence

The concept of weak convergence can be generalized to arbitrary metric spaces. An excellent reference
in this account is [Bil99]. We only present a topological way to define weak convergence, which is
applicable to more general settings.

Theorem 5.7 Let µn, µ be probability measures on
(
R,B(R)

)
. The following statements are equivalent.

1. µn ⇒ µ, that is, (5.4) holds.
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2. For every bounded continuous function g,

lim
n→∞

∫
g dµn =

∫
g dµ. (5.8)

3. For every open set G,
lim inf
n→∞

µn(G) ≥ µ(G). (5.9)

4. For every closed set K,
lim sup
n→∞

µn(K) ≤ µ(K). (5.10)

5. For every A with µ(∂A) = 0, limn→∞ µn(A) = µ(A).

Proof: From Item 1 to Item 2. We will start from simplest forms of g.
First, consider

g(x) =


0, x < a

(b− a), x > b

linear interpolation, x ∈ [a, b].

(5.11)

Then g(x) =
∫ x
−∞ 1(a,b)(y) dy. Using Fubini’s theorem we have∫

g dµn =

∫ [∫ ∞

−∞
1(a,b)(y)1{y<x} dy

]
dµn(x)

=

∫ ∞

−∞
1(a,b)(y) dy ·

∫ ∞

−∞
1{y<x} dµn(x)

=

∫ b

a
[1− Fn(y)] dy

→
∫ b

a
[1− F (y)] dy =

∫
g dµ,

where the last line is due to Fn(y) → F (y) for a.e. y and BCT on the finite interval [a, b].
Second, we consider g being a piecewise linear function with compact support. Then such g can

be written as a linear combination of functions in the form (5.11), so (5.8) holds.
Third, let K be a compact set and consider

g ∈ CK = {g : continuous, supp g ⊂ K}.

Then there exist gm ∈ CK piecewise linear with compact support such that gm → g uniformly on K,
by uniform continuity of g. To estimate the difference of the terms in (5.8), we replace g by gm, with
error controlled by the triangle inequality. We have for every m,

lim sup
n→∞

∣∣∣ ∫ g dµn−
∫
g dµ

∣∣∣ ≤ lim sup
n→∞

∣∣∣ ∫ gm dµn−
∫
gm dµ

∣∣∣+ ∫
|gm− g| (dµm+ dµ) ≤ 2 · sup|gm− g|.

(5.12)
Letting gm → g we see that the LHS must be zero.

Finally, let g be bounded and continuous. For every compact set K, there exists gK ∈ CK such
that gK has compact support, gK ≡ g on K and sup|gK | ≤ sup|g|. By tightness, for every ε > 0, there
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exists a compact set K such that µn(K
c), µ(Kc) < ε. Similar to (5.12), and using that gK = g on K,

we have

lim sup
n→∞

∣∣∣ ∫ g dµn −
∫
g dµ

∣∣∣ ≤ sup|gK − g| · lim sup
n→∞

(
µ(Kc) + µn(K

c)
)
≤ 4 sup|g|ε.

Letting ε ↓ 0, the limit on the LHS is 0. This proves (5.8).
From Item 2 to Item 3. For every G open, there exists gm ≥ 0, bounded and continuous such

that gn ↑ 1G. For every gm, by (5.8) we have

lim inf
n→∞

µn(G) ≥ lim inf
n→∞

∫
gm dµn =

∫
gm dµ.

The right hand side increases to
∫

1G dµ = µ(G) by MCT, so (5.9) holds.
Note that Item 3 and Item 4 are equivalent since K is closed if and only if G = Kc is open,

and µ(K) = 1− µ(Kc).
From Items 3 and 4 to Item 5. For any set A, let intA be the interior of A, defined by

intA = {x ∈ A : ∃r > 0 s.t. Br(x) ⊂ A},

and Ā the closure of A. Then intA ⊂ A ⊂ Ā, and ∂A = Ā \ intA. By (5.9) and (5.10),

µ(intA) ≤ lim inf
n→∞

µn(A) ≤ lim sup
n→∞

µn(A) ≤ µ(Ā).

But µ(∂A) = µ(Ā)− µ(intA) = 0, so µ(intA) = µ(Ā) = µ(A), and the conclusion follows.
From Item 5 to Item 1. If x0 is a continuous point of F , then µ{x0} = 0 = µ

(
∂(−∞, x0)

)
.

Hence,
lim
n→∞

Fn(x0) = lim
n→∞

µn(−∞, x0] = µ(−∞, x0] = F (x0).

□

Weak convergence can also be characterized using metrics on P(R).
From the proof of Theorem 5.7, (5.8) holds if and only if it holds for all compactly supported

continuous functions, denoted by Cc(R). There is a countable dense subset (gm)m≥1 ⊂ Cc(R), in the
sense that for every ε > 0 and every g ∈ Cc(R), there exists gm0 such that sup|gm0 − g| < ε. One
such subset is all the piecewise linear continuous functions, whose graphs are obtained by connecting
points

(
xi, g(xi)

)
∈ Q2. Fixing such a dense subset (gm)m≥1, we have µn ⇒ µ if and only if∫

gm dµn →
∫
gm dµ, ∀gm.

This means that weak convergence is characterized by the following metric:

d(µ, ν) =
∞∑

m=1

2−m
(
1 ∧

∣∣∣ ∫ gm dµ−
∫
gm dν

∣∣∣),
that is, µn ⇒ µ if and only if d(µn, µ) → 0.

Another useful metric is called the Lévy distance between monotone function. To motivate it, let
us consider the graph of any increasing function F , defined by

ΓF = {(x, y) : x ∈ R, F (x−) ≤ y ≤ F (x+)} ⊂ R2.
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The distinction of continuous and discontinuous points in (5.4) is caused by the potential discontinuous
point in F ; but from the point of view of the graphs, (5.4) just means that the graphs of Fn converge to
that of F . To make this idea precise, we can use the Hausdorff distance to measure closeness between
any A,B ⊂ R2 (R2 could be any metric space):

dH(A,B) = inf{ε > 0 : A ⊂ Bε, B ⊂ Aε}, Dε =
⋃
x∈D

{y : |y − x| ≤ ε},

= inf{ε > 0 : d(a,B) ≤ ε, ∀a ∈ A, d(b, A) ≤ ε, ∀b ∈ B},
(5.13)

where Dε is also known as the ε-neighborhood of D. The Lévy distance can be defined by

dL(F,G) = dH(ΓF ,ΓG).

The more well-known form of Lévy distance is

dL(F,G) = inf{ε > 0 : F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε}.

The two definitions are exactly the same if we use ℓ∞ distance in R2 in (5.13).

We conclude this section by two simple properties of weak convergence.

Proposition 5.8 If Xn → X in probability, then Xn ⇒ X.

Proof: It suffices to show that Eg(Xn) → Eg(X) for any bounded continuous function g, which
follows from DCT. □

The converse is not true, unless the limit is a δ-measure.

Proposition 5.9 If Xn ⇒ X where P(X = c) = 1 for some c ∈ R, then Xn → c in probability.

Proof: Since µX{c− ε, c+ ε} = 0, by Item 5 in Theorem 5.7, we have

lim
n→∞

P(|Xn − c| ≥ ε) = lim
n→∞

µXn(c− ε, c+ ε)c = µX(c− ε, c+ ε)c = 0.

□

5.3 Characteristic functions

In this section we introduce the characteristic function (ch.f.) of a r.v. X, defined by

φX(ξ) = EeiξX = E cos(ξX) + iE sin(ξX).

The integration of the complex-valued r.v. eiξX can be done by integrating the real and imaginary
parts separately, that is, EX := EX1 + iEX2 if X1 and X2 are real and complex parts of X. We also
recall the norm of a complex number z = a + bi is |z| =

√
a2 + b2. Like absolute values we have the

following inequality for complex norms.

Lemma 5.10 Let X ∈ C be a complex-valued r.v. Then |EX| ≤ E|X|.

Proof: Write X = X1 + iX2. Since ϕ(a, b) =
√
a2 + b2 is convex, by Jensen’s inequality we have

|EX| =
√

(EX1)2 + (EX2)2 = ϕ(EX1,EX2) ≤ Eϕ(X1, X2) =≤ E
√
X2

1 +X2
2 = E|X|.

□

The ch.f. of a r.v. X is just the Fourier transform (up to some constants and signs) of this
distribution µX . Unsurprisingly, a probability measure is uniquely determined by its Fourier transform,
and we will assume this fact without proof in this section.

We have some basic properties of the ch.f.s.
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Proposition 5.11 Let φ(ξ) = EeiξX . Then

1. φ(−ξ) = φ(ξ), where ·̄ denotes complex conjugate.

2. Eeiξ(aX+b) = eibξφ(aξ).

3. φ(0) = 1 and |φ(ξ)| ≤ 1.

4. ξ 7→ φ(ξ) is uniformly continuous.

Proof: We will only prove the last one; the others are straightforward.
For any ξ1 and ξ2, we have

|φ(ξ1)− φ(ξ2)| ≤ E|eiξ1X − eiξ2X | = E|ei(ξ1−ξ2)X − 1|.

Since |eiy − 1| ≤ 2 for any y ∈ R, by BCT, we have

lim
h→0

E|eihX − 1| = E lim
h→0

|eihX − 1| = E|e0 − 1| = 0.

Since the upper bound only depends on ξ1 − ξ2, the conclusion follows. □

Characteristic functions are useful in the study of the sum of independent r.v.s, since the Fourier
transform turns convolutions into products.

Proposition 5.12 Let X,Y be independent. Then φX+Y = φX · φY .

Proof: For every fixed ξ, the function h(x) = eiξx is bounded and continuous. Proposition 3.2 also
holds for complex-valued functions, and hence

φX+Y (ξ) = Eh(X)h(Y ) = Eh(X) · Eh(Y ) = φX(ξ)φY (ξ).

□

Since h(x) = eiξx is a bounded continuous function for every ξ, we know φXn → φX pointwise
if Xn ⇒ X. The converse is true if (µXn)n≥1 is tight. This is the next result.

Theorem 5.13 (continuity theorem) If φXn(ξ) → φ(ξ) for every ξ, and φ is continuous at ξ = 0,
then there exists a r.v. X such that Xn ⇒ X and φX = φ.

Proof: We first show that the continuity of φ at 0 implies the tightness of (µXn)n≥1. We will use
Lemma 5.14 proven below, which gives

µXn{x : |x| ≥ 2/u} ≤ 1

u

∫ u

−u

(
1− φXn(ξ)

)
dξ. (5.14)

Note that φ(0) = limn→∞ φXn(0) = 1. By continuity, for every ε > 0, there exists δ > 0 such
that |1− φ(ξ)| ≤ ε when |ξ| ≤ δ. Taking u = δ in (5.14), since |1− φXn | ≤ 2, by BCT we have

lim sup
n→∞

µXn{x : |x| ≥ 2/δ} ≤ lim
n→∞

1

δ

∫ δ

−δ
|1− φXn(ξ)| dξ

=
1

δ

∫ δ

−δ
lim
n→∞

|1− φXn(ξ)| dξ

=
1

δ

∫ δ

−δ
|1− φ(ξ)| dξ ≤ 2ε.
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This implies the tightness of (µXn)n≥1.
Since (µXn)n≥1 is tight, by Theorem 5.4 there exists a subsequence (Xnk

) such that Xnk
⇒ X for

some r.v. X. Then EeiξXnk → EeiξX and hence φX ≡ φ. Next we will show that Xn ⇒ X along the
full sequence. If not, then there exists f bounded, continuous and ε0 > 0 such that

|Ef(Xmk
)− f(X)| ≥ ε0, along some subsequence (Xmk

). (5.15)

Since µXmk
are also tight, there exists a further subsequence µXm′

k

such that Xm′
k
⇒ Y for some Y .

But then we have φY = φ = φX , this contradicts with (5.15). □

Lemma 5.14 Let ν be a probability measure on
(
R,B(R)

)
and φ be its ch.f. Then

ν{x : |x| ≥ 2/u} ≤ 1

u

∫ u

−u

(
1− φ(ξ)

)
dξ.

(Since φ(−ξ) = φ(ξ) and the domain is symmetric, the integral on the right side is real.)

Proof: Using Fubuni’s Theorem, we have∫ u

−u

(
1− φ(ξ)

)
dξ =

∫
ν(dx)

∫ u

−u
(1− eiξx) dξ

=

∫
ν(dx)

∫ u

−u
(1− cos ξx) dξ

=

∫ (
2u− 2 sinux

x

)
ν(dx)

= 2u

∫ (
1− sinux

ux

)
ν(dx)

≥ u

∫
{x:|ux|≥2}

1

2
ν(dx) = u · ν{x : |ux| ≥ 2}

Here, we use 1− sinux
ux ≥ 1− |ux|−1 ≥ 1/2 if |ux| ≥ 2. □

5.4 *Notes on Fourier transform

This section will give a brief introduction to the Fourier transform. The goal is to help the readers to
understand characteristic functions in a more general context.

Fourier transform is first defined for functions. The Fourier transform of a function g ∈ L1(R) is
defined by

(Fg)(ξ) :=
∫
eiξxg(x) dx. (5.16)

The integrability condition g ∈ L1(R) is to ensure the integral in (5.16) to be defined.

Remark 5.6 In general, one needs to decide where to put constants and plus/minus signs in defining the Fourier
transform; for example, more common definitions in harmonic analysis are

(Fg)(ξ) =
1√
2π

∫
e−iξxg(x) dx, or (Fg)(ξ) =

∫
e−2πiξxg(x) dx.

But (5.16) agrees with the form of characteristic functions used in the probability theory so we will stick to it.
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One can also define the inverse Fourier transform by

(F−1h)(x) :=
1

2π

∫
e−iξxh(ξ) dξ. (5.17)

Note that like F, the natural domain for F−1 are functions in L1(R). However, if g ∈ L1(R), then
in general we merely have Fg ∈ L∞(R), so F−1 is not a true “inverse” (but it will be after a proper
adjustment). When it happens that Fg ∈ L1(R), the map F−1 indeed takes Fg back to g. Here, the
form of F−1 in (5.17) depends on the choice we made in (5.16) to define F.

Proposition 5.15 If g ∈ L1(R) and Fg ∈ L1(R), then (F−1 ◦ F)g = g.

The proof usually involves some integration tricks, and can be found in most analysis/PDE text-
books that present the Fourier transform. We skip the proof here since the most important thing for
us is to know that the Fourier transform does have an inverse, at least in some sense.

The next question is that we need to define the Fourier transform for objects other than L1 func-
tions, like the probability measures. One can say that probability measures are like L1 functions, but
we will see below that the Fourier transform can even be defined for unbounded functions/measures.
The key are the “Schwartz space” and its dual space, the “tempered distributions”.

The Schwartz space contains smooth functions that decays fast at ∞; more precisely,

S = {g ∈ C∞(R) : lim
|x|→∞

|xk|
∣∣g(m)(x)

∣∣ = 0, ∀k,m ≥ 0}.

We call functions in S Schwartz functions. We can talk about convergence in S: gn → g in S if for

every k,m ≥ 0, supx|x|k|g
(m)
n (x)−g(m)(x)| → 0. The convergence can also characterized by the metric

d(f, g) =

∞∑
k,m=0

|f − g|k,m ∧ 1

2m+k
, |h|k,m := sup

x
|x|k|h(m)(x)|.

A nice thing about the Fourier transform is that it turns differentiation ∂kx into multiplica-
tion (−iξ)k and vise versa.

Proposition 5.16 Let g ∈ S. Then for k ≥ 1,

(Fg(k))(ξ) = (−iξ)k(Fg)(ξ), F
(
(−ix)kg

)
= Fg(k).

Hence, the Schwartz space S is invariant under F. In light of Proposition 5.15, it is a bijection on
S.

Proposition 5.17 The Fourier transform F : S → S is a bijection.

Another obvious fact is that F is linear: F(f + g) = Ff + Fg. It is natural to consider the action
of F on the dual of S, called the tempered distribution, defined by

S ′ := {continuous, linear functional on S}
= {ℓ linear : S → R, |ℓ(g)| ≤ Cm,k|g|k,m, ∀k,m ≥ 0}.

The space S ′ contains all probability measures µ, identified with the linear functional

ℓµ(g) :=

∫
g(x) dµ(x).
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It also contains S itself, identified with the linear functionals defined by taking L2 inner product:

ℓh(g) :=

∫
g(x)h(x) dx, h ∈ S.

The Fourier transform can be defined on S ′ by duality:

(Fℓ)(g) := ℓ(Fg).

For example, if µ is a probability measure on R, then by Fubini’s Theorem,

(Fµ)(g) = µ(Fg) =
∫ [∫

eiξx dx
]
dµ(ξ) =

∫ [∫
eiξx dµ(ξ)

]
g(x) dx =

∫
φµ(x)g(x) dx, ∀g ∈ S,

where φµ is the ch.f. of µ. Hence, the ch.f. φµ is F(µ), when µ is treated as an element in S ′.
Since F : S → S is a bijection, it is also a bijection on S ′. Therefore, a probability measure is uniquely
determined by its ch.f.

If one needs more information, the inversion from ch.f.s to probability measures can also be done
via the inversion formula, which is more or less equivalent to Proposition 5.15.

Theorem 5.18 (Inversion formula) Let µ be a probability measure on R and φ its ch.f. Then for
every a < b,

lim
T→∞

1

2π

∫ T

−T

e−itb − e−ita

it
φ(t) dt = µ(a, b) +

1

2
µ{a, b}.

5.5 Central limit Theorem

5.5.1 CLT for i.i.d. random variables

We will use ch.f.s to prove central limit theorems. An important fact is that the derivatives of the
ch.f. is related to the moments of the r.v.; there is a more general result for the Fourier transform, see
Proposition 5.16.

Proposition 5.19 If E|X|n <∞, then φ(n)(ξ) = E(iX)neiξX .

Remark 5.7 Let g(x, ξ) = eiξx. Then ∂n

∂ξn g = (ix)neiξx, so Proposition 5.19 gives conditions to guarantee the

“exchange of differentiation and integral (expectation)”

dn

dξn
Eg(X, ξ) = E

∂n

∂ξn
g(X, ξ).

Proof: We will only prove the case n = 1. For n ≥ 2, the proof uses induction and a similar
argument.

Since E|X| < ∞, we can define h1(ξ) = E(iX)eiξX as |(iX)eiξX | ≤ |X|. Also, |h1(ξ)| ≤ E|X|, and
similar to Proposition 5.11, one can show that ξ 7→ h1(ξ) is (uniformly) continuous.

By Fubini’s Theorem, for every a < b, we have∫ b

a
h1(ξ) dξ =

∫ b

a
E(iX)eiξX dξ = E

∫ b

a
(iX)eiξX dξ = E(eibX − e−iaX) = φ(b)− φ(a).

Since h1 is continuous, φ is the anti-derivative of h1 by the fundamental theorem of calculus, that is,
φ′ = h1. □

To deal with complex logarithm we often use the following lemma.
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Lemma 5.20 If |z| ≤ 1/2, then |log(1 + z)− z| ≤ |z|2.

Proof: The function log(1 + z) is analytic for |z| < 1, and hence we have the Taylor expansion

log(1 + z) =

∞∑
k=1

(−1)k−1

k
zk.

Therefore,

|log(1 + z)− z| ≤
∞∑
k=2

|z2|
k

≤ |z|2
∞∑
k=2

1

2k−2k
≤ |z|2.

□

We say that X has normal distribution N (µ, σ2) if X is a continuous r.v. with density

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

Let us compute the ch.f. for normal distributions.

Proposition 5.21 Let X ∼ N (µ, σ2). Then

φX(ξ) = eiµξ−
1
2
σ2ξ2 .

Proof: By Proposition 5.11, without loss of generality we can assume µ = 0 and σ = 1. We need to
show ∫

R
eiξx · 1√

2π
e−

x2

2 dx = e−
ξ2

2 .

Completing the square, the left hand side is∫
R

1√
2π
e−

(x−iξ)2

2 · e−
ξ2

2 dx,

so it suffices to show

1 =

∫
R

1√
2π
e−

(x−iξ)2

2 dx. (5.18)

If iξ is a real number, then (5.18) follows from a change of variables, but it is not. We need some
contour integral trick from complex variables.

Assume ξ ≥ 0. Let h(z) = 1
2πe

−z2/2, z ∈ C. Then h(z) is an entire function (since the exponential
function is nice), and by Cauchy integral theorem,

∫
Γ h(z) dz = 0 for any closed contour Γ. Consider

the contour Γ =
⋃4

k=1 Γk, where

Γ1 = [−L,L], Γ2 = {L+ iy : y ∈ [0, ξ]}, Γ3 = {x+ iξ : x ∈ [−L,L]}, Γ4 = {−L+ iy : y ∈ [0, ξ]}

with proper orientation (counter-clockwise). Then∣∣∣ ∫
Γ2

h(z) dz
∣∣∣ ≤ ∫ ξ

0
|h(L+ iy)| dy ≤ 1√

2π
e−

1
2
(L2−ξ2) · ξ → 0, L→ ∞,

and similar limit holds for Γ4. Hence,

lim
L→∞

∫
Γ1

h(z) dz = − lim
L→∞

∫
Γ3

h(z) dz. (5.19)

The right hand side of (5.19) is right hand side of (5.18), while the left hand side of (5.19) is the
integration of the density of N (0, 1), which is 1. This completes the proof. □
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Theorem 5.22 Let X1, X2, . . . be i.i.d. with EX1 = µ and Var(X1) = σ2. Then

Sn − nµ

σ
√
n

⇒ N (0, 1).

Proof: By Theorem 5.13 and Proposition 5.21, it suffices to show that for every ξ ∈ R,

Ee
iξ Sn−nµ

σ
√
n → e−

1
2
ξ2 , n→ ∞.

Rearranging, the LHS becomes

Ee
i ξ√

n

∑n
m=1

Xm−µ
σ = Ee

i ξ√
n

∑n
m=1 Ym ,

where Ym = Xm−µ
σ is the normalized r.v.s, with EYm = 0, EY 2

m = 1. The r.v.s Ym are i.i.d. Let φ be
the ch.f. of Y1. Then by independence and Proposition 5.12, we need to show[

φ(ξ/
√
n)
]n

→ e−
1
2
ξ2 ,

or equivalently, since the limit is positive and exponential function is continuous,

n logφ(ξ/
√
n) → −1

2
ξ2.

By Proposition 5.19, since Y1 has second moment, its ch.f. φ is twice differentiable, and φ(0) = 1,
φ′(0) = 1, φ′′(0) = −1. In particular, we have Taylor expansion for φ at 0 with Peano remainder:

φ(η) = 1− 1

2
η2 + η2α(η), lim

η→0
|α(η)| = 0. (5.20)

Note that the o(1) term α(η) is complex.
For n large enough, |φ(ξ/

√
n)− 1| ≤ 1/2, and hence by Lemma 5.20 and (5.20), we have∣∣∣n logφ(ξ/√n) + 1

2
ξ2
∣∣∣ ≤ ∣∣∣n logφ(ξ/√n)− n

(
φ(ξ/

√
n)− 1

)∣∣∣+ ∣∣∣n(φ(ξ/√n)− 1
)
+

1

2
ξ2
∣∣∣

≤ n
∣∣φ(√ξ/

√
n)− 1

∣∣2 + ξ2|α(ξ/
√
n)|.

The second term converges to 0; the first term is∣∣∣− 1

2
ξ2 + ξ2α(ξ/

√
n)
∣∣∣ · ∣∣φ(ξ/√n)− 1

∣∣ ≤ C
∣∣φ(ξ/√n)− 1

∣∣
and also converges to 0. This completes the proof. □

5.5.2 CLT for triangular arrays

The motivation to study CLT for triangular arrays is that normal distributions in real life, such as
height, weights and so on, are results of many independent, yet not identically distributed small factors.
When the r.v.s are not i.i.d., we need more delicate control of the ch.f.s.

The following result is useful.
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Proposition 5.23 Let h(z) = eiz and Pk(z) be the k-th order Taylor polynomials of h(z) at z = 0.
Then

|φ(ξ)− EPk(ξX)| ≤ E
( |ξX|k+1

(k + 1)!
∧ 2|ξX|k

k!

)
.

In particular, when k = 2, we have Pk(z) = 1 + iz − z2

2 and

|φ(ξ)− (1 + iξEX − ξ2

2
EX2)| ≤ ξ2E

( |ξX3|
6

∧ |X|2
)
.

Proof: Since |h(k+1)| ≤ 1, we have

|h(ξX)− Pk(ξX)| =
∣∣∣ ∫ ξ

0

(iX)k+1θkh(k+1)(θX)

k!
dθ

∣∣∣ ≤ |ξX|k+1

(k + 1)!
. (5.21)

The bound is bad if |ξX| is large. Using (5.21), we also have

|h(ξX)− Pk(ξX)| ≤ |h(ξX)− Pk−1(ξX)|+ |(iξX)k

k!
| ≤ 2

|ξX|k

k!
. (5.22)

The conclusion follows from combining (5.21) and (5.22), and then taking expectation. □

Theorem 5.24 (Linderburg-Feller) Let (Xn,m)nm=1 be independent with EXn,m = 0. Assume that

n∑
m=1

EX2
n,m → σ2, n→ ∞, (5.23)

and the so-called “Linderburg’s condition”:

∀ε > 0, Mn :=

n∑
m=1

EX2
n,m1{|Xn,m|≥ε} → 0, n→ ∞. (5.24)

Then Sn = Xn,1 + · · ·+Xn,n ⇒ N (0, σ2).

Proof: By independence,

EeiξSn =
n∏

m=1

EeiξXn,m =:
n∏

m=1

φn,m(ξ).

By Theorem 5.13 and Proposition 5.21, it suffices to show that for every ξ ∈ R,
n∑

m=1

logφn,m(ξ) → −1

2
σ2ξ2. (5.25)

The idea is to use the approximations logφn,m(ξ) ≈ φn,m(ξ)−1 ≈ −EX2
n,m and sum overm. To control

the accumulated error after all these approximations, we need to use the Linderburg’s condition (5.24)
and Lemma 5.20.

By Proposition 5.23, we have

|φn,m(ξ)− 1 +
ξ2

2
EX2

n,m| ≤ ξ2E(|ξX3
n,m|) ∧ |Xn,m|2 ≤ ξ2(εE|ξX2

n,m|+ EX2
n,m1{|Xn,m|≥ε})

We also have
EX2

n,m ≤ ε2 + EX2
n,m1{|Xn,m|≥ε}.
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Therefore, for some constant C = C(ξ),

|φn,m(ξ)− 1|, |φn,m(ξ)− 1 +
ξ2

2
EX2

n,m| ≤ C(ε+ EX2
n,,m1{|Xn,m|≥ε}) ≤ C(ε+Mn).

By first choosing ε small enough and then n large enough, we can ensure that |φn,m(ξ)− 1| ≤ 1/2 for
all m.

Using Lemma 5.20, we have

n∑
m=1

∣∣∣ logφn,m(ξ) +
ξ2

2
EX2

n,m

∣∣∣ ≤ n∑
m=1

∣∣∣ logφn,m(ξ)− φn,m(ξ) + 1
∣∣∣+ n∑

m=1

∣∣∣φn,m(ξ)− 1 +
ξ2

2
EX2

n,m

∣∣∣
≤

n∑
m=1

∣∣φn,m(ξ)− 1
∣∣2 + C1

n∑
m=1

(εEX2
n,m + EX2

n,m1{|Xn,m|≥ε}).

By (5.23) and (5.24), the lim sup of second term is bounded by C2ε as n→ ∞. For the first term, we
have

n∑
m=1

∣∣φn,m(ξ)− 1
∣∣2 ≤ max

1≤m≤n

∣∣φn,m(ξ)− 1
∣∣ · n∑

m=1

∣∣φn,m(ξ)− 1
∣∣ ≤ C(ε+Mn) ·

n∑
m=1

∣∣φn,m(ξ)− 1
∣∣,

which is bounded by C3ε since the summation is bounded by

n∑
m=1

[ξ2
2
EX2

n,m +
∣∣∣φn,m(ξ)− 1 +

ξ2

2
EX2

n,m

∣∣∣]
Since ε > 0 is arbitrary, we have

lim
n→∞

n∑
m=1

∣∣∣ logφn,m(ξ) +
ξ2

2
EX2

n,m

∣∣∣ = 0.

Then (5.25) follows from this and (5.23). □

Example 5.8 We can recover Theorem 5.22 from Theorem 5.24.
Let Yn be i.i.d. with EYn = 0 and EY 2

n = 1. Let Xn,m = Ym√
n
. Then (5.23) is satisfied. For (5.24), we have

lim
n→∞

n∑
m=1

EX2
n,m1{|Xn,m|≥ε} = lim

n→∞

n∑
m=1

E
Y 2
m

n
1{|Ym|≥

√
nε} = lim

n→∞
EY 2

1 1{|Y1|≥
√
nε} = E lim

n→∞
EY 2

1 1{|Y1|≥
√
nε} = 0,

where the exchange of limit and expectation is due to EY 2
1 <∞ and DCT.

Example 5.9 Theorem 5.24 can treat the case where the r.v.s are not identically distributed. Note that EY 2
n ≤ C

along cannot guarantee that Xn,m = Ym√
n

satisfies the Linderburg’s condition (5.24). A sufficient condition is

that Yn has uniform (2 + δ)-moment for any δ > 0, that is, E|Yn|2+δ ≤ C for some C > 0 and δ > 0.
Indeed, for such Yn, we have

n∑
m=1

E
Y 2
m

n
1{|Ym|≥

√
nε} ≤

n∑
m=1

E
|Ym|2+δ

n · (
√
nε)δ

1{|Ym|≥
√
nε} ≤ n · C

n · (
√
nε)δ

=
C

(
√
nε)δ

→ 0, n→ ∞.

Next we use Theorem 5.24 to derive a CLT-type limit theorem for i.i.d. r.v.s with infinite variance.
We should mention a result due to Lévy.
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Theorem 5.25 Let Xn be i.i.d. and Sn be its partial sum. Then there exist an, bn such that Sn−an
bn

⇒
N (0, 1) if and only if

y2P(|X1| ≥ y)

E|X1|21{|X1|≤y}
→ 0. (5.26)

The idea behind (5.26) is that to have normal distribution as the limit, each term in the partial
sum cannot be too large, while here the “largeness” is measured by y2P(|X1| ≥ y), compared to the
truncated second moment of X1.

Let us consider i.i.d. r.v.s Xn where P(X1 < −x) = P(X1 > x) = x−2, x ≥ 1. We will show that

X1 + · · ·+Xn√
n log n

⇒ N (0, 1).

To apply Theorem 5.25, we need to compute variance. Since EX2
1 = ∞, we need to apply truncation

first. Let Yn,m = Xm1{|Xm|≤cn} and S̃n = Yn,1 + · · ·+ Yn,n. We first prove a simple result, saying that
if the truncation does not affect Sn much, then it will not affect the weak convergence.

Proposition 5.26 If P(Sn ̸= S̃n) → 0 and S̃n
bn

⇒ N (0, 1), then Sn√
n
⇒ N (0, 1).

Proof: Let g be a bounded continuous function and N ∼ N (0, 1). We have∣∣∣g(Sn
bn

)− g(N)
∣∣∣ ≤ ∣∣∣g(Sn/bn)− g(S̃nbn)

∣∣∣+ ∣∣∣g(S̃n/n)− g(N)
∣∣∣

≤ 2 sup|g| · P(Sn ̸= S̃n) +
∣∣∣g(S̃n/n)− g(N)

∣∣∣ → 0.

□

To have P(S̃n ̸= Sn) → 0, a sufficient condition is

n∑
m=1

P(Yn,m ̸= Xm) = nP
(
|X1| ≥ cn

)
=

n

c2n
→ 0.

We will choose cn = n1/2 log log n. The reason for double logarithm will be clear in a moment.
Now let us verify the two conditions (5.23) and (5.24).
For (5.23), we have

n∑
m=1

EY 2
n,m = n

∫ cn

1
2yP(|X1| ≥ y) dy = n

∫ cn

1

2dy

y

= 2n log(n1/2 log logn) = n log n+ 2n log log log n.

So
n∑

m=1

E
∣∣∣ Yn,m√
n log n

∣∣∣2 → 1.

For (5.24), we have
n∑

m=1

E
∣∣∣ Yn,m√
n log n

∣∣∣21{|Yn,m|≥ε
√
n logn} = 0

for large n, since |Ym| ≤ cn = n1/2 log log n≪
√
n log n.
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5.5.3 Multidimensional CLT

In this section we discuss how to generalize the CLT to Rd. First we need to introduce the weak
convergence and the ch.f. in Rd.

We write Xn = (Xn,1, . . . , Xn,d) ∈ Rd for i.i.d. random vectors in Rd. We say that Xn ⇒ X if
Eg(Xn) → Eg(X) for every bounded continuous g : Rd → R.. A family of probability measures on Rd,
(µn)n≥1, are tight, if for every ε > 0, there exists a compact set K so that µn(K

c) ≤ ε for all n ≥ 1.
Since compacts sets in Rd are bounded and closed, we can take K = [−L,L]d in this case.

Let X ∈ Rd be a random vector. Its characteristic function φX is

φX(ξ) = Eeiξ·X , ξ ∈ Rd.

Here, · denotes the inner/dot product in Rd: ξ·x := ξ1x1+· · ·+ξdxd. We have a version of Theorem 5.13
in Rd.

Theorem 5.27 Let Xn, X∞ be random vectors in Rd. Then Xn ⇒ X∞ if and only if φXn(ξ) →
φX∞(ξ) for every ξ ∈ Rd.

Proof: The “only if” part follows from the definition of weak convergence and that x 7→ eiξ·x is
bounded continuous.

For the “if” part, similar to the proof of Theorem 5.13, it suffices to show that (µn = µXn) is tight,
and we can use a subsequence argument to finish the proof.

Let ek be the unit vector in the k-th direction. Then (ek ·Xn)n≥1 is a family of r.v.s, with ch.f.s

φ(k)
n (η) = Eeiηek·Xn = φXn(ηek) → φX∞(ηek),

where the limit is the ch.f. of ek ·X∞ and hence continuous at η = 0. By Theorem 5.13, the distribution
of ek ·Xn is tight, namely, for ε/d > 0, there exists Lk > 0 such that

µn{ek ·Xn /∈ [−Lk, Lk]} ≤ ε

d
, ∀n ≥ 1.

Do this for every k ∈ {1, . . . , d}, and let L = max{L1, . . . , Ld}, we have

µn{Xn ̸∈ [−L,L]d} ≤
d∑

k=1

µn{ek ·Xn /∈ [−Lk, Lk]} ≤ d · ε
d
= ε,

and hence (µn)n≥1 is tight. □

In fact in the proof we have characterize weak convergence in Rd via weak convergence in R.

Proposition 5.28 The weak convergence Xn ⇒ X holds for random vectors in Rd if and only
if θ ·Xn ⇒ θ ·X as r.v.s for every θ ∈ Rd.

We are ready to give a multidimensional version of CLT.

Theorem 5.29 (CLT in Rd) Let Xn be i.i.d. random vectors in Rd, with EX1 = µ ∈ Rd, and
covariance matrix Γ = E(X1 − µ) · (XT

1 − µ), that is,

Γjk = Cov(X1,j , X1,k), 1 ≤ j, k ≤ d.

Then

Ee
iSn−nµ√

n
·ξ → e−

1
2
ξTΓξ, ξ ∈ Rd,

where e−
1
2
ξTΓξ is the ch.f. of the multi-variate normal distribution N (0,Γ).
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Proof: Assume µ = 0. Let N ∼ N (0,Γ). Then θ ·N ∼ N (0, θTΓθ). We have

e
i Sn√

n
·θη

= e
i η√

n

∑n
m=1(Xm·θ) → e−

η2

2
·θTΓθ

by Theorem 5.22 and
E(θ ·X1)

2 = EθTX1X
T
1 θ = θTΓθ.

This and Proposition 5.28 prove the theorem. □

To allow possible degeneracy, the most convenient way to define the multi-variate normal N (µ,Γ)
is to use the ch.f.:

φN (µ,Γ)(ξ) = eiξ·µ−
1
2
ξTΓξ.

Note that the covariance matrix Γ is always semi-positive definite symmetric. If all eigenvalues of Γ
are positive, then N (0,Γ) has a density given by

1

(
√
2π)d

√
det(Γ)

e−
(x−µ)T Γ−1(x−µ)

2 .

In general, one can diagonalize Γ to get Γ =
∑d

k=1 λkv
T
k vk where v⃗k form an orthonormal basis in Rd

and λk ≥ 0. Then N (0,Γ) can be realized as

N =

d∑
k=1

λkεkv⃗k,

where εk are i.i.d. N (0, 1) r.v.s. Another way to define multi-variate normal is by projection: we say
that N ∼ N (µ,Γ) if θ ·N ∼ N (θ · µ, θTΓθ) for every θ ∈ Rd.

6 Weak convergence on general spaces and functional CLT

6.1 Preliminaries for probability measures on metric spaces

Let (M,d) be a generic metric space, where d :M ×M → [0,∞) is the metric. Examples include:

• M = Rd, the d-dimensional Euclidean space, with d(x, y) = |x− y|p, p ∈ [1,∞].

Here, all ℓp norms are equivalent, that is, they generate the same open sets.

• M = C[0, 1], the space of continuous function on [0, 1], with d(x, y) = supt∈[0,1]|x(t)− y(t)|.

• M = Lp(Ω,F , µ), the space of Lp-functions, with dLp(f − g) =
∫
|f(x)− g(x)|p µ(dx).

We first recall some basic concepts for metric spaces.

• Open sets. A set G ⊂ M is open if G contains an ε-ball around every x ∈ G, that is, ∀x ∈ G,
∃ε > 0 s.t. y ∈ G whenever d(y, x) < ε.

• Closed set. A set F ⊂M is closed if F c is open.

• Completeness. The space M is said to be complete if every Cauchy sequence (xn) ⊂ M has
a limit point in M , that is, if limN→∞ supn,m≥N d(xn, xm) = 0, then there exists x∞ ∈ M such
that limn→∞ xn = x∞.

Most metric spaces are complete, like Rd, Lp and C[a, b]. If starting from a non-complete metric
space, one can always complete it using Cauchy sequences, as one did in completing Q to get R.
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• Compact sets. A set K ⊂ M is compact, if every open cover
⋃

i∈I Gi ⊃ K contains a finite
subcover Gi1 ∪ · · · ∪Gin ⊃ K.

• Separable. The space M is called separable if there exists a countable dense subset D. We say
that D is dense in M , if for every ε > 0 and x ∈M , there exists y ∈ D such that d(x, y) < ε.

The Euclidean space Rd is separable by taking D = Qd.

The space C[0, 1] is separable by taking D =
⋃∞

n=1Dn, where

Dn =
{
x ∈ C[0, 1] : x(t) ∈ 1

n
Z, t ∈ 1

n
Z, and linear on [i/n, (i+ 1)/n]

}
.

The space Lp(Rd) is separable when p ̸= ∞.

Another class of non-separable spaces are linear operators on Banach spaces. For example, all the
bounded linear map from Lp(R) (p ∈ [1,∞)) into itself, equipped with the operator norm, is non-
separable, even if Lp(R) is separable. To see this, the translation operators (τsf)(x) = f(s+ x)
are bounded and linear on Lp(R), while ∥τs − τs′∥ = 1 whenever s ̸= s′, so (τs)s∈R cannot be
close to a countable set.

One way to use compactness and separability is as follows: ifM is a complete, separable, compact
metric space, then C(M) is compact.

• Sequentially compact. A set K is sequentially compact, if every sequence (xn) ⊂ K has a
subsequence (xnk

) such that xnk
→ x∗ for some x∗ ∈ K.

On separable metric spaces, compactness is equivalent to sequentially compactness, so we do not
distinguish between them hereafter.

On Rd, compact sets are bounded, closed sets.

On C[0, 1], by Arzelà–Ascoli, (xn)n∈I are sequentially compact if and only if they are uniformly
bounded,

∃C > 0, s.t. sup
n∈I

sup
t∈[0,1]

|xn(t)| ≤ C, (6.1)

and equi-continuous,

∀ε > 0, ∃δ > 0, s.t. |xn(t1)− xn(t2)| ≤ ε, ∀n ∈ I, ∀|t1 − t2| < δ. (6.2)

Assuming (6.2), (6.1) can also be replaced by

∃C > 0, s.t. sup
n∈I

|xn(0)| ≤ C, (6.3)

Let µn, µ∞ be probability measures on (M,d). We say that µn converges to µ∞ weakly, denoted
by µn ⇒ µ∞, if for every bounded continuous function g :M → R,∫

M
gdµn →

∫
M
gdµ.

We say that (µn)n∈I is tight, if for every ε > 0, there exists a compact set K ⊂M such that

µn(K
c) ≤ ε, n ∈ I.

We have seen these definitions for M = R. For general metric spaces we have the following result.

Theorem 6.1 (Prohorov Theorem) Let (M,d) be a separable and complete metric space (a.k.a. Polish
space). Let (µn)n≥1 be probability measures on (M,d). If (µn) is tight, then there exists a subseqeucne
(µnk

) and µ∞ such that µnk
⇒ µ∞.
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6.2 Donsker invariance principle

Let Xn be i.i.d. r.v.s with EX1 = 0 and EX2
1 = 1. We can extend the partial sum Sn = X1 + · · ·+Xn

to a continuous function on [0, 1] by defining

S̃n(t) =

{
Sm, t = m

n , m = 0, 1, . . . , n,

linear, m
n < t < m+1

n .

Then S̃n√
n
is a random element in C[0, 1].

Theorem 6.2 (Donsker’s Invariance Principle/functional CLT) The law of S̃n√
n
, as a probility distri-

bution on C[0, 1], converges weakly to the Wiener measure, the law of the Brownian motion.

In this section we will not rigorously define what is the Brownian motion, or the Wiener measure,
as it is a large subject studied in details in stochastic analysis. We will be content with establishing

the tightness of the law of S̃n√
n
, and have a better understanding of the central limit theorem.

First we want to reformulate the equi-continuity condition (6.2). For x ∈ C[0, 1] and δ > 0, we
define the modules of continuity of x at δ by

ω(x; δ) = sup
|t1−t2|<δ

|x(t1)− x(t2)|.

Then (6.2) is equivalent to
lim
δ→0

sup
n
ω(xn, δ) = 0. (6.4)

Proposition 6.3 Let µn be the law of random elements xn ∈ C[0, 1]. The (µn)n≥1 is tight if and only
if for every ε > 0, there exists C > 0 such that

µn{|xn(0)| > C} < ε, ∀n ≥ 1, (6.5)

and for every η > 0, there exists δ > 0 such that

µn{ω(xn, δ) > η} < ε, ∀n ≥ 1. (6.6)

Proof: The “only if” part is simple. We will prove the “if” part.
Let ε > 0. By (6.5), there exists C > 0 such that

µn(A0) ≥ 1− ε/2, n ≥ 1, A0 = {x : |x(0)| < C}.

By (6.6), there exist δk for all k ≥ 1 such that

µn(Ak) ≥ 1− ε/2k+1, n ≥ 1, Ak = {x : ω(x, δk) <
1

k
}.

Now let A =
⋂∞

k=0Ak and let Ā be its closure. By subadditivity, for all n ≥ 1 we have

µn(Ā) ≥ µn(A) ≥ 1−
∞∑
k=0

µn(A
c
k) ≥ 1− ε.

We will estabilish the tightness, by showing that Ā is a compact set in C[0, 1].
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It suffices to check the two conditions (6.3) and (6.4) on A. Let x ∈ A. We have |x(0)| ≤ C since
x ∈ A0. Since x ∈ Ak, ω(x, δk) ≤ 1

k for all k. Since ω(x, δ) is decreasing in δ, we have

lim
δ→0

sup
x∈A

ω(x, δ) ≤ lim sup
k→∞

1

k
= 0.

□

Now we will use Proposition 6.3 to show that µn = L( S̃n(·)√
n
) is tight.

(6.5) holds since S̃n(0) ≡ 0.
For (6.6), let η, δ > 0, and let m be such that m

2n < δ ≤ m
n . We claim that

µn{ω(x, δ) ≥ η} ≤
[n/m]∑
k=0

µn

(
max

km≤ℓ≤(k+1)m

∣∣∣Sℓ − Skm√
n

∣∣∣ ≥ η/3
)
. (6.7)

Indeed, let us decompose [0, 1] into intervals [0,m/n], [m/n, 2m/n], . . . , [(n− 1)/n, 1]. Then for |t1 −
t2| < δ ≤ m/n, the points t1 and t2 either fall into the same interval, or into two adjacent intervals,
or otherwise their distance will be larger than m/n which is impossible. On the union of the events
at the RHS of (6.7), if t1, t2 ∈ [km, (k + 1)/n], then

|S̃n(t1)− S̃(t2)| ≤ |S̃n(t1)− Sk|+ |S̃n(t2)− Sk| ≤
2
√
nη

3
,

or if km ≤ t1 < (k + 1)m ≤ t2 ≤ (k + 2)m,

|S̃n(t1)− S̃(t2)| ≤ |S̃n(t1)− Sk|+ |Sk+1 − Sk|+ |S̃n(t2)− Sk+1| ≤
√
nη.

Now let us continue (6.7). Since Xi are i.i.d., all the summmands in the sum are the same and
equal to the first one. We have

µn{ω(x, δ) ≥ η} ≤ 2

δ
µn

(
max
ℓ≤m

|Sℓ|√
n

≤ η/3
)

≤ 2

δ
µn

(
max
ℓ≤m

|Sℓ|√
m

≥ η/3
√
δ
)

=
C

λ2
P
(
max
ℓ≤m

|Sℓ| ≥ λ
√
m
)
,

where λ = η/3
√
δ. It remains to show for every ε > 0, there exists λ > 0 such that

lim sup
m→∞

λ2P
(
max
ℓ≤m

|Sℓ| ≥ λ
√
m
)
≤ ε. (6.8)

Note that by Kolmogorov’s maximal inequality Proposition 4.17, at best we have

λ2P
(
max
ℓ≤m

|Sℓ| ≥ λ
√
m
)
≤ Var(Sm)/m = EX2

1 ,

which cannot be made arbitrarily small.
We will use the following improvement of Proposition 4.17.

Lemma 6.4 Let Xm be independent with EXm = 0 and D2
n = Var(Sn). Then

P
(
max
1≤k≤n

|Sk| ≥ λDn

)
≤ 2P

(
|Sn| ≥ (λ−

√
2)Dn

)
. (6.9)
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Let us postpone the proof of Lemma 6.4 and see first why it is helpful. If applying Chebyshev’s
inequality on the RHS of (6.9), it is not better than Kolmogorov’s inequality. However, if Xm are
i.i.d., then by the central limit thoerem, Sn/

√
n⇒ N (0, 1), and hence

lim sup
n→∞

1

λ2
P
(
|Sn| ≥ (λ−

√
2)
√
n
)
=

2

λ2

∫ ∞

(λ−
√
2)

1√
2π
e−

x2

2 dx ≤ C
1

λ2
e−

(λ−
√
2)2

2 .

And (6.8) follows.
Proof of Lemma 6.4: Let T = inf{T : |Sk| ≥ λ

√
nDn}. Then we have

P(T ≤ n) ≤ P(Sn > (λ−
√
2)Dn) +

n−1∑
k=1

P(T = k, Sn < (λ−
√
2)Dn)

≤ P(Sn > (λ−
√
2)Dn) +

n∑
k=1

P(T = k, |Sn − Sk| >
√
2Dn).

Since {T = k} ∈ σ(X1, . . . , Xk) and |Sn − Sk| ∈ σ(Xk+1, . . . , Xn), they are independent, so we can
continue to get

P(T ≤ n) ≤ P(Sn > (λ−
√
2)Dn) +

n∑
k=1

P(T = k)P(|Sn − Sk| >
√
2Dn)

≤ P(Sn > (λ−
√
2)Dn) +

n∑
k=1

P(T = k)
1

2D2
n

Var(Sn − Sk)

≤ P(Sn > (λ−
√
2)Dn) +

n∑
k=1

P(T = k)
1

2

≤ P(Sn > (λ−
√
2)Dn) +

1

2
P(T ≤ n).

Rearranging the terms, we obtain (6.9). □

Finally, let us mention that any sequential limit of µn has the same finite dimensional distribution,
and hence the limit point is unique. Indeed, consider the bounded, continuous function

F (x) := exp
(
i
(
ξ1x(t1) + ξ2(x(t2)− x(t1)) + · · ·+ ξm(x(tm)− x(tm−1))

))
,

where ξk ∈ R and 0 ≤ t1 < · · · < tm ≤ 1. Then by the functional CLT,
∫
F (x) dµn converge. On the

other hand, by CLT,
∫
F (x) dµn as the ch.f. of the random vector

(
xn(t1), xn(t2)−xn(t1), . . . , xn(tm)−

xn(tm−1)
)

will converge to the ch.f. of N (0,diag{t1, t2 − t1, . . . , tm − tm−1}). The charaterizes the

f.d.d. of the Brownian motion.

6.3 *Tightness and weak-* convergence

(to be completed)

73



D
RA
FT

7 Poisson limit theorem and stable laws

After studying the CLT, one may wonder why is the normal distribution is so special, and what will
happen if the i.i.d. r.v.s do not have second moment. In this section, we will investigate this problem.

As a prototype, we consider Xn i.i.d. with P(|X1| > x) ∼ x−α for some α < 2. Note that α < 2
implies that E|X1|2 = ∞ since

E|X1|2 =
∫ ∞

0
2yP(|X1| ≥ y) dy.

We want to study the weak limit of Sn−bn
an

, where an, bn are properly chosen so that the limiting
distribution is non-degenerate. Motivated by the functional CLT, we can be more ambitious by asking
what is the function limit

L(t) = lim
n→∞

S[nt] − bn

an

as a random function of t.
The answer is that when E|X1|2 = ∞, the function L(t) is no longer continuous. If we record

the locations, t, and the sizes, ℓ, of all the jumps, then we get a random point process in the (t, ℓ)-
plane. This point process is a so-called Poisson Point Process, which enjoys the maximal degree of
independence of all point processes.

7.1 Poisson limit theorem and Poisson point processes

Recall that X ∼ Poi(λ) if P(X = k) = λk

k! e
−λ, k ≥ 0. Here, the probabilities sum up to one thanks to

the Taylor expansion eλ =
∑∞

k=0
λk

k! . The ch.f. of X is then given by

EeiξX =
∞∑
k=0

(eiξ)k
λk

k!
e−λ = eλ(e

iξ−1). (7.1)

The Poisson distribution models the cumulative effect of many rare events, as the following result
shows.

Theorem 7.1 (Poisson Limit Theorem) Let Xn,m ∼ Ber(pn,m) be independent. Assume that

n∑
m=1

pn,m → λ, n→ ∞,

and
max

1≤m≤n
|pn,m| → 0, n→ ∞. (7.2)

Then Sn := Xn,1 + · · ·+Xn,n ⇒ Poi(λ).

Proof: We will prove this by computing the ch.f.
By independence, we have

EeiξSn =
n∏

m=1

[
(1− pn,m) + pn,me

iξ
]
=

n∏
m=1

[
1 + pn,m(eiξ − 1)

]
.

By (7.2), |pn,m(eiξ − 1)| ≤ 1/2 for large n. Using Lemma 5.20, we have∣∣∣ log EeiξSn −
n∑

m=1

pn,m(eiξ − 1)
∣∣∣ ≤ n∑

m=1

∣∣pn,m(eiξ − 1)
∣∣2 ≤ max|pn,m| ·

n∑
m=1

pn,m → 0.
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This completes the proof. □

Next we define the Poisson point process on the measurable space (H,H) = (Rd,B(Rd)). In the
sequal the cases d = 1 or 2 are most relevant to us.

A Poisson point process (PPP) on (H,H) is a random counting measure ν on H, that is, for every
C ∈ H, ν(C) is a r.v. taking values in {0, 1, 2, . . . }∪{∞}. The quantity ν(C) counts how many points
fall into the set C, since the location of points are random, ν(C) is also random. In addition, the
distribution of all ν(C) is characterized by the following.

1. For every C ∈ H, either Eν(C) = ∞, or ν(C) ∼ Poi(Eν(C)). We define λ(C) := Eν(C). Then
λ(C) is a deterministic measure. We call λ the intensity of the PPP ν.

2. For disjoint C1, . . . , Cn ∈ H, the r.v.s ν(C1), . . . , ν(Cn) are independent.

Example 7.1 (Poisson process) Let H = R and λ be the Lebesgue measure on R. The process Nt = ν(0, t]
contains all the information of the PPP ν, and we call Nt is a Poisson process. The point process models the
arrival times of customers, where the waiting time for the next customer are i.i.d. Exp(1) r.v.s.

Example 7.2 (Compound Poisson) Let Yn be i.i.d. and Nt be the Poisson process, independent of all Yn. The
r.v.

Zt =

Nt∑
m=1

Ym

is called a compound Poisson. Note that Zt can be represented as an integral against a PPP on R2:

Zt =

∫
[0,t]×R

ℓ ν(dtdℓ),

where ν is a PPP on R2 with intensity λ = Leb⊗ µY .

Example 7.3 We can further generalize the compound Poisson as follows. Let ν be a PPP with intensity λ, and
let f be a measurable function such that

∫
H
|f(z)|λ(dz) <∞. Then we can study the r.v.

Z =

∫
f(z) ν(dz). (7.3)

7.2 stable law limit theorem

Let Xn ≥ 0 be i.i.d. with P(X1 > x) ∼ x−α where α < 2.

Proposition 7.2 Let 0 < a < b. Then

#{1 ≤ m ≤ n : Xm/n
1/α ∈ (a, b)} ⇒ Poi(a−α − b−α). (7.4)

Proof: The LHS of (7.4) can be written as sum of i.i.d. Bernoulli random variables,
∑n

m=1 ξn,m,
where

ξn,m = 1{Xm/n1/α∈(a,b)} ∼ Ber(pn),

and
pn = P(X1/n

1/α ∈ (a, b)) ∼ (a−α − b−α)n−1.

The conclusion then follows from Theorem 7.1. □

In fact, a much stronger statement holds. Consider the rescaled point process given by

νn =

n∑
m=1

δ(m
n
, Xm

n1/α
). (7.5)
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Proposition 7.2 says that for every rectangle R = (a, b)× [0, 1], νn(R) ⇒ Poi
(
λ(R)

)
, where

λ(dtdℓ) = Leb⊗ (1ℓ>0αℓ
−α+1 dℓ). (7.6)

One can show that the νn ⇒ a PPP with intensity λ given in (7.6).

With the representation (7.5), we can express
S[nt]

n1/α as

S[nt]

n1/α
=

∫
[0,t]×R

ℓ νn(dtdℓ).

In particular, the limit of Sn√
n1/α

should be related to∫
[0,1]×R

ℓ ν(dtdℓ), (7.7)

where ν is the PPP with intensity (7.6). This is a r.v. taking the form (7.3).
If we consider a more general tail condition

P(X1 > x) ∼ θx−α, P(X1 < −x) ∼ (1− θ)x−α, (7.8)

then the intensity of the corresponding PPP will be λ = Leb⊗ λα,θ where

λα,θ :=
(

1{ℓ<0}α(1− θ)ℓ−α−1 + 1{ℓ>0}αθℓ
−α−1

)
dℓ. (7.9)

Theorem 7.3 (Stable law limit theorem) Let Xn be i.i.d. that satisfy the tail condition (7.8). Let

an = inf{x : P(|X1| > x) ≤ n−1} ∼ n1/α, bn = nEX11{|X1|<an}.

Then Sn−bn
an

⇒ Y , where Y is a non-degenerate r.v. with ch.f.

EeiξY = exp
(
iξc+

∫ ∞

−∞
(eiξx − 1− iξx

1 + x2
)λα,θ(dx)

)
(7.10)

where c ∈ R and λα,θ is given by (7.9).

The proof of Theorem 7.3 is quite technical and we will try to understand the statement rather
than prove it. The connection between (7.10) and (7.7) can be seen through the following computation.

Proposition 7.4 Let ν be a PPP with intensity λ, and let f be a measurable function such that∫
|f | dλ <∞. Then

Eeiξ
∫
f dν = exp

(∫
(eiξf(x) − 1)λ(dx)

)
. (7.11)

Proof: We will prove (7.11) for f an indicator function, a simple function, and then a general
function in L1(dλ).

First, let f = 1A. Then
∫
f dν = ν(A) ∼ Poi(λ(A)) by the definition of PPP. Hence, by (7.1),

Eeiξ
∫
f dν = exp

(
λ(A)(eiξ − 1)

)
= exp

(∫
(eiξ1A(z) − 1)λ(dz)

)
,

since eiξ1A(z) − 1 = 0 ⇔ 1A(z) = 0.
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Next, let f(x) =
∑n

k=1 ck1Ak
(x) to be a simple function. We can assume that Ak are disjoint. By

definition of PPP, ν(Ak) are independent Poi(λ(Ak)) r.v.s, so we have

Eeiξ
∑

k=1 ckν(Ak) =

n∏
k=1

eλ(Ak)(e
iξck−1).

It is easy to check that
n∑

k=1

λ(Ak)(e
iξck − 1) =

∫
H
(eiξf(z) − 1)λ(dz).

Finally, for a general function f , we can approximate it by fn simple, with |fn| ≤ |f | and fn(z) →
f(z) for every z. It suffices to show that we can pass the limit on both sides of (7.11).

Note that
∫
|f | dλ <∞ implies that

E

∫
|f | dν =

∫
|f | dλ <∞,

so
∫
|f | dν <∞ for almost every ν, and hence by DCT on such ν,

lim
n→∞

∫
fn(z) ν(dz) =

∫
f(z) ν(dz).

Then by BCT,
lim
n→∞

Eeiξ
∫
fn(z) ν(dz) = Eeiξ

∫
f(z) ν(dz).

For the right hand side, since

|eiξfn(z) − 1| ≤ |ξ| · |fn(z)| ≤ |ξ| · |fn(z)|,

it follows from the DCT that

lim
n→∞

∫
(eiξfn(z) − 1)λ(dz) =

∫
(eiξf(z) − 1)λ(dz).

□

From Proposition 7.2, in (7.10) the term∫ ∞

−∞
(eiξx − 1)λα,θ(dx)

will correspond to ∫
[0,1]×R

ℓν(dtdℓ) ≈ Sn/n
1/α,

where ν is PPP with intensity λα,θ. The extra term iξx
1+x2 is to compesate the asmmetry of the tail of

X1; in the symmetric case θ = 1/2, the term can be dropped, since it is odd and λα,θ is even.
How do we understand the index α? In the proof of Theorem 7.3, one needs to the contribution

from small jumps and from big jumps. In (7.10) only contribution from big jumps matters; they
appear in the limiting PPP. We can compare the contribution from small jumps and big jumps from
the form of λα,θ. For simplicity, let us say the law of X1 is symmetric, and thus θ = 1/2. When α < 1,
the sum of small jumps are negligible compared to large jumps, since

E
∣∣∣ ∫ ε

−ε
ℓ ν(dℓ)

∣∣∣ ≤ ∫ ε

0
ℓ · α

ℓ−α−1
dℓ <∞, (7.12)
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while the large jumps contribute much more since∫ ∞

ε
ℓ−α dℓ = ∞.

When α ∈ (1, 2], the RHS of (7.12) is also ∞, but if we consider the cancellation of positive and
negative jumps, as the Kolmogorov’s one-series theorem suggest, we should integrate ℓ2 rather than
ℓ. Since ∫ ε

0
ℓ2ℓ−α−1 dℓ <∞, (7.13)

the sum of small jumps still converges, while the sum of large jumps diverges since∫ ∞

ε
ℓ2ℓ−α−1 dℓ = ∞. (7.14)

But when α > 2, the integral (7.13) will diverge, while the integral (7.14) is finite, so the main
contribution to the sum Sn is from small jumps, and since all jumps are small, we see a continuous
distribution as the limit; this intuition agrees with the Linderburg’s condition (5.24) and the equi-
continuity estimate (6.2) when we derive the functional CLT.

7.3 Stable laws and infinite divisible laws

Random variables with ch.f.s of the form (7.10) are called stable laws. Besides the ch.f., an “official”
definition for the stable law is the following.

Definition 7.1 A r.v. Y has stable law if for every k, there exist ak, bk such that

Y1 + · · ·+ Yk − bk
ak

d
= Y,

where Yj are i.i.d. and Yj
d
= Y . Here, X1 distX2 means that X1 and X2 have the same distribution.

The next theorem explains the word “stable”.

Theorem 7.5 A r.v. Y has stable law if and only if there exist i.i.d. r.v. Xn, constants an and bn
such that

X1 + · · ·+Xn − bn
an

⇒ Y.

Proof: The “only if” part follows from the definition with Xn
d
= Y .

For the “if” part, we only explain the intuition.
If Xn, an and bn exist, then for each k,

Y
d
= lim

n→∞

X1 + · · ·+Xkn − bkn
akn

= lim
n→∞

X1+···+Xn−bn
an

+ · · ·+ X(k−1)n+1+···+Xkn−bn
an

+ kbn−bkn
akn

akn/an

d
=
Y1 + · · ·+ Yk − ãk

b̃k
,

where

ãk = lim
n→∞

akn/an, b̃k = lim
n→∞

kbn − bkn
akn

. (7.15)
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So after we show that the two limits in (7.15) indeed exist, we know that Y has stable law. □

A closely related concept is infinitely divisible law. A r.v. Y has infinitely divisible law if for every

n ≥ 1, there exists Xn,1, . . . , Xn,n i.i.d. such that Y
d
= Xn,1 + · · · + Xn,n. Clearly, a stable law is

infinitely divisible, by taking Xn,k = Yk−bn/n
an

. Also, Y is infinitely divisible if and only if for every
n ≥ 1, the n-th root of its ch.f. is also a ch.f. for some r.v. (Xn,1). There is a characterization of
infinitely divisible laws similar to Theorem 7.5.

Theorem 7.6 A r.v. Y has infinitely divisible law if and only if there exist i.i.d. Xn,k such that
Xn,1 + · · ·+Xn,n ⇒ Y .

The celebrated Levy–Khinchin Theorem completely characterized the ch.f.s for infinitely divisible
law.

Theorem 7.7 [Levy–Khinchin] A r.v. Y has infinitely divisible law if and only if its ch.f. takes the
form

logφ(ξ) = icξ − σ2

2
ξ +

∫
(eiξx − 1− iξx

1 + x2
)µ(dx),

where c, σ ∈ R and µ is a measure with µ{0} = 0 and
∫

x2

1+x2 µ(dx) <∞.

We conclude by some examples of infinite divisible laws.

Example 7.4 1. Normal distribution. The ch.f. is eiµξ−
1
2σ

2ξ2 .

2. Stable laws. The ch.f. is given in (7.10).

3. Poisson distribution. The ch.f. is eλ(e
iξ−1).

4. Compound Poisson or integral against a PPP. The ch.f. is given in Proposition 7.4.

8 Martingales

8.1 Conditional expectation

8.1.1 Definition

Let (Ω,F ,P) be a probability space and G ⊂ F be a sub–σ-algebra. Let X be a r.v. with E|X| <∞.
The conditional expectation Y = E[X | G] is a r.v. that satisfies the following two properties:

Y is G-measurable,

EY 1A = EX1A, ∀A ∈ G. (8.1a)

Such r.v.s Y are not unique. We call each of them a version of E[X | G].
Let us look at a simple σ-algebra G = {∅, B,Bc,Ω} and take X = 1A. It is not hard to show that

any G-measurable map is a linear combination of 1B and 1Bc . Therefore,

E[1A | G](ω) = c11B(ω) + c21B(ω),

And we need to determine c1 and c2. Since B and Bc are in G, by (8.1a) we have

E1A1B = E
(
c11B + c21Bc

)
1B = c1P(B), E1A1Bc = E

(
c11B + c21Bc

)
1Bc = c2P(B

c).

So
c1P(B) = P(AB), c2P(B

c) = P(ABc).

There are three cases.
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1. If P(B),P(Bc) ̸= 0, then c1 = P(AB)
P(B) = P[A |B], c2 = P(ABc)

P(Bc) = P[A |Bc] are the classical
conditional probabilties.

2. If P(B) = 0 (and hence P(Bc) = 1), then c1 can be arbitrary and c2 = P(A), but the conditional
expectation is only undetermined on a zero measure set B.

3. If P(Bc) = 0 (and hence P(B) = 1), then c2 can be arbitrary and c1 = P(A), and this is similar
to the previous case.

Note that from elementary probability, we also avoid P[A |B] if P(B) = 0.
As a generalization of the previous example, suppose we can partition the sample space Ω into

disjoint union of at most countably many sets Ω =
⋃N

n=1Ωn, where P(Ωn) > 0 and 1 ≤ N ≤ ∞. Let
G = σ(Ωn, n ≥ 1). Then we have

E[X | G](ω) = EX1Ωn

P(Ωn)
, ω ∈ Ωn.

In particular, when X = 1A, we define the conditional probability of A w.r.t. G to be

P[A | G](ω) := P[A |Ωn] =
P(AΩn)

P(Ωn)
, ω ∈ Ωn.

8.1.2 Uniqueness and Existence

Since r.v.s are indistinguishable up to modification on zero measure sets, our best hope is that condi-
tional expection is unique in the almost sure sense. We start with a simple lemma.

Lemma 8.1 Let Y be a version of E[X | G]. Then E|Y | ≤ E|X|.

Proof: Since Y ∈ G, we have A = {Y ≥ 0} ∈ G. By (8.1a), we have

EY + = EY 1A = EX1A ≤ E|X|1A.

Similarly, Ac ∈ G and we have

EY − = −EY 1Ac = −EX1Ac ≤ E|X|1Ac .

□

Proof of a.s. uniqueness of conditional expectation: Let Y and Y ′ be two versions of E[X | G].
For every ε > 0, let Aε = {Y − Y ′ ≥ ε} ∈ G. By (8.1a), we have

P(Aε) ≤ E(Y − Y ′)1Aε = EX1Aε − EX1Aε = 0.

Therefore,

P(Y − Y ′ > 0) ≤
∞∑
n=1

P(A1/n) = 0.

By symmetry we also have P(Y ′ − Y > 0) = 0. Hence, P(Y ′ = Y ) = 1, as desired. □

For the existence of conditional expectation, we need the Radon–Nikodym Theorem, Theorem 1.17.
Let

ν±(A) = EX±1A, A ∈ G.
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For any disjoint An ∈ G, since E|X| <∞ and |X| ≥
∑N

n=1X
±1An , by DCT, we have

ν±(
∞⋃
n=1

An) = E lim
N→∞

N∑
n=1

X±1An = lim
N→∞

N∑
n=1

EX±1An =
∞∑
n=1

ν±(An).

Also, ν±(Ω) ≤ E|X| < ∞. So ν± are finite measures. Clearly, ν± ≪ P. By Theorem 1.17, there exist
r.v.s Y ± ∈ G such that ν±(A) = EY ±1A. Let Y = Y + − Y −. Then Y is a version of E[X | G].

Let X ∈ L1 and Y be an arbitrary r.v. We write E
[
X

∣∣σ(Y )
]
as E[X |Y ], since any σ(Y )-

measurable map has the form h(Y ) where h is a Borel measurable function. As another example, let
(X,Y ) be 2d random vector with density f(x, y), that is, for any B ∈ B(R2),

P
(
(X,Y ) ∈ B

)
=

∫
B
f(x, y) dxdy.

Proposition 8.2 Let g be bounded measurable. Then E
[
g(X)

∣∣Y ]
= h(Y ), where

h(y) =

{∫
g(x)f(x,y) dx∫
f(x′,y) dx′ ,

∫
f(x, y) dx ̸= 0,

c,
∫
f(x, y) dx = 0,

(8.2)

where c ∈ R is arbitrary.
This means that the conditional law “L[· |Y ]” has density

ρX|Y (x|y) =
f(x, y)∫
f(x′, y) dx′

.

Proof: Since σ(Y ) = {Y −1(B) : B ∈ B(R2)}, for any A ∈ σ(Y ), there exists some B0 such that
A = Y −1(B0), and 1A(ω) = 1B0

(
Y (ω)

)
. We have∫

h
(
Y (ω)

)
1A(ω)P(dω) =

∫
h
(
Y (ω)

)
1B0

(
Y (ω)

)
P(dω)

=

∫
h(y)1B0(y)f(x, y) dxdy

=

∫
1B0(y) dy

[∫
h(y)f(x, y) dx

]
=

∫
1B0(y) dy

∫
g(x)f(x, y) dx

=

∫
g(x)1B0(y)f(x, y) dxdy =

∫
g
(
X(ω)

)
1A

(
Y (ω)

)
P(dω).

That is, Eh(Y )1A = Eg(X)1A. In the fourth line, we have used∫
h(y)f(x, y) dx =

∫
g(x)f(x, y) dx, ∀y,

which follows from (8.2). Therefore, h(Y ) = E[X |Y ]. This completes the proof. □
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8.1.3 Properties of conditional expectation

Proposition 8.3 Let E|X|,E|Y | <∞.

1. (linearity) For all a, b ∈ R

E[aX + bY | G] = aE[X | G] + bE[Y | G].

2. (order preserving) If X ≤ Y , then

E[X | G] ≤ E[Y | G], a.s.

3. (conditional MCT) Let Xn ≥ 0, Xn ↑ X and EX <∞. Then

E[Xn | G] ↑ E[X | G], a.s.

Proof: For Item 1, we have for every A ∈ G,

E
(
1A · E[aX + bY | G]

)
= E1A(aX + bY ) = aE1AX + bE1AY

= aE
(
1A · E[X | G]

)
+ bE

(
1A · E[Y | G]

)
= E

(
1A ·

(
aE[X | G] + bE[Y | G]

))
.

For Item 2, consider Aε = {E[X | G]− E[Y | G] > ε} and proceed as in the proof of uniqueness.
For Item 3, let Yn = E[Xn | G]. Then by Item 2, Yn ↑ almost surely. Let Y be the a.s. limit of Yn.
For any A ∈ G, since Yn1A ↑ Y 1A a.s., by MCT we have

lim
n→∞

EYn1A = EY 1A.

Since Xn1A ↑ X1A, by MCT we have

lim
n→∞

EXn1A = EX1A.

But EXn1A = EYn1A by definition. Therefore, EX1A = EY 1A for every A ∈ G, so Y = E[X | G]. □

Using Item 3, it is not hard to establish Fatou’s lemma and DCT for conditional expectations.

Proposition 8.4 (Jensen inequality for conditional expectation) Let φ be convex. Suppose that E|X| <
∞ and Eφ(X) <∞. Then

E
[
φ(X)

∣∣G] ≥ φ
(
E[X | G]

)
, a.s. (8.3)

Remark 8.1 Recall that in proving the unconditional version Proposition 1.29, we took expectation of the
inequality φ(x) ≥ ax+ b, where we chose a and b so that ax+ b is a tangent line at x = EX. For the conditional
expectation, such strategy has a measurability problem. To take the conditional expectation of the inequality
φ(x) ≥ ax+ b, the numbers a and b will vary with the choice of E[X | G], which is not a fixed number and can
take values in an uncountable set such as R. The resulting inequality E[φ(X) | G] ≥ aE[X | G] + b only holds
outside a zero measure set depending on a and b, and since the uncountable union of negligible sets can fail to
be negligible (or even measurable), we cannot argue (8.3) holds a.s.

The idea of actual proof is deal with this issue.

Proof: All the straight lines below a convex function φ fully characterize it We can do better by
using a countable number of them, that is,

φ(x) = sup{ax+ b : a, b ∈ Q, φ(t) ≥ at+ b, ∀t}. (8.4)
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For every (a, b) in (8.4), by Proposition 8.3 there is a Na,b with P(Na,b) = 0 such that

E
[
φ(X)

∣∣G](ω) ≥ E[aX + b | G] = aE[X | G](ω) + b, ∀ω ∈ N c
a,b. (8.5)

Hence, when x ̸∈ N =
⋃

a,bNa,b, by (8.4) and (8.5) we have

E
[
φ(X)

∣∣G](ω) ≥ φ
(
E[X | G](ω)

)
. (8.6)

On the other hand, by σ-subadditiviy, P(N) ≤
∑

a,b P(Na,b) = 0, and hence (8.6) holds a.s. □

Below we prove some other useful properties for conditional expectation.

Proposition 8.5 E
(
E[X | G]

)
= EX.

Proof: It follows from (8.1a) by taking A = Ω. □

Proposition 8.6 Let p ≥ 1. Then E|X|p ≥ E
∣∣E[X | G]

∣∣p.
When p = 1, this is contained in the proof of Lemma 8.1.

Proof: Since x 7→ |x|p is convex for p ≥ 1, by Proposition 8.4 we have

E[|X|p | G] ≥
∣∣E[X | G]

∣∣p.
Taking expectation of both sides and using Proposition 8.5, we obtain the statement. □

Proposition 8.7 If Y ∈ G, then
E[XY | G] = Y E[X | G]. (8.7)

Proof: Let H be the collection of Y ’s such that (8.7) holds. Since we have linearity and MCT for
conditional expectation (Proposition 8.3), it suffices to show that H contains all indicator functions.

Let Y = 1B where B ∈ G. Let A ∈ G and we need to check (8.1a). Indeed,

E
(
1A · E[XY | G]

)
= EXY 1A = EX1A∩B = E

(
1A∩BE[X | G]

)
= E

(
1A ·

(
Y E[X | G]

))
.

This completes the proof. □

Proposition 8.8 If X is independent of G, then E[X | G] = EX, and if X ∈ G, then E[X | G] = X.

Proof: Let A ∈ G. If X and G are indepedent, then

E
(
1A · E[X | G]

)
= EX1A = EX · E1A = E(1A · EX).

This proves the first statement. The second statme is obvious.
□

Proposition 8.9 Let G1 ⊂ G2. Then

E
[
E[X | G1]

∣∣G2

]
= E

[
E[X | G2]

∣∣G1

]
= E[X | G1].

Proof: Since E[X | G1] ∈ G1 ⊂ G2, we have E
[
E[X | G1]

∣∣G2

]
= E[X | G1].

For the second one, let A ∈ G1, and we have

E
(
1A · E[X | G2]

)
= EE[1AX | G2] = E1AX = E

(
1A · E[X | G1]

)
,

and hence E
[
E[X | G2]

∣∣G1

]
= E[X | G1]. □

The conditional expectation can also be understood as a projection in a Hilbert space. This also
leads to a proof of Theorem 1.17 using Hilbert space theory. See LAX.
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Proposition 8.10 If EX2 <∞, then

E
(
X − E[X | G]

)2
= min

Y ∈G
E(X − Y )2. (8.8)

Proof: The space
H = {Z : EZ2 <∞}

is a Hilbert space, with the inner product EX · Y . The space H1 = {Z ∈ H : Z ∈ G} is a linear
subspace of H. By standard Hilbert space theory, the orthogonal projection Y = πH1(X) exists and
achieves the minimum in (8.8). In addition, the projection is characterized by

E(X − Y )Z = 0, ∀Z ∈ H1.

In particular, taking Z = 1A, A ∈ G, we see that Y = E[X | G]. □

8.1.4 Regular conditional expectation

Let X : (Ω,F) → (S,S) be a measurable map. One can take (S,S) =
(
Rd,B(Rd)

)
, but we allow more

generality here. Let G ⊂ F be a sub–σ-algebra.
We note that for every set A ∈ F , the conditional probability P[X ∈ A | G] exists a.s. We also

know the for any disjoint An,

P
[
X ∈

∞⋃
n=1

An

∣∣∣G] = ∞∑
n=1

P[X ∈ An | G], a.s., (8.9)

where the zero measure exceptional set in (8.9) will depend on A1, A2, . . . .
It is tempting to say that P[X ∈ · | G](ω) defines a probability measure on F . However, the σ-

additivity may not hold, since there are uncountably many ways of choosing A1, A2, . . . , so the union
of all exceptional sets in (8.9), may not be negligible. If one succeeds in finding a common negligible
set, it is called the regular conditional probability.

Definition 8.1 (regular conditional probability) A map µ : Ω×S → [0, 1] is called a regular conditional
probability of P(X ∈ ·) with respect to G, if

1. for a.e. ω, µ(ω, ·) is a probability measure on (S,S);

2. for every A ∈ S, µ(ω,A) is a version of P[X ∈ A | G].
Example 8.2 Let (X,Y ) have density f(x, y) and G = σ(Y ). Then

µ(ω,A) =


∫
A

f
(
x,Y (ω)

)
dx∫

R f
(
x,Y (ω)

)
dx
,

∫
R f

(
x, Y (ω)

)
dx ̸= 0,

0, else,

is a regular contional probabilty of µX w.r.t. σ(Y ).

For existence of the regular conditional probability, the key is to find a common negligible set. This
is possible when, say, a measure can be determined by its value on countably many sets A, by more
generally, by countable many test functions. For example, a measure µ on R is uniqueness determined
by µ(−∞, q] where q ∈ Q; A measure µ on a complete separable metric spaceM is uniquely determined
by

∫
f dµ where f ∈ Cc(M), the space of continuous functions on M which have compact support.

Note that Cc(M) is also separable, so this imposes countably many conditions.
The technical requirement for existence of regular conditional probability is for the space (S,S) to

be Borel, namely, there exists a map φ : (S,S) →
(
[0, 1],B[0, 1]

)
so that φ is 1-1 and both φ, φ−1 are

measurable. Complete, separable metric spaces, like R and C[a, b], are Borel spaces.
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8.2 Basic martingale theory

A filtration (Fn)n≥0 on (Ω,F ,P) is an increasing sub–σ-algebra of F .

Definition 8.2 A family of random variables (Mn)n≥1 is a (Fn)-martingale if Mn ∈ Fn and E|Mn| <
∞ for all n, and

E
(
Mn+1 | Fn

)
=Mn, n ≥ 1. (8.10)

If “=” in (8.10) is replaced by “≤” or “≥”, then (Mn) is called a super-martingale or a sub-martingale.

If the filtration is not specified, we take the natural filtration Fn = FM
n := σ(M1, . . . ,Mn). If

Xn ∈ Fn for all n ≥ 1, we say that (Xn) is adapted to the filtration (Fn). We also note that (8.10)
can be replaced by

E[Mn+m | Fn] =Mn, n ≥ 1, m ≥ 1,

since by Proposition 8.9 and the increasing property of (Fn),

E[Mn+n | Fn] = E
[
E[Mn+m | Fn+m−1]

∣∣Fn

]
= E[Mn+m−1 | Fn] = · · · = E[Mn+1 | Fn].

Example 8.3 Let Xi be independent random variables with EXi = 0. Then the partial sum Sn = X1 + · · ·+Xn

forms a martingale with respect to Fn = σ(X1, . . . , Xn), since by independence,

E[Sn+m | Fn] = X1 + · · ·+Xn + E(Xn+1 + · · ·+Xm) = Sn.

We say that such process Sn has “mean zero independent increment”.

Proposition 8.11 Let (Xn)n≥0 has mean zero independent increments. Then

1. (Xn)n≥0 is a martingale.

2. If Xn ∈ L2 for all n ≥ 0, then (X2
n − EX2

n)n≥0 is a martingale.

3. If for some λ ∈ R, EeλXn <∞ for all n ≥ 0, then
(

eλXn

EeλX−t

)
n≥0

is a martingale.

Proof:

1. This is obvious.

2. We have for all n ≥ 1,

E[X2
n+1 −X2

n | Fn] = E
[
(Xn+1 −Xn +Xn)

2 −X2
n

∣∣Fn

]
= E

[
(Xn+1 −Xn)

2
∣∣Fn

]
+ 2XnE[Xn+1 −Xn | Fn]

= E(Xn+1 −Xn)
2 = E(Xn+1 −Xn)(Xn+1 +Xn)− 2EXn(Xn+1 −Xn)

= EX2
n+1 − EX2

n.

3. We have for n ≥ 1,

E[eλXn+1 | Fn] = eλXnE[eλ(Xn+1−Xn) | Fn] = eλXnEeλ(Xn+1−Xn) = eλXn
EeλXn+1

EeλXn
.

□

We can use convex/concave function to generate new super- or sup-martingales.

Proposition 8.12 If (Mn)n≥1 is a martingale, and φ : R → R is a convex function, then
(
φ(Mn)

)
n≥1

is a sub-martingale.
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Proof: By Proposition 8.4, we have for all n ≥ 1 and m ≥ 1,

E
[
φ(Mn+m)

∣∣Fn

]
≥ φ

(
E[Xn+m | Fn]

)
= φ(Xn). (8.11)

□

The function |x|p (p ≥ 1) is convex. So if (Mn) is a martingale, then |Mn|p is a sub-martingale.

Proposition 8.13 If (Mn)n≥1 is a sub-martingale and φ : R → R is convex and increasing, then
(
φ(Mn)

)
n≥1

is also a sub-martingale.

Proof: Since φ is increasing and (Mn)n≥1 is a sub-martingale, the last equality in (8.11) will become

φ
(
E[Xn+m | Fn]

)
≥ φ(Xn),

and this completes the proof. □

The functions x ∨ a (a ∈ R) and in particular x+ = x ∨ 0 are convex and increasing. So if (Mn) is
a sub-martingale, then Mn ∨ a and M+

n are also sub-martingales.
Another way to create new smartingales is to use stopping times.

Definition 8.3 (stopping time) We say that a r.v. T ∈ {0, 1, . . . }∪{∞} is a stopping time w.r.t. (Fn)
if {T ≤ n} ∈ Fn for every n ≥ 1.

Proposition 8.14 If (Mn)n≥1 is a sub-martingale and T is a stopping time which is almost surely
finite, then (Mn∧T )n≥1 is a also sub-martingale.

In particular, if (Mn)n≥1 is a martingale, then (Mn∧T )n≥1 is also a martingale.

Proof: By definition we have

Mn∧T =

n∑
k=0

1{T=k}Mk + 1{T≥n+1}Mn.

Therefore,

E[M(n+1)∧T −Mn∧T | Fn] = E[1{T≥n+2}Mn+1 + 1{T=n+1}Mn+1 − 1{T≥n+1}Mn | Fn]

= E[1{T≥n+1}Mn+1 − 1{T≥n+1}Mn | Fn].
(8.12)

But {T ≥ n+ 1} = {T ≤ n}c ∈ Fn, so the last line of (8.12) is

1{T≥n+1}E[Mn+1 −Mn | Fn] ≥ 1{T≥n+1} · 0 = 0.

For the last statement, note that if (Mn) if and only if (Mn) and (−Mn) are both sub-martingales.
□

A more general way to generate new sub-martingales is to use a (discrete) martingale integration.
We say that a process (Hn) is predictable if Hn ∈ Fn−1 for all n. We define

(H ·X)n =

n∑
m=1

Hm(Xm −Xm−1), (8.13)

which can be thought of as the discrete Riemann–Steiljes integration
∫ t
0 Hs dXs. Clearly, (H ·X)n ∈ Fn

for all n.
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Proposition 8.15 If (Hn) is predictable and non-negative, and (Xn) is a sub-martingale, then (H ·X)n
is a sub-martingale.

If (Hn) is predictable and (Xn) is a martingale, then (H ·X)n is a martingale.

Proof: By (8.13), we have

E
[
(H ·X)n+1 − (H ·X)n

∣∣Fn

]
= E

[
Hn+1(Xn+1 −Xn)

∣∣Fn

]
= HnE[Xn+1 −Xn | Fn] ≥ 0, (8.14)

if Hn ≥ 0 and (Xn) is a sub-martingale. If instead (Xn) is martingale, then the RHS of (8.14) is 0
regardless of the sign of Hn, so (H ·X)n is a marginale. □

Example 8.4 If T is a stopping time, then Let Hn = 1{T≥n} where T is a stopping time. Since {T ≥ n} = {T ≤
n− 1}c ∈ Fn−1, the process (Hn) is predictable. Now

(H ·X)n =

n∑
m=1

1{T≥m}(Xm −Xm−1) = Xn∧T −X0,

so by Proposition 8.15, the process (H · Xn) is a sub-martingale if (Xn) is a sub-martingale, and we recover
Proposition 8.14.

8.3 Convergence of martingales

In this section we discuss the almost sure and L1-limits of martingales. The main tools are Doob’s
Up-crossing Theorem and uniform integrability.

Let (Xn) be (Fn)-adapted and a < b. Consider the following stopping times: T
(0)
b = −∞,

T (ℓ)
a = inf{t ≥ T

(ℓ−1)
b : Xn ≤ a}, T

(ℓ)
b = inf{t ≥ T (ℓ)

a : Xn ≥ b}, ℓ ≥ 1. (8.15)

In every interval [T
(ℓ)
a , T

(ℓ)
b ], the process (Xn) completes an up-crossing of [a, b]. The total number of

up-crossing in a given time interval [0, n] is defined by

UX
ab [0, n] = max{k : T

(k)
b ≤ n}.

Theorem 8.16 (Doob’s up-crossing inequality) Let (Xn)n≥1 be a sub-martingale, then

EUX
ab [0, n] ≤

1

b− a

(
E(Xn − a)+ − E(X0 − a)+

)
.

Proof: Let Yn = (Xn − a)+ If (Xn) is a sub-martingale, then (Yn) is also a sub-martingale since
x 7→ (x−a)+ is convex and increasing. In addition, Xn and (Yn) have the same number of up-crossing,
that is

UX
ab [0, n] = UY

ab[0, n], ∀n ≥ 1, ∀a < b. (8.16)

Let us define T
(ℓ)
a and T

(ℓ)
b using (Yn) in (8.15), and estimate UY

ab[0, n].
Let

Hm =

{
1, T

(ℓ)
a < m ≤ T

(ℓ)
b ,

0, else.
(8.17)

Since all T
(ℓ)
a and T

(ℓ)
b are stopping times, we have

{Hm = 1} =

∞⋃
ℓ=1

{T (ℓ)
a < m} ∩ {m ≤ T

(ℓ)
b } =

∞⋃
ℓ=1

{T (ℓ)
a ≤ m− 1} ∩ {m− 1 ≥ T

(ℓ)
b }c ∈ Fm−1.
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Hence (Hm) is predictable.
Let Km = 1 − Hm. By Proposition 8.15, both (H · Y )n and (K · Y )n are sub-martingales, so

E(K · Y )n ≥ E(K · Y )0 = 0. On the other hand, Hn +Kn ≡ 1. Combining these, we have

E(H · Y )n ≤ E(H · Y )n + E(K · Y )n =

n∑
m=1

E(Ym − Ym−1) = E(Xn − a)+ − E(X0 − a)+. (8.18)

Note that by (8.17),
E(H · Y )n ≥ UY

ab[0, n] · (b− a). (8.19)

The conclusion follows from (8.16), (8.18) and (8.19). □

An important observation is that there must be infinitely many up-crossing for a divergent se-
quence.

Proposition 8.17 If (Xn) is a sub-martingale, and supn EX
+
n < ∞. Then there exists X such that

Xn → X a.s.

Proof: The up-crossing number is increasing in n, and hence by assumption and Theorem 8.16,

EUX
ab [0,∞) = lim

n→∞
EUX

ab [0, n] ≤
supn EX

+
n + |a|

b− a
<∞.

This implies that UX
ab [0,∞) is a.s. finite r.v., with probability one, any interval [a, b] is being up-

crossed by at most finitely many times. As a consequence, for any fixed a and b, there exists Na,b with
P(Na,b) = 0 such that

lim inf
n→∞

Xn(ω) < a < b < lim sup
n→∞

Xn(ω), (8.20)

cannot happen on N c
a,b.

Then, on N c where N =
⋃

a,b∈QNa,b, (8.20) does not happen for all a, b ∈ Q, and hence

lim sup
n→∞

Xn(ω) = lim inf
n→∞

Xn(ω), ∀ω ∈ N c.

Note that P(N) ≤
∑

a,b∈Q P(Na,b) = 0. This shows that limn→∞Xn exists a.s. □

Example 8.5 If a martingale (Xn)n≥0 is non-negative, then EX+
n = EXn = EX0, and hence limn→∞Xn exists

by Proposition 8.17.

Next we will discuss the L1-convergence of smartingales. Recall the definition of uniform inte-
grability Definition 2.1, which gives a sufficient and necessary condition of L1-convergence for a.s.
convergence r.v.s ( Theorem 2.11).

Proposition 8.18 Let Z ∈ L1(Ω,F ,P). Then the collection of r.v.s

E[Z | G], G is a sub–σ-field of F ,

is uniformly integrable.

Proof: Since Z ∈ L1(Ω,F ,P), for every ε > 0, there exists δ > 0 such that E|Z|1A < ε when-
ever P(A) < δ.

We write Y = E[Z | G]. By Jensen inequality, we have |Y | ≤ E[|Z| | G], and hence for every A ∈ G,

E1A|Y | ≤ E
(
1A · E[|Z| | G]

)
= E|Z|1A.
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When A = Ω, the above inequality gives E|Y | ≤ E|Z| (or this is Proposition 8.6). Then by Chebyshev’s
inequality,

P(|Y | ≥M) ≤ E|Y |
M

≤ E|Z|
M

,

uniformly for all sub–σ-field G. Combining all these together we prove the statement. □

Proposition 8.19 A martingale (Xn) is uniformly integrable, if and only if there exists X∞ ∈ L1

such that Xn = E[X∞ | Fn].

Proof: The “only if” direction. Uniform integrability implies that supn E|Xn| < ∞, hence
Proposition 8.17 implies that there exists X∞ such that Xn → X∞ a.s. But (Xn) is also uniformly
integrable, so the limit is also in L1 by Theorem 2.11.

For any A ∈ Fn, since E[X∞ | Fn] ∈ Fn and Xn+m1A → X∞1A in L1, we have

E
(
E[X∞ | Fn]1A

)
= EX∞1A = lim

m→∞
EXn+m1A = lim

m→∞
E
(
E[Xn+m | Fn]1A

)
= EXn1A.

Since Xn ∈ Fn, by the definition of the conditional expectation, we have

E[X∞ | Fn] = Xn, a.s.

The “if” direction. It follows from Proposition 8.18. □

8.4 Optional Sampling Theorem

In this section, we assume all stopping times are a.s. finite.
Recall from Proposition 8.14 that if (Xn) is a martingale and T is a stopping time, then (Xn∧T )n≥1

is also a martingale. In particular,

EXn∧T = EX0∧T = EX0. (8.21)

Assume that Xn is bounded, then as n→ ∞, by BCT the LHS of (8.21) converges to EXT . Thus we
obtain the simplest form of the optional sampling theorem

Theorem 8.20 (optional sampling theorem) Let Xn be a (Fn)-martingale and T an (Fn)-stopping
time. Assume that Xn is bounded,

EXT = EX0.

The optional sampling theorem says that no strategy can guarantee profit in a fair game.
To prove a more general form of optional sampling theorem, let us introduce the stopping σ-algebra.

Definition 8.4 Let T be a stopping time. The stopping σ-algebra is

FT = {A ∈ F : A ∩ {T ≤ n} ∈ Fn, ∀n}.

Intuitively, FT contains the information before a stopping time T .

Example 8.6 Let m ≥ 0 and consider T = m (a constant time). Then T is a stopping time and FT = Fm.

We can compare the stopping σ-algebras for different stopping time, or extract information from
the stopping σ-algebra.

Proposition 8.21 If S ≤ T are two stopping times, then FS ⊂ FT .
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Remark 8.7 Since S ≤ T , “information before S” is less than “information before T”.

Proof: If A ⊂ FS , then for every n,

A ∩ {T ≤ n} =
(
A ∩ {S ≤ n}

)
∩ {T ≤ n} ∈ Fn.

So A ⊂ FT . This completes the proof. □

Proposition 8.22 If T is a stopping time and S ≥ T is random time such that S is FT -measurable,
then S is also a stopping time.

Proof: For each n ≥ 0, since {S ≤ n} ∈ FT ,

{S ≤ n} = {S ≤ n} ∩ {T ≤ n} ∈ Fn.

This completes the proof. □

Remark 8.8 The stopping time S will take the form S = f(T ) for some function f : N → N with f(m) ≥ m.

Theorem 8.23 Let (Xn)n≥0 be a martingale, and S ≤ T be two stopping times. Suppose that either

1. S, T are bounded, that is, there is a constant N > 0 such that S, T ≤ N , or

2. (Xn)n≥1 is uniformly integrable.

Then
XS = E[XT | FS ].

In particular, EXS = EXT = EX0.

Remark 8.9 The first condition implies that Xn = E[XN | Fn], and the second condition by Proposition 8.19
implies that

Xn =

{
E[X∞ | Fn], n <∞
X∞, n = ∞.

(8.22)

So both conditions implies that there is a r.v. Z ∈ L1 such that Xn = E[Z | Fn] for all n that we care about.

Proof: Let Z = XN if the first condition holds and Z = X∞ if the second condition holds. Then
(8.22) holds with X∞ = Z. It suffices to show

XT = E[Z | FT ]. (8.23)

Indeed, if (8.23) holds, since FS ⊂ FT , we have

E[XT | FS ] = E
[
E[Z | FT ]

∣∣FS

]
= E[Z | FS ] = XS .

Now let us prove (8.23). For all A ∈ FS , we have

E
(
E[Z | FS ]1A

)
= EZ1A =

∞∑
n=1

EZ1A∩{T=n} + EZ1A∩{T=∞}

=

∞∑
n=1

E
(
1A∩{T=n} · E[Z | Fn]

)
+ EZ1A∩{T=∞}

=

∞∑
n=1

E1A∩{T=n}Xn + EZ1A∩{T=∞}

= EXT1A,

where in the second line we use that A ∩ {T = n} ∈ Fn since T is a stopping time. □
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Example 8.10 We can recover Proposition 8.14. If T is a stopping time, (Mn)n≥1 is a martingale, then
(Mn∧T )n≥1 is also a martingale, since

E[Mn∧T |Fm∧T ] =Mm∧T , ∀n > m,

by Theorem 8.23 and the boundedness of the stopping time n ∧ T , m ∧ T .

Note: convert this example to simple random walk.We will also mention the Optional Sampling
Theorem for sub-/super-martingales.

Definition 8.5 A smartingale (Xn)n≥1 has a last element/is closed by X∞, if there exists X∞ ∈ L1

such that (Xn)0≤t≤∞ forms a smartingale.

Example 8.11 If (Mn)n≥1 is a martingale, then by Proposition 8.19, it has a last element if and only if it is
uniformly integrable. In addition, M∞ is the a.s. and L1 limit of Mn.

Example 8.12 If (Xn)n≥1 is a non-negative super-martingale, then it always has a last element X∞ = 0, since
it is trivially true that

Xn ≥ 0 = E[X∞|Fn], ∀n ≥ 1.

But having a last element is weaker than uniform integrability. Consider Xn = 1 + Sn∧T−1
which is a

martingale and hence super-martingale. It is non-negative. It is easy to see that

X∞ = lim
t→∞

Xn = 1 + ST−1
= 0,

but 1 = limt→∞ EXn ̸= EX∞ = 0, so it cannot be uniformly integrable.

Theorem 8.24 Let (Xn)n≥1 is a sub-martingale and S ≤ T be two stopping times. If either

1. S, T are bounded, or

2. (Xn)n≥1 has a last element X∞ ∈ L1,

then
E[XT | FS ] ≥ XS . (8.24)

A similar statement also holds for super-martingale.

Remark 8.13 The argument in Theorem 8.23 no longer works since the conclusion of the theorem cannot be
derived from E[X∞ | FT ] ≥ XT .

Proof: Let A ∈ FS and
Hn = 1A · 1{S<n≤T}.

Then (Hn) is predictable since

{Hn = 1} =
(
A ∩ {S ≤ n− 1}

)
∩ {T ≥ n− 1}c ∈ Fn−1, ∀n ≥ 1.

By Proposition 8.15,

(H ·X)0 = 0, (H ·X)n =

n∑
k=1

Hk(Xk −Xk−1), n ≥ 1,

is a sub-martingale. In particular, for all n ≥ 1

0 = E(H ·X)0 ≤ E(H ·X)n = E(XT∧n −XS∧n)1A∩{S<T}.
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But XT∧n = XS∧n on {S = T}, so we obtain

E(XT∧n −XS∧n)1A ≥ 0, ∀n ≥ 1, A ∈ FS . (8.25)

If T is bounded, then there exists N such that T ≤ N a.s., and taking n = N + 1 in (8.25) gives

E(XT −XS)1A ≥ 0.

and this proves (8.24).
If (Xn) has a last element, without loss of generality we can assume X∞ = 0, otherwise we can

consider X ′
n = Xn − E[X∞ | Fn], and (8.24) is equivalent to

E[X ′
T | FS ] ≥ X ′

S ,

by Theorem 8.23, and (X ′
n) has a last element 0.

If T is unbounded but S ≤ N is bounded, then since −Xn ≥ 0, by Fatou we have

−EXS1A = −EXS∧(N+1)1A ≥ lim inf
n→∞

E(−XT∧n)1A ≥ E(−XT )1A∩{T<∞}.

By adding 0 = E−X∞1A∩{T=∞} to both sides, we obtain

−EXS1A ≥ −EXT1A. (8.26)

This proves (8.24).
Now we need to treat the case where S is unbounded. For every m ≥ 1, S ∧ m is a bounded

stopping time. In addition, {S = m} ∩A ∈ FS∧m since

(
{S = m} ∩A

)
∩ {S ∧m ≤ n}

{
= {S = m} ∩A ∈ Fm ⊂ Fn, m ≤ n,

= ∅ ∈ Fn, m ≥ n+ 1.

From what we have proven, we have

−EXS1{S=m}∩A = −EXS∧m1{S=m}∩A ≥ −EXT1{S=m}∩A. (8.27)

Summing (8.27) over m ∈ {0, 1, . . . }, we have

−EXS1{S<∞}∩A ≥ −EXT1{S<∞}∩A.

Noting that X∞ = 0, and S = ∞ implies T = ∞, we can remove {S < ∞} on both sides to obtain
(8.26). This completes the proof. □

8.5 Doob’s Maximal inequality

We will state the maximal inequality for sub-martingales. Similar statements also hold for super-
martingales.

Theorem 8.25 Let (Xn)n≥1 be a sub-martingale and λ > 0. Then

λP
(
max

0≤m≤n
Xm > λ

)
≤ EX+

n , (8.28)

λP
(

inf
0≤m≤n

Xm < −λ
)
≤ EX+

n − EX0. (8.29)
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Proof: Write the event in (8.28) as A and let T = min{m : Xm ≥ λ}. Then A = {T ≤ n}. Since X
is a sub-martingale, X+ is also a sub-martingale. By Theorem 8.24 we have

EX+
n ≥ EX+

n∧T ≥ EX+
n∧T1{T≤n} = λP(A).

This proves (8.28).
Write the event in (8.29) by B and let S = min{m : Xm ≤ λ}. Then B = {S ≤ n}. Again by

Theorem 8.24, we have

EX0 ≤ EXn∧S = EXn1{T>n} + EXT1{T≤n}

≤ EXn1{T>n} − λP(B) ≤ EX+
n − λP(B),

and (8.29) follows. □

Proposition 8.26 Let (Mn)n≥1 be a continuous martingale. Then for every λ > 0,

λP
(
max

0≤m≤n
|Mm| ≥ λ

)
≤ E|Xn|.

Proof: We apply (8.28) in Theorem 8.25 to the sub-martingale (|Mn|)n≥1. □

For martingales, we also have the control on the maximum of Lp norm.

Theorem 8.27 Let (Mn)n≥1 be a martingale. Then for every p > 1,

E max
0≤m≤n

|Mm|p ≤
( p

p− 1

)p
E|Xn|p.

Proof: Let Y = max0≤m≤n|Mm|. Since (|Mn|)n≥1 is a sub-martingale, we have

λP(Y ≥ λ) + E|Mn|1{Y <λ} ≤ E|Mn|,

and hence

P(Y ≥ λ) ≤ 1

λ
E|Mn|1{Y≥λ}.

Now

EY p = p

∫ ∞

0
λp−1P(Y ≥ λ) dλ

≤ p

∫ ∞

0
λp−2E

(
|Mn|1{Y≥λ}

)
= E

(
|Mn|

∫ Y

0
pλp−2 dλ

)
=

p

p− 1
· E

(
|Mn| · Y p−1

)
≤ p

p− 1

(
E|Mn|p

)1/p(
EY p

)p/(p−1)
.

The last line is Hölder’s inequality. Hence, if EY p <∞, then we can divide both sides by
(
EY p

)p/(p−1)

and then take the p-th power to get EY p ≤
( p
p−1

)p
E|Mn|p. To treat the general case where EY p <∞

is not known, we use truncation, that is, we first get the estimate

E(Y ∧m)p ≤
( p

p− 1

)p
E|Mn|p

for the bounded r.v. (Y ∧m) with any m > 0. Then we let m → ∞ and get the desired conclusion.
□

93



D
RA
FT

9 Examples of martingales

9.1 Radon–Nikodym derivatives

Proposition 9.1 Let N ∈ N ∪ {∞}.

1. Let P and P̃ be two probability measures on (Ω,F) and (Fn)0≤n≤N a filtration Let Pn and P̃n be
the restriction of P and P̃ on Fn. Suppose that P̃ ≪ P. Then P̃n ≪ Pn, and the Rydon–Nikodym
derivatives are

Zn =
dP̃n

dPn
= E

[dP̃
dP

∣∣∣Fn

]
, 0 ≤ n ≤ N, (9.1)

which form a martingale.

2. Let (Zn)0≤n<N be a (Fn)-martingale on (Ω,F ,P) with F = σ(Fn, n ≥ 0). Then

P̃(A) = E1A(ω)Zn(ω), ∀A ∈ Fn, 0 ≤ n < N, (9.2)

defines a probability measure P̃ on (Ω,F).

In addition, if (Zn)0≤n<N is u.i. and thus ZN = limn→N Zn exists in L1 and a.s., then P̃ ≪ P

and ZN = dP̃
dP .

Proof: Part 1. Let A ∈ Fn. We have

Pn(A) = 0 ⇒ P(A) = 0 ⇒ P̃(A) = 0 ⇒ P̃n(A) = 0.

Hence, P̃ ≪ P implies that P̃n ≪ Pn.
To show that (Zn)n≥0 is a martingale, it suffices to show the second equality in (9.1). Let A ∈ Fn.

Then by the definition of Radon–Nikodym derivatives,

P̃n(A) = E1A
dP̃n

dPn
, P̃(A) = E1A

dP̃

dP
.

Hence, for all A ∈ Fn,

E1A
dP̃n

dPn
= E1A

dP̃

dP

Therefore, the second equality in (9.1) follows from the definition of conditional expectation.
Part 2. First, we need to check that P̃ is well-defined: for m < n, (9.2) gives two definitions

for P̃(A) if A ∈ Fm ⊂ Fn,
P̃(A) = E1AZn, P̃(A) = E1AZm;

they are equal since Zn is (Fn)-martingale.
Suppose now that Zn exists. For any A ∈ Fn, {1AZm, m ≥ n} is u.i. since Zm are u.i. Then,

P̃(A) = lim
m→N

E1AZm = E1AZN .

Since P̃(A) = E1AZN holds for any A ∈ Fn, n ≥ 0, it holds for any A ∈ F = σ(Fn, n ≥ 0). Therefore,
we have P̃ ≪ P and ZN is the Radon–Nikodym derivative.

□

Specialized to the case of product measures (Ω,F) = (RN,B(RN)), we have the following Kakutani’s
dichotomy.
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Let us consider two product measures on (Ω,F) = (RN,B(RN)):

P = G1 ⊗G2 ⊗G3 ⊗ · · · , P̃ = F1 ⊗ F2 ⊗ F3 ⊗ · · · .

Assume that Fn ≪ Gn, and qn = dFn
dGn

> 0, Gn-a.s. Then,

Xn =
dP̃n

dPn
= q1q2 · · · qn

is a (Fn)-martingale. Since P and P̃ , the r.v.s qn are independent. By Proposition 9.1, (Xn) is a
martingale. Since Xn ≥ 0, by Proposition 8.17 there exists an almost sure limit X of Xn. What’s
more,

{ lim
n→∞

Xn > 0} = {
∞∑
n=1

log qn > −∞}

is a tail event and has probability 0 or 1 by Kolmogorov’s zero-one law Theorem 4.16.

Theorem 9.2 P̃ ≪ P or P̃ ⊥ P, according as
∏∞

m=1

∫ √
qm dGm > 0 or = 0.

See [Dur19, Theorem 4.3.8] for a proof.

9.2 Simple random walks on Rd

Let ξn be i.i.d. with P(ξn = ±1) = 1/2. For x ∈ Z, we call

X0 = x, Xn := x+ ξ1 + · · ·+ ξn, n ≥ 1, (9.3)

a simple random walk on Z starting from x.
For y ∈ Z, the hitting time of y is

Ty = inf{n ≥ 0 : Xny} ∈ N ∪ {∞}.

The hitting times Ty are stopping times. We ask two questions about the stopping times Ty: what
is the hitting probability P(Ty <∞), and what is the distribution of Ty if it is finite a.s.?

We can also define the simple random walk on Zd. Let ei, 1 ≤ i ≤ d, be the unit vectors in Zd.
For a simple random walk Xn in Zd, in (9.3) ξk will be i.i.d. random vectors with distribution

P(ξk = ±ei) =
1

2d
, 1 ≤ i ≤ d.

We say that Xn is recurrent if
P(Ta <∞) = 1, ∀a ∈ Zd,

and transient if
P(Ta = ∞) > 0, ∀a ∈ Zd \ {x}.

We will show that the simple random walks is recurrent if d ≤ 2, and transient if d ≥ 3.

We first investigate the case of dimension one. Let x = 0 and a < 0 < b. Since Xn is a martingale,
by Theorem 8.23 applied to the bounded stopping time Ta ∧ Tb ∧ n, we have

EXTa∧Tb∧n = EX0 = 0. (9.4)

To take the limit n→ ∞ in (9.4), we need to show first P(Ta ∧ Tb <∞) = 1.
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Proposition 9.3 There exists ρ < 1 such that

P
(
Ta ∧ Tb ≥ k(b− a)

)
≤ ρk.

In particular, P(Ta ∧ Tb <∞) = 1.

Proof: Let M = b− a. For every x ∈ [a, b], we have

P
[
Xn+M ̸∈ (a, b)

∣∣Xn = x
]
≥ 1

2M
.

Writing T = Ta ∧ Tb, we have

P
[
T ≥ (k + 1)M

∣∣T ≥ kM
]
≤ max

x∈[a,b]
P
[
X(k+1)M ∈ (a, b)

∣∣XkM = x
]
≤ (1− 2−M ) =: ρ < 1.

Therefore,

P(T ≥ kM) = P
[
T ≥ kM

∣∣T ≥ (k − 1)M
]
· P

[
T ≥ (k − 1)M

∣∣T ≥ (k − 2)M
]
· · · · · P(T ≥M) ≤ ρk.

□

Assume that the random walk Xn starts from x = 0. Applying Theorem 8.23 to the martingale
(9.3) and the bounded stopping time Ta ∧ Tb ∧ n, we obtain

EXTa∧Tb∧n = EX0 = 0. (9.5)

Since Ta ∧ Tb is finite a.s. by Proposition 9.3, we have

lim
n→∞

XTa∧Tb∧n = XTa∧Tb
, a.s.

Using the trivial bound |XTa∧Tb∧n| ≤ |a| ∨ |b|, by BCT we can take the limit n→ ∞ in (9.5) to obtain

0 = E lim
n→∞

XTa∧Tb∧n = EXTa∧Tb
= aP(Ta < Tb) + bP(Ta > Tb). (9.6)

The event {Ta = Tb} can is possible, if Ta = Tb = ∞, but it has zero probability due to Proposition 9.3
again. Since the two probabilities on the RHS of (9.6) sum up to one, we have from solving a linear
equation

P(Ta < Tb) =
b

b− a
, P(Ta > Tb) =

−a
b− a

. (9.7)

In (9.7) taking b ↑ ∞, since Tb ≥ b, we have Tb ↑ ∞ and hence

P(Ta <∞) = lim
b↑∞

P(Ta < Tb) = lim
b↑∞

b

b− a
= 1.

Similarlly P(Tb <∞) = 1.
We can use the martingale (X2

n−n) (see Proposition 8.11) to compute expectation of hitting times.
As before we start with an identity obtained from the optional sampling theroem:

EX2
Ta∧Tb∧n − (Ta ∧ Tb ∧ n) = 0. (9.8)

Since Ta ∧ Tb ∧ n is bounded we can rewrite (9.8) to obtain

EX2
Ta∧Tb∧n = E(Ta ∧ Tb ∧ n).
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We can pass the limit n → ∞ into the expectation, using MCT on the LHS, and BCT on the right
hand side. Combining the resulting equation with (9.7) we get

E(Ta ∧ Tb) = EX2
Ta∧Tb

=
ba2 − ab2

b− a
= −ab.

Taking a ↓ −∞ or b ↑ ∞, by MCT we have ETa = ETb = ∞.

Next we investigate the recurrence of simple random walks in dimensions d ≥ 2. The goal is to use
optional sampling theorem to show that the random walk is recurrent in d = 2 and transient in d ≥ 3.

To mimic the case of dimension one, we need to define certain hitting times and find a proper
function f so that f(Xn) is a martingale to apply the optional sampling theorem. Let |x|∞ =
max1≤i≤d|xi| be ℓ∞-norm of x = (x1, . . . , xd) ∈ Zd. Let

BR = {x ∈ Zd : |x|ℓ∞ ≤ R}

be the ℓ∞-ball of radius R, and
∂BR = {x ∈ Zd : |x|ℓ∞ = R}

be its boundary. For 0 < a < |X0| < b, we define

Ta = inf{n ≥ 0 : Xn ∈ Ba} = inf{n ≥ 0 : Xn ∈ ∂Ba}, Tb = inf{n ≥ 0 : Xn ̸∈ Bb} = inf{n ≥ 0 : Xn ∈ ∂Bb}.

Here, we can choose other ℓp-norm, but then the boundary of balls and the hitting times will have a
less cleaner form.

What makes f(Xn) a martingale? A direct computation gives

E
[
f(Xn+1)−f(Xn)

∣∣Fn

]
= E

[
f(Xn+1)−f(Xn)

∣∣Xn

]
=

1

2d

[ d∑
i=1

f(Xn+ei)+f(Xn−ei)
]
−f(Xn) =: (∆̄f)(Xn),

where ei is the unit vector in the i-th direction. We call ∆̄ the discrete Laplacian. The name comes
from the following computation. Let f ∈ C3. Then by Taylor expansion with the Lagrange remainder,
for h > 0,

1

2d

d∑
i=1

[
f(x+ hei) + f(x− hei)− 2f(x)

]
=

1

2d
(∆f)(x)h2 +

1

2d · 6

d∑
i=1

[
∂3xi

f(ξ+i ) + ∂3xi
f(ξ−i )

]
h3. (9.9)

This means that the difference between 1
2d∆f and ∆̄f is of higher order, hence the name of ∆̄.

The computation (9.9) suggests that ∆f should be close to 0. In fact, functions with ∆f = 0
is harmonic functions, and radially symmetric harmonic functions in Rd is the so-called fundamental
solutions for the Laplace equation whose explicit forms are known:

Φ(x) =


|x|, d = 1,

c log|x|, d = 2,

c|x|2−d, d ≥ 3.

Here |x| is the Euclidean norm (that is, the ℓ2-norm).
Assume for a moment that Φ(Xn) is a martingale, and that Φ(∂Ba) = Φ(a) and Φ(∂Bb) = Φ(b).

Similar to (9.6), we obtain

EΦ(x) = EΦ(XTa∧Tb
) = Φ(a)P(Ta < Tb) + Φ(b)P(Tb > Ta),
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where x = X0 ∈ Bb \Ba. Again, from Proposition 9.3 we have Tb <∞ almost surely. Then

P(Ta < Tb) =
Φ(x)− Φ(b)

Φ(a)− Φ(b)
, P(Ta > Tb) =

Φ(a)− Φ(x)

Φ(a)− Φ(b)
.

When taking the limit b → ∞, depending on the form of Φ, there are two cases. When d = 2,
since Φ(b) ↑ ∞, we have

P(Ta <∞) = lim
b→∞

Φ(x)− Φ(b)

Φ(a)− Φ(b)
= 1. (9.10)

This means that the random walk will return to a ball almost surely, which implies recurrence.
When d ≥ 3, since Φ(b) ↓ 0, we have

P(Ta <∞) =
Φ(x)

Φ(a)
< 1. (9.11)

This means that there is positive probability that the random walk escape to ∞, which is transience.
In conclusion, the key difference between d = 2 and d ≥ 3, is that the fundamental solutions have
different asymptotic behaviour at ∞.

Now let us give a more rigorous argument, in which we need to control the difference between f
and Φ. We want to find f = fa,b defined on Bb \Ba such that

∆̄f = 0, Bb \Ba, f = Φ, ∂Bb ∪ ∂Ba. (9.12)

Writing f(x) = Φ(x) + v(x), we need to find v(x) that satisfies the discrete Laplace equation{
∆̄v(x) = −∆̄Φ(x) =: g(x), x ∈ Bb \Ba,

v(x) = 0, x ∈ ∂Bb ∪ ∂Ba.

A direct computation gives

|∆̄Φ(x)| ≤ Cmax|∂3xi
Φ| ≤ C1

|x|d+1

for some constant C1 > 0.
Next, we perform the argument of comparison principle/maximum principle, which is common in

studying elliptic PDEs. Let ṽ(x) = M
|x|d−1 ± v(x) with M to be chosen. A direct computation gives

∆̄
1

|x|d−1
≥ C2

|x|d+1

for some constant C2 > 0. Then, by choosing M sufficiently large, we have ∆̄ṽ ≥ 0 in Bb \ Ba. For
such ṽ, the maximum of the function must be achieved on the boundary, since for an interior point x0,

ṽ(x0) ≤ max{ṽ(x0 ± ei)}.

Hence,

max
Bb\Ba

ṽ(x0) ≤ max
∂Bb∪∂Ba

ṽ(x0) ≤
M

ad−1
,

and we have
|Φ(x)− f(x)| ≤ Ca−d+1. (9.13)

If f solves (9.12), then f(Xn) is a martingale. By optional sampling theorem we have

f(x) = EΦ(XTa)1{Ta<Tb} +Φ(XTb
)1{Ta>Tb}. (9.14)
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Concerning the discrepency between the ℓ2-norm and the ℓ∞-norm, we define

Φ+(R) = max
x∈∂BR

Φ(x), Φ−(R) = min
x∈∂BR

Φ(x).

From (9.14) we obtain

Φ−(a)P(Ta < Tb) + Φ−(b)P(Ta > Tb) ≤ f(x) ≤ Φ+(a)P(Ta < Tb) + Φ+(b)P(Ta > Tb).

Using P(Ta < Tb) + P(Ta > Tb) = 1, we have

Φ−(b)− f(x)

Φ−(b)− Φ−(a)
≤ P(Ta < Tb) ≤

Φ+(b)− f(x)

Φ+(b)− Φ+(a)
(9.15)

when d = 2 (and thus Φ±(b) ≥ Φ±(a)), and

Φ+(b)− f(x)

Φ+(b)− Φ+(a)
≤ P(Ta < Tb) ≤

Φ−(b)− f(x)

Φ−(b)− Φ−(a)
(9.16)

when d ≥ 3. We obtain (9.10) and (9.11) from (9.13), (9.15) and (9.16).

9.3 Random walks on R

In this section we consider random walks in R. As our state space is simpler, we can consider random
walks that take more general jumps. To model it, let ξn be i.i.d. r.v.s, and we define

Xn = ξ1 + ξ2 + · · ·+ ξn. (9.17)

Our goal is to prove the following.

Theorem 9.4 Consider Xn in (9.17). One of the four scenarios will happen.

1. Almost surely, Xn = 0 for all n ≥ 0.

2. Almost surely, Xn → ∞ as n→ ∞.

3. Almost surely, Xn → −∞ as n→ ∞.

4. Almost surely,
lim sup
n→∞

Xn = ∞, lim inf
n→−∞

Xn = −∞. (9.18)

Recall that the SLLN says, if Eξ1 ∈ [−∞,∞] makes sense, then

Xn

n
=
ξ1 + · · ·+ ξn

n
→ Eξ1 (9.19)

almost surely. If Eξ1 > 0 or Eξ1 < 0, then (9.19) means that Item 2 or Item 3 holds; if P(ξ1 = 0) = 1,
then Item 1 holds. The most complicate case Item 4 happens when Eξ1 = 0 or Eξ1 undefined.

We will give two proofs of (9.18). The first proof is based on the Hewitt–Savage zero-one law, and
the second on analysis of a bounded increment martingale.

Let F = σ(ξ1, ξ2, . . . ). We say that an event A ∈ F is permutable if it is no changed under any
finite permuation π of ξ1, ξ2, . . . , that is,

A = f(ξ1, ξ2, . . . ) = f(ξπ(1), ξπ(2), . . . ) =: A ◦ π

where π : N → N is a bijection so that π(i) = i, i ≥ i0 for some i0 ≥ 1. We define the exchangeable σ-
algebra to be

E = σ(A;A permutable).

99



D
R
A
FT

Example 9.1 1. The tail σ-algebra is contained in E .
To see this, let A ∈ T and π be a finite permutation. Since A ∈ T , we know A ∈ σ(ξi0 , ξi0+1, . . . ). Since π
does not exchange ξi after i0, we have A = A ◦ π. Since this is true for all π, we conclude that A ∈ E .

2. The inclusion T ⊂ E is strict. In fact, let c(ω) = lim supn→∞Xn(ω), then

{c(ω) > a} ∈ E \ T .

The Hewitt–Savage zero-one law guarantees that E is trivial if ξn are i.i.d.; see [Dur19, Thereom
2.5.4] Hence, there exists a constant c∗ such that

lim sup
n→∞

Xn(ω) = c∗,

since any E-measurable r.v.s are constant. To see that c∗ ∈ {−∞,∞} almost surely, let us consider

X̃n(ω) = ξ2 + ξ3 + · · · = Xn(ω)− ξ1. (9.20)

By Hewitt-Savage, there exists a constant c̃∗ such that lim supn→∞ X̂n(ω) = c̃∗ almost surely. Since ξn
are i.i.d., (ξ1, ξ2, . . . ) and (ξ2, ξ3, . . . ) have the same law, so c∗ and c̃∗ have the same law as r.v.s., and
hence c∗ = c̃∗. Using (9.20), we obtain c∗ = ξ1 + c∗ almost surely. Since ξ1 is not identically zero, this
can happen only if c∗ ∈ {−∞,∞}.

For the second proof, we will impose a stronger condition that |ξn| ≤M for someM > 0. Then Xn

is a martingale with |Xn+1 −Xn| ≤M . We say that Xn is a martingale with bounded increments.

Proposition 9.5 If (Xn) is a martingale with bounded increment, then almost surely, either

lim
n→∞

Xn ∈ (−∞,∞) exists, (9.21)

or
lim sup
n→∞

Xn = ∞, lim inf
n→∞

Xn = −∞. (9.22)

As an application, if Xn = ξ1+ξ2+ · · ·+ξn where ξi are i.i.d. and not identical, then (9.21) cannot
happen since for some ε > 0,

P(|Xn| ≥ ε, i.o.) = 1,

by the second Borel–Cantelli lemma. Hence (9.22) will happen which is (9.18).
Proof: Fixing K > 0, let

TK = inf{n : Xn ≤ −K} ∈ {0, 1, . . . } ∪ {∞}.

Then XT∧n is a martingale. In addition, when T <∞,

XT ≥ XT−1 −K −M,

and hence XT∧n ≥ −K −M . Since XT∧n is bounded from below, it has an almost sure limit.
We write T = TK for the dependence on K. On {TK = ∞}, Xn = XT∧n, so

lim
n→∞

Xn = lim
n→∞

XT∧n ∈ (−K,∞) exists.

Hence,

{lim inf
n→∞

Xn > −∞} ⊂
∞⋃

K=1

{TK = ∞} ⊂ { lim
n→∞

Xn exists and is finite}. (9.23)
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Similarly,
{lim sup

n→∞
Xn <∞} ⊂ { lim

n→∞
Xn exists and is finite}. (9.24)

Combining (9.23) and (9.24) we complete the proof. □

Here is another application of Proposition 9.5.

Theorem 9.6 (Borel–Cantelli) Let F0 = ∅ ⊂ F1 ⊂ be a filtration, and let Bn ∈ Fn be a sequence of
events. Then

{Bn, i.o.} = {
∞∑
n=1

P[Bn | Fn−1] = ∞}. (9.25)

As conseqeunces of Theorem 9.6, when Bn are independent and Fn = σ(Bk, k ≤ n), the condi-
tion

∑∞
n=1 P(Bn) = ∞ implies that P(Bn, i.o.) = 1 and we recover the second Borel–Cantelli lemma;

when
∑∞

n=1 P(Bn) <∞, by Jensen’s inequality,

∞∑
n=1

P[Bn | Fn−1] ≤
∞∑
n=1

P(Bn) <∞,

so P(Bn, i.o.) = 0 and we recover the first Borel–Cantelli lemma.
Proof: Let

Mn =

n∑
k=1

1Bk
− E[1Bk

| Fk−1]. (9.26)

Then (Mn) is a martingale and |Mn −Mn−1| ≤ 1. By Proposition 9.5, almost surely one of (9.21)
and (9.22) will happen.

We note that
∞∑
k=1

1Bk
= ∞ ⇔ Bk happens infinitely often.

When limn→∞Mn exists, then by (9.26)

∞∑
k=1

1Bk
= ∞ ⇔

∞∑
k=1

E[1Bk
| Fk−1],

on the other hand,

lim sup
n→∞

Mn = ∞ ⇒
∞∑
k=1

1Bk
= ∞, lim inf

n→∞
Mn = −∞ ⇒

∞∑
k=1

E[1Bk
| Fk−1] = ∞.

So in both cases, the conditions insides the events of (9.25) are equivalent and this completes the
proof. □

9.4 Branching process

The branching process Zn models the number of individuals at the n-th generation of a family tree.
We define Zn recursively by Z0 = 1,

Zn+1 =

{
ξn+1
1 + · · ·+ ξn+1

Zn
, Zn > 0,

0, Zn = 0.
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The r.v.s ξn+1
k models the number of offsprings from the k-th individual at the n-th generation. We

assume that ξnk , n ≥ 1, k ≥ 1 are i.i.d. with finite expectation µ = Eξ ∈ (0,∞). We also introduce the
filtration Fn = σ(ξmi , i ≥ 1, 1 ≤ m ≤ n).

To produce a martingale, we have the following observation.

Proposition 9.7 The process Zn/µ
n is a (Fn)-martingale.

Proof: We have

E[Zn+1 | Fn] = E[ξn+1
1 + · · ·+ ξn+1

Zn
| Fn]

= E
[ ∞∑
k=0

1{Zn=k}(ξ
n+1
1 + · · ·+ ξn1

k )
∣∣∣Fn

]
=

∞∑
k=0

E[1{Zn=k}(ξ
n+1
1 + · · ·+ ξn1

k ) | Fn]

=
∞∑
k=0

1{Zn=k}k · Eξ = µZn.

□

Since Zn/µ
n is a non-negative martingale, there exists a r.v. a(ω) such that Zn/µ

n → a almost
surely.

An important question concerning the branching process is the probability of distinction, the event
where Zn = 0 for all n ≥ n0. If µ < 1, the almost surely,

lim sup
n→∞

Zn ≤ lim
n→∞

µn · a = 0 · a = 0.

Since Zn ∈ Z, this implies that the distinction probability is 1.

Theorem 9.8 If µ = 1 and P(ξ = 1) < 1, then the distincation probability is 1.

Proof: Since Zn ∈ Z and Zn → a, there exists n0 = n0(ω) such that Zn = a for all n ≥ n0. The
goal is to show a has to be 0.

Indeed, the conditions Eξ = 1 and P(ξ = 1) < 1 implies that P(ξ = 0) > 0, and hence

P[Zm+1 = k |Zm = k] ≤ 1− P[Zm+1 = 0 |Zm = k] ≤ 1− P(ξ = 0)k.

Hence, for all k ̸= 0, n0 ≥ 0,

P(Zn = k, ∀n ≥ n0) ≤ P(Zn0 = k)P[Zn0+1 = k |Zn0 = k] · · ·P[Zn0+m = k |Zn0+m−1 = k] ≤ P(Zn0 = k)·ρm,
(9.27)

for some ρ < 1. Since m ≥ 1 is arbitrary, the LHS of (9.27) is 0. Therefore,

P(a ̸= 0) ≤
∑

k ̸=0,n0≥0

P(Zn = k, ∀n ≥ n0) = 0,

and this completes the proof. □

For the case µ > 1, we set ρ := P(Zn = 0 for some n) to be the distinction probability.

Theorem 9.9 The number ρ is less than 1, and is the solution of φ(ρ) = ρ where

φ(s) =
∞∑
k=0

pks
k, pk = P(ξ = k).
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Proof: By differentiation under summation, we have

φ′(s) =
∞∑
k=1

pkks
k−1, φ′′(s) =

∑
k=2

pkk(k − 1)sk−2.

Since Eµ =
∑∞

k=0 pkk < ∞, the power series φ′(s) is uniformly convergent on [0, 1]; also φ′′(s) is
convergent on [0, 1). Since φ′′ ≥ 0, the function φ is convex.

The point s = 1 is one fixed point of φ. Since φ′(1) > 1 and φ(0) ≥ 0, by convexity there exists
another fixed point in [0, 1), and we call it ρ. We will show that it is the disctinction probability.

Let θm = P(Zm = 0). Noting that Zm = 0 implies that Zm+1 = 0, we have

θm ↑ P(Zn = 0 for some n).

We have

θm+1 = P(Zm+1 = 0) =

∞∑
k=0

P[Zm+1 = 0 |Z1 = k]P(Z1 = k) =

∞∑
k=0

pk(θm)k = φ(θm). (9.28)

We have θ0 = 0 ≤ ρ. By induction we can show that θm ≤ ρ for all ρ. Hence, limm→∞ θm ≤ ρ.
By (9.28) the limit of θm must be a fixed point of φ. This completes the proof. □

10 Markov process

10.1 Markov property

Let Xn be r.v.s on (Ω,F ,P) with a filtration (Fn). We say that (Xn) is a Markov chain, if

1. Xn ∈ Fn for all n,

2. the Markov property holds, that is,

P[Xn+1 ∈ · | Fn] = P[Xn+1 ∈ · |Xn]. (10.1)

The range of Xn is the state space, denoted by S. For simplicity, most of the time we work on a
countable state space. We write S = B(S). When S is countable, S is the collection of all subsets
of S.

To construct Markov chains, we introduce the notion of Markov kernel. We say that p(·, ·) : S ×S
is a Markov kernel if

1. for every x ∈ S, the set function p(x, ·) is a probability measure on (S,S);

2. for every A ∈ S, the map x 7→ p(x,A) is measurable.

We say that (Xn) is a Markov chain with kernel p, if

P[Xn+1 ∈ A | Fn](ω) = p
(
Xn(ω), A

)
. (10.2)

The Markov property (10.1) follows from (10.2), since Xn ∈ Fn implies

E[p
(
Xn, A

)
| Fn] = p

(
Xn, A

)
.
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In fact (10.1) and (10.2) are equivalent, since from (10.1) we can construct p using the regular condi-
tional probability. In this note, all Markov chains are homogeneous, meaning that the kernel p does
not depend on n.

When S is countable, the Markov kernel is determined by the transitional probability

p(i, j) := p(i, {j}), i, j ∈ S.

The transitional probability is any non-negative function p : S × S satisfying
∑

j∈S p(i, j) = 1 for
all i ∈ S. If S is finite, then p is a non-negative matrix with constant row sum 1.

Example 10.1 SRW on Z is a Markov chain, with

p(i, j) =

{
1/2, |i− j| = 1,

0, else.

The branching process is a Markov chain, with

p(i, j) = P
( i∑
k=1

ξk = j
)
= (µξ)

∗i(j),

where µξ is the offspring distribution and ∗i denotes the i-th fold convolution.

Let µ be a probability measure on (S,S). Let Pµ be a probability measure on (S∞,S∞), with
finite-dimensional distribution

Pµ(Xj ∈ Bj , 0 ≤ j ≤ n) =

∫
B0

µ(dx0)

∫
B1

p(x0, dx1)

∫
B2

p(x1, dx2)

· · ·
∫
Bn−1

p(xn−2, dxn−1)p(xn−1, Bn).

(10.3)

One can check that (10.3) satisfies the consistency condition. Hence by the Kolmogorov’s Extension
Theorem, the probability measure Pµ exists.

Proposition 10.1 (Existence of Markov chain) Under Pµ given in (10.3), the process Xn(ω) = ωn is
a Markov chain with kernel p, with initial condition µ.

When µ = δx is a Dirac measure, we write Px instead of Pδx .

The Markov property (10.1) says that the status at time n + 1, conditioned on Fn, the past, is
the same as conditioned on Xn, the present. The information of Xn+1 is part of the future. We can
generalize this notion to include all the times after n, not only n+ 1.

We define the shift operator on S∞ to be

θn(ω0, ω1, . . . ) = (ωn, ωn+1, . . . ). (10.4)

In other words, θnω is the future after time n. The next theorem generalizes (10.1).

Theorem 10.2 (Markov property) Let F : (S∞,S∞) → R be bounded measurable. Then

Eµ[F (θnω) | Fn] = φ(Xn), φ(x) = ExF (θ).

The non-random function x 7→ φ(x) is measurable. We also write φ(Xn) as

φ(Xn) = EXnF (θ) =
[
ExF (θ)

]
x=Xm

.
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Example 10.2 When F (ω) = 1A(ω1), we have

Eµ[F (θnω) | Fn] = E[F (ωn+1) | Fn] = Pµ[Xn+1 ∈ A | Fn] = p(Xn, A) = EXn1A(ω1). (10.5)

This is (10.1).

Sketch of the proof: We can establish (10.5) for F taking more and more general forms.

1. F (ω) = 1A1(ω1)1A2(ω2) · · · 1Am(ωm). For this step, the proof will be similar to the verifying
that (10.3) is consistent.

2. F (ω) = 1A(ω1, ω2, . . . , ωm) where A ∈ Sm.

3. F (ω) = 1A(ω) where A ∈ S∞.

4. F (ω) is a simple function.

5. F (ω) is a bounded function.

□

10.2 Strong Markov property

Theorem 10.2 says that conditioned on Xn, the present, the future θ
nω is independent of the past Fn.

Similar to the optional sampling theorem, we can use a stopping time to define the “past” and “future”.
This leads to the strong Markov property.

Theorem 10.3 Let T be an almost finite stopping time and F : (S,S) → R be bounded measurable.
Then

Eµ[F (θTω) | FT ] =
[
ExF (θ)

]
x=XT

.

Proof: Let A ∈ FT . Then

EµF (θTω)1A = Eµ
∞∑
k=0

1A∩{T=k}F (θ
Tω)

= Eµ
∞∑
k=0

1A∩{T=k}F (θ
kω)

=
∞∑
k=0

Eµ1A∩{T=k}F (θ
kω)

=
∞∑
k=0

Eµ1A∩{T=k}E
µ[F (θkω) | Fk]

=
∞∑
k=0

Eµ1A∩{T=k}E
XkF (ω)

= Eµ
(
1AE

XTF (ω)
)
.

□
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Example 10.3 Let Xn be the SRW on Z. For a ∈ Z,

Ta(ω) = min{n ≥ 0 : Xn = a}.

The stopping time Ta is almost surely finite from our discussion in Section 9.2.
Let

F (ω) = 1{T2(ω)−T1(ω)≤m}.

Applying Theorem 10.3 to the stopping time T1 and µ = δx where x ≤ 0, we obtain

Ex[F (θT1ω) | FT1
] = E1F (ω).

Since x ≤ 0, the RW is below 1 before T1, and hence

F (θT1ω) = F (ω). (10.6)

When the RW starting from 1, that is, ω0 = 1 we have T1(ω) = 0, and hence

E1F (ω) = E11{T2(ω)≤m} = E01{T1(ω)≤m}, (10.7)

where the last equality is due to the translation invariance of the RW. Combining (10.6) and (10.7), we obtain

Px[T2 − T1 ≤ m | FT1
] = P0(T1 ≤ m)

Since the RHS is independent of FT1
, we conclude that T2−T1 is independent of FT1

; moreover it has the same
distribution of T1 when the RW starting from 0.

The proof of Theorem 10.3 is similar to that of the optional sampling theorem for martingales.
In fact, using martingales we can characterize the Markov property and give another proof of Theo-
rem 10.3. Such characterization is known as the martingale problem.

Proposition 10.4 (Martingale problem) Let f be bounded measurable. Then

Mf
n =

n∑
m=1

(
f(Xm)− f(Xm−1)− E[f(Xm)− f(Xm−1) | Fm−1]

)
. (10.8)

is a martingale.

Introducing

(Lf)(x) :=

∫
p(x, dy)

(
f(y)− f(x)

)
,

we can rewrite (10.8) as

Mf
n = f(Xn)− f(X0)−

n−1∑
m=0

(Lf)(Xm). (10.9)

We point out that (10.9) depends only on the Markov kernel p.

Theorem 10.5 Let P̃ be a probability measure on (S∞,S∞) and Xn(ω) = ωn. Assume that

P̃(X0 ∈ ·) = µ,

and that Mf
n given in (10.9) is a martingale under P̃ for every bounded measurable f . Then P̃ = Pµ.
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Idea of the proof: From Ẽ[Mf
1 | F0] =Mf

0 = 0, we obtain

Ẽ[f(X1) | F0]− f(X0) = (Lf)(X0) =

∫
p(X0, dy)

(
f(y)− f(X0)

)
,

and hence

Ẽ[f(X1) | F0] =

∫
p(X0, dy)f(y).

In particular, taking f = 1A, we obtain

P̃[X1 ∈ A | F0] = p(X0, A).

□

Now we use Theorem 10.5 to give another proof of Theorem 10.3. For simplicity we assume that T
is bounded.
Second proof of Theorem 10.3: For every bounded measurable f , by optional sampling theorem,

Eµ[Mn+T −MT | FT ] = 0.

We have

Mf
n+T −Mf

T =
n+T−1∑
m=T

f(Xm+1)− f(Xm)− (Lf)(Xm) =Mf
n (θ

Tω)

Hence, under the measure
P̃(ω ∈ ·) = Pµ[θTω ∈ · | FT ],

the process Mf
n is a martingale for every bounded measurable f . By Theorem 10.5, we have P̃ = Pν

where ν(·) = Pµ(XT ∈ ·) and this completes the proof. □

10.3 Invariant measures

Let µ be a measure on (S,S). For n ≥ 1, we define

µPn(A) =

∫
µ(dx)Px(Xn ∈ A). (10.10)

If µ is a probability measure, then µPn is Pµ(Xn ∈ ·). The point of (10.10) is to allow the initial
condition to be an infinite measure.

We say that µ is an invariant distribution if it is an invariant measure with total mass 1. Note
that if µ is an invariant measure, then cµ is also an invariant measure for all c > 0. Hence, we can
obtain an invariant distribution through normalization whenever we have a finite invariant measure.

As another example, consider a finite state space S = {1, 2, . . . , N}, and write the Markov kernel
as a matrix P = (pij)

N
i,j=1. Any measure µ on (S,S) can be represented as a row vector, and

(µPn)i =
∑

j0,j1,...,jn∈{1,...,N}

µj0pj0j1 · · · pjn−1jn , jn = i,

is matrix multiplication.

Next, let us compute the invariant measures for some Markov chains explicitly.
SRW on Z. The invariant measure µ = (µi)i∈Z satisfies

µi = (µP)i =
1

2
(µi−1 + µi+1).
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So µi is an arithmetic sequence and µi = a + bi for some a, b ∈ R. Since µi ≥ 0 for all i, the
common difference b must be 0. Hence, all invariant measures are constant, and there is no invariant
distribution.

Asymmetric RW on Z. Let p > 1/2 and consider a RW Xn given by

P[Xn+1 = Xn + 1 |Xn] = p, P[Xn+1 = Xn − 1 |Xn] = 1− p.

Then invariant measures satisfies

µi = (µP)i = µi−1p+ (1− p)µi+1. (10.11)

This is a second order difference equation, whose characteristic equation (1−p)λ2−λ+p = 0 has two
distinct roots λ = 1 and λ = p/(1− p). Hence,

µi = a+ b
( p

1− p

)i
, i ∈ Z

for some a, b ∈ R. There will be two linearly independent invariant measures: one is a constant, the
other is µi =

(
p/(1− p)

)i
. None of them and their linear combinations are summable, so again, there

is no invariant distribution.
RW on the half line Z≥0. Let p ∈ (0, 1) and consider a RW Xn on Z≥0 with sticky reflecting

boundary at 0, that is,

P[Xn+1 = Xn + 1 |Xn] = p, P[Xn+1 = Xn − 1 |Xn] = 1− p, Xn ≥ 1,

P[Xn+1 = 1 |Xn = 0] = p, P[Xn+1 = 0 |Xn = 0] = 1− p.

The invariant measure satisfies

pµi−1 + (1− p)µi+1 = µi, i ≥ 1, µ0 = (1− p)µ0 + pµ1.

Similarly to (10.11), we obtain

µi = a+ b
( p

1− p

)i
, i ≥ 1, µ0 = µ1.

Then µi is summable only if a = 0 and p < 1/2. Intuitively, the condition p < 1/2 means that the
RW will be pushed toward the origin, which is balanced by the reflecting boundary condition at 0,
and thus an invariant distribution exists.

It is important to understand the invariant measures/distribution of a Markov chain. In the rest of
the section, we study this question on a finite state space, which becomes a linear algebra problem. An
invariant distribution µ satisfies µP = µ, and thus it is a left eigenvector of the transitional matrix P
with eigenvalue 1.

Let ν = (ν1, . . . , νN )T be a row vector; its ℓ1-norm is

|ν|1 =
N∑
k=1

|νk|.

If µ ≥ 0 and |µ|1 = 1, then µ can be viewed as a probability measure on {1, 2, . . . , N}. Moreover,
if µ, ν are two probability measures on {1, 2, . . . , N}, then

∥µ− ν∥TV = |µ− ν|1.

The next theorem characterizes the invariant measure of a Markov chain on a finite state space.

108



D
RA
FT

Theorem 10.6 (Perron–Frobenius) Let P = (pij)
N
i,j=1 be the transitional matrix.

1. λ = 1 is an eigenvalue of P .

2. Let λ ∈ C be an eigenvalue of P . Then |λ| ≤ 1.

Assume additionally that
δ := min

i,j
pij > 0. (10.12)

3. There exists an non-zero eigenvector µ ≥ 0 of P with eigenvalue 1, and the eigenspace has
dimension 1.

4. There exists ρ < 1 such that for any probability measure ν on {1, 2, . . . , N},

|νPn − µ|1 ≤ 2ρn. (10.13)

Proof: Since P has row sum 1, the column vector 1 = (1, . . . , 1) satisfies P1 = 1. Hence λ = 1 is an
eigenvalue of P .

Let v = (v1, . . . , vN ) ̸= 0 and Pv = λv. Let

|vj | = max{|v1|, . . . , |vN |}.

By multiplying a factor eiθ, we can assume vj ∈ R and vj > 0. Using that the row sum of P is 1 and
the triangle inequality for complex norms, we have

|λvj | =
∣∣∣ N∑
k=1

pjkvk

∣∣∣ ≤ N∑
k=1

pjk|vk| ≤ vj .

Hence |λ| ≤ 1.
By Item 1, there exists a non-trivial left eigenvector µ with eigenvalue 1. The question is whether

all entries of µ have the same sign. To solve this, we write µ = µ+ − µ− to decompose µ into positive
and negative parts, and we need to show that µ+ or µ− is 0. We first establish the contraction
in ℓ1-norm: for any µ,

|µP |1 ≤ |µ|1.

Indeed, since µ± are non-negative vectors,

|µP |1 ≤ |µ+P |1 + |µ−P |1 = µ+P1 + µ−P1 = µ+1 + µ−1 = |µ+|1 + |µ−|1 = |µ|1. (10.14)

If µ = µP , then the inequality in (10.14) must be equality. In particular, for all i, either of (µ±P )i
must be zero. On the other hand, under the assumption (10.12),

(µ±P )i ≥ δ|µ±|1.

Hence one of µ± must be zero.
For the uniqueness of µ and the last part, we will prove a strong contraction in ℓ1-norm. Let ν1, ν2

be two probability measures on {1, . . . , N}. Then for some ρ < 1.

|ν1P − ν2P |1 ≤ ρ|ν1 − ν2|1. (10.15)
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Indeed, by (10.12) we can write P = δE + (1−Nδ)P̃ , where E is the N ×N will all entries 1, and P̃
is Markov matrix (non-negative and has row sums 1). Since νiE = 1T , we have

|ν1P − ν2P |1 = |δ(ν1 − ν2)E + (1−Nδ)(ν1 − ν2)P̃ |1
= (1−Nδ)|(ν1 − ν2)P̃ |1 ≤ (1−Nδ)|ν1 − ν2|1,

where we apply the weak ℓ1-contraction (10.14) to P̃ on the second line. If µ1 and µ2 are two left
eigenvectors with |µi|1 = 1, then (10.15) implies

|µ1 − µ2|1 = |µ1P − µ2P |1 ≤ ρ|µ1 − µ2|1.

So µ1 = µ2 and we show that the eigenspace has dimension 1. For (10.13), we have

|µ− νPn|1 = |µPn − νPn|1 ≤ ρn|µ− ν|1 ≤ 2ρn.

□

Remark 10.4 Item 2 is a more general fact about matrices: the spectral norm of a matrix (the largest eigenvalue
in norm) is less than any of its ℓp-norm; here, a matrix with row sum 1 has ℓ∞-norm 1.

10.4 Recurrence

In this section we consider a countable state space S = {1, 2, . . . }. For every i ∈ S, let

T
(1)
i = Ti = inf{n ≥ 1 : Xn = i}, T

(m+1)
i = inf{n > T

(m)
i : Xn = i}.

The time T
(m)
i is the time of the m-th visit of the Markov chain to the state i.

We classify any state i ∈ S as follows: i is

• transient if Pi(Ti = ∞) > 0,

• null recurrent if Pi(Ti <∞) = 1 but EiTi = ∞,

• positive recurrent if EiTi <∞.

We write ρij = Pi(Tj <∞). We say that j is accessible from i, denoted by i→ j, if there exists j0 =
i, j1, j2, . . . , jm = j such that p(jk, jk+1) > 0. Note that i → j if and only if ρij > 0. We say that i
and j commutes, denoted by i↔ j, if i→ j and j → i. The “↔” relation is an equivalence relation.

The main result of this section is the following.

Theorem 10.7 If i↔ j, then i and j have the same type (transient, null recurrent, positive recurrent).

We start from a lemma which follows from the strong Markov property.

Lemma 10.8 For all i, j ∈ S,

Pj(T
(m)
i <∞) = ρijρ

m−1
ii .

In particular,

Pi(T
(m)
i <∞) = ρmii .
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Proof: We will prove by induction. The case m = 1 is definition.

Let m ≥ 1. Since the condition T
(m+1)
i < ∞ implies T

(m)
i < ∞, by strong Markov property, we

have

Pj(T
(m+1)
i <∞) = Pj [T

(m+1)
i <∞|T (m)

i <∞]P(T
(m)
i <∞)

= Pi(T
(1)
i <∞)Pj(Tm

i <∞) = ρijρ
m
ii .

This is the induction step and the proof is complete. □

Let N(i) be the total number of visits to the state i, that is,

N(i) =
∞∑
n=1

1{Xn=i}.

Proposition 10.9 A state i is recurrent if and only if EiN(i) = ∞.

Proof: By Lemma 10.8, we have

Pi
(
N(i) ≥ m

)
= Pi(T

(m)
i <∞) = ρmii .

So N(i) is a geometric r.v. under Pi, and we have

EiN(i) =
1

1− ρii

{
= ∞, ρii = 1,

<∞, ρii < 1.

□

By Fubini, we have

EiN(i) =

∞∑
n=1

Pi(Xn = i) =
∞∑
n=1

pn(i, i). (10.16)

We can use (10.16) to determine recurrence type of the SRW on Zd. Indeed, since by CLT,

Xn − i√
n

=
ξ1 + ξ2 + · · ·+ ξn√

n
→ N (0, σ2),

we have
Pi(Xn = i) ≈ fσ(0)(1/

√
n)d = cn−d/2, (10.17)

where fσ is the density of N (0, σ2), and (1/
√
n)d is the volume of the d-dimensional box with

length 1/
√
n. Then (10.17) is summable if and only if d ≤ 2, and we recover our result on the

recurrence of the SRW. For SRW (10.17) can also follow from some combinatoric computation, but
the proof based on CLT can be generalized more easily.

Proposition 10.10 If i is recurrent and ρij > 0, then j is recurrent and ρji = 1.

Proof: Since ρij > 0, we have Pi(Tj <∞, Tj < Ti) > 0. By strong Markov property, we have

0 = Pi(Ti = ∞) ≥ Pi(Tj <∞, Tj < Ti)P
j(Ti = ∞).

Hence Pj(Ti = ∞) = 0 and ρji = 1.
Since ρij , ρji > 0, there exists L,K > 0 such that

pL(i, j) > 0, pK(j, i) > 0. (10.18)
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Hence,
pL+n+K(j, j) ≥ pK(j, i)pn(i, i)pL(i, j), ∀n ≥ 1.

Using (10.16) and (10.18), we have

EjN(j) ≥
∞∑
n=1

pL+n+K(j, j) ≥ pK(j, i)EiN(i)pL(i, j) = ∞.

This completes the proof. □

Using Proposition 10.10 we can show that i and j must be simultaneously transient or recurrent
if i↔ j. Next we will distinguish between positive and null recurrence.

Proposition 10.11 If EiTi <∞, then there exists an invariant distribution µ such that µ(i) > 0.

Proof: Let

πj = Ei
Ti−1∑
n=0

1{Xn=j}. (10.19)

Then πi = 1 and ∑
j∈S

πj = Ei
Ti−1∑
n=0

∑
j∈S

1{Xn=j} = EiTi <∞.

Then µ(j) = πj/E
iTi defines a probability measure and µ(i) > 0.

We claim that π (and hence µ) is invariant. Using Fibini, we can rewrite (10.19) as

πj =

∞∑
n=0

Ei1{Xn=j, n≤Ti−1} =

∞∑
n=0

Pi(Xn = j, n ≤ Ti − 1).

Using Markov property, we have∑
j∈S

πjp(j, k) =
∞∑
n=0

∑
j∈S

Pi(Xn = j, n ≤ Ti − 1)p(j, k)

=
∞∑
n=0

Pi(Xn+1 = k, n+ 1 ≤ Ti)

=

∞∑
n=1

Pi(Xn = k, n ≤ Ti)

= Ei
Ti∑
n=1

1{Xn=k}.

To conclude that the RHS is πk, we use that

1{XTi
=k} = 1{i=k} = 1{X0=k}.

□

Proposition 10.12 If Pµ(Ti <∞) = 1 and Pi(Ti <∞). Then

1

N

N∑
n=1

1{Xn=i} →
1

EiTi
, Pµ-a.s. (10.20)
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Proof: By strong Markov property, the r.v.s

T
(1)
i , T

(2)
i − T

(1)
i , T

(3)
i − T

(2)
i , . . . (10.21)

are independent; moreover, for k ≥ 1,

Pµ(T
(k+1)
i − T

(k)
i ∈ ·) = Pi(Ti ∈ ·), (10.22)

so the r.v.s in (10.21) except for the first one all have the same distribution.
Let k be the integer such that

T
(k)
i ≤ N < T

(k+1)
i .

Since T
(k+1)
i − T

(k)
i are a.s. finite by (10.22) and the assumption, as N → ∞, we have k → ∞. We

can estimate the LHS of (10.20) using

k

T
(k+1)
i

<
1

N

N∑
n=1

1{Xn=i} ≤
k

T
(k)
i

. (10.23)

On the other hand, by SLLN, Pµ almost surely,

T
(k)
i

k
=
T
(1)
i + (T

(2)
i − T

(1)
i ) + · · ·+ (T

(k)
i − T

(k−1)
k )

k
→ ET

(2)
i − T

(1)
i = EiTi, (10.24)

even when EiTi = ∞. Then (10.20) follows from (10.23) and (10.24), and we complete the proof. □

We can now show that positive recurrence can be propagated. To have a clean setup, for a positive
recurrent state i, let

S0 = {j ∈ S : i→ j} = {j ∈ S : i↔ j}.

The two definitions of S0 are equivalent by Proposition 10.10. Sometimes S0 is called the commuting
class containing A. Without loss of generality we can assume S0 = S, since we do not care about
states inaccessible from i at this moment.

Proposition 10.13 Let i be positive recurrent. Suppose that i ↔ j for all j ∈ S. Then all j ∈ S are
positive recurrent.

Proof: Since i is positive recurrent, Proposition 10.11 gives an invariant measure µ. Examining the
construction (10.19), we see that µ(j) > 0 if j is accessible from i; under our setting, we have µ(j) > 0.

Let us fix a j ∈ S. By the assumption, we have ρkj = 1 for all k ∈ S. Hence,

Pµ(Tj <∞) =
∑
k∈S

µ(k)ρkj = 1.

By Proposition 10.12, we have Pµ almost surely,

1

N

N∑
n=1

1{Xn=j} →
1

EjTj
. (10.25)

The LHS of (10.25) is bounded by 1, and thus by BCT, we have

lim
N→∞

Eµ 1

N

N∑
n=1

1{Xn=j} =
1

EjTj
.
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Using the invariance of µ, we have

Eµ1{Xn=j} = Pµ(Xn = j) = Pµ(X0 = j) = µ(j).

Hence µ(j) = 1/EjTj > 0, and j is positive recurrent. □

As a corollary, the invariant distribution on a commuting state space is unique if exists. Note
that at this point we have established Theorem 10.7, so we can talk about the “type” of the entire
commuting class, not just a single state.

Theorem 10.14 Suppose i ↔ j for all i, j ∈ S (that is, S is irreducible). Then the Markov chain is
positive recurrent, if and only if there exists an invariant distribution. The invariant distribution µ is
unique and given by

µ(i) =
1

EiTi
.

10.5 Ergodic theorem

To motivate, we start with a corollary of Proposition 10.13.

Proposition 10.15 Let S be irreducible and µ be an invariant distribution for the Markov chain.
Let f : S → R be bounded, measurable. For all initial condition ν, the limit

1

N

N∑
n=1

f(Xn) →
∫
f dµ (10.26)

holds Pν-a.s.

Proof: (10.26) is true when f(x) = 1{x=i} by Proposition 10.12. Hence it is true for all f(x) =∑
i f(i)1{x=i} which is a (countable) linear combination of indicator functions. □

Proposition 10.15 is a example of ergodic theorem, which says that the time average of certain
statistic, f , of a dynamics, Xn, converges to the ensemble average. “Ensemble average” is a term in
statistical mechanics, which means average over the probability space in our context; the sample space
will be the “ensemble”.

The LHS of (10.26) is similar to what appears in the SLLN. In fact, ergodic theorem answers the
question under what general condition, the almost sure limit

lim
N→∞

X1 +X2 + · · ·+XN

N

exists. We already know some sufficient conditions, for example, Xn being i.i.d., or Xn from an
irreducible positive recurrent Markov chain. The ergodic theorem generalizes the condition to include
stationary sequences.

Let us introduce some definitions. We say that A ∈ S is invariant if

p(i, A) = 1, i ∈ A, p(i, A) = 0, i ̸∈ A. (10.27)

The sets S and ∅ are always invariant, and if the Markov chain is irreducible, then these are the only
invariant sets. The condition (10.27) can also be written as

(P1A)(i) = 1A(i), ∀i. (10.28)

It is convenient to allow exceptional points where (10.28) fails. We measure “exceptional” point using
measure: we say that A is µ-almost invariant, or just almost invariant, if P1A = 1A holds µ-a.s.
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Definition 10.1 An invariant distribution µ is ergodic, if µ(A) ∈ {0, 1} for every (almost) invariant
set A.

To motivate the definition of stationary sequence, let us consider the measure Pµ on (S∞,S∞)
where µ is an invariant distribution. Then Pµ is stationary, in the sense that for every n ≥ 0 and k ≥ 0,

Pµ(X0 ∈ A0, X1 ∈ A1, . . . , Xk ∈ Ak) = Pµ(Xn ∈ A0, Xn+1 ∈ A1, . . . , Xn+k ∈ Ak). (10.29)

Recall that the shift operator θn in (10.4) (with the convention θ = θ1). (10.29) can be rephrased
as Pµ ◦ θ−n = Pµ for all n ≥ 1. The definition of stationarity does not depend on the Markov chain,
and it can be stated for any probability measure P on (S∞,S∞). We will consider general stationary
sequence and use P instead of Pµ when the Markov chain structure is irrelevant.

We also introduce a notion of invariant set on S∞. We say that B ∈ S∞ is invariant if θ−1B = B,
and B is almost invariant if θ−1B = B P-a.s., that is P(B∆θ−1B) = 0, or 1B = 1θ−1B almost surely.
Let

I = {B ∈ S∞ : B invariant}, I∗ = {B ∈ S∞ : B almost invariant}.

Both I and I∗ are σ-algebras. The next result characterizes the relation between I and I∗.

Proposition 10.16 If B ∈ I∗, then there exists C ∈ I such that P(B∆C) = 0.

Proof: Let

C = lim inf
n→∞

θ−nB =
∞⋃
n=1

∞⋂
k=n

θ−kB.

We have

θ−1C =

∞⋃
n=1

∞⋂
k=n

θ−k−1B =

∞⋃
n=2

∞⋂
k=n

θ−kB = C,

so C ∈ I.
Since the map θ preserves P, we have

P(θ−(n+1)B∆θ−nB) = P ◦ θ−n(θ−1B∆B) = P(θ−1B∆B) = 0,

and hence

P(θ−nB∆B) ≤
n−1∑
k=1

P(θ−k−1B∆θ−kB) = 0. (10.30)

We have

B \ C = B ∩
( ∞⋂
n=1

∞⋃
k=n

(θ−kB)c
)
⊂

∞⋃
k=1

B ∩ (θ−kB)c =
∞⋃
k=1

(B \ θ−kB), (10.31)

and

C \B =

∞⋃
n=1

∞⋂
k=n

(θ−kB \B) ⊂
∞⋃
n=1

(θ−nB \B). (10.32)

By (10.30) to (10.32), we have P(B∆C) = 0 and this completes the proof. □

Theorem 10.17 (Birkhoff ergodic theorem) Let P be a probability measure on (S∞,S∞) such that P◦
θ−1 = P. Let f : S∞ → R be L1(P). Then P-a.s.,

1

N

n∑
n=1

f(θnω) → E[f | I] = E[f | I∗]. (10.33)
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We postpone the proof of Theorem 10.17 to the end of this section. First we point out the relation
of Theorem 10.17 to Proposition 10.15.

Proposition 10.18 If µ is ergodic, then I (and I∗) is trivial under Pµ.

Proof: Let B ∈ I. We consider

A = {ω0 ∈ S : (ω0, ω1, ω2, . . . ) ∈ B}.

Then
θ−1B

a.s.
= {(ω0, η0, η1, η2, . . . ) : (η0, η1, . . . ) ∈ B, p(ω0, η0) > 0}. (10.34)

Noting that η0 ∈ A on the RHS of (10.34), since B = θ−1B, we have ω0 on the RHS almost surely
belongs to A, that is, we have for Pµ-a.s. ω0,

p(ω0, A) = 1, ω0 ∈ A, p(ω0, A) = 0, ω0 ̸∈ A.

So A is almost invariant. By ergodicity of µ, we have µ(A) ∈ {0, 1}. If µ(A) = 0, then

Pµ(B) ≤ Pµ(A× S × S × · · · ) = 0,

and if µ(A) = 1,
Pµ(B) ≥ Pµ(A×A×A× · · · ) = 1.

Therefore, we show that Pµ(B) ∈ {0, 1} if B ∈ I, and this completes the proof. □

Let us look at some examples.
Markov chain. Consider an irreducible, positive recurrent Markov chain. Then the only invariant

sets are ∅ and S by irreducibility, so I is trivial. Hence, any invariant distribution is ergodic. We
know that invariant distribution exists since the Markov chain is positive recurrent. As I is trivial, the
conditional expectation in (10.33) becomes expectation, and we recover Proposition 10.15 for ν being
the invariant distribution. Proposition 10.15 is stronger as we can start from any initial condition;
this is the mixing property.

SLLN. Consider the infinite product measure P = µ⊗∞ on (S∞,S∞). If B ∈ I, then B = θ−nB ∈
F≥n for every n, and hence B belongs to the tail σ-algebra. By Kolmogorov’s zero-one law, the
tail σ-algebra is trivial, so I is trivial. Then Theorem 10.17 recovers the SLLN.

Irrational rotation on the circle. We look at a “deterministic” example. Let S be the circle,
parametrized by S = {e2πiω, ω ∈ R}. The Markov kernel is deterministic, given by

p(x, ·) = δx+ρ,

that is, Xn = X0+nρ. The Lebesgue measure is invariant, since θ is a rotation of the circle by angle ρ.
We will show that this measure is ergodic.

Indeed, let A be an invariant set. Since 1A ∈ L2([0, 1]), it has a Fourier series expansion

1A(ω)
a.s.
=

∑
k∈Z

cke
2πikω.

The invariance of A under rotation implies that 1A(ω) = 1A(ω + ρ), and hence∑
k∈Z

cke
2πikωa.s.

=
∑
k∈Z

cke
2πik(ω+ρ) =

∑
k∈Z

cke
2πikρ · e2πikω.
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Since Fourier series expansion is unique, we have

ck = cke
2πikρ, ∀k ∈ Z.

Recall that ρ is irrational, so e2πikρ ̸= 0 unless k = 0. Hence ck = 0 for all k ̸= 0, and 1A(ω)
a.s.
= c0.

So 1A(ω)
a.s.
=1 or 0, and thus Leb(A) ∈ {0, 1} (the total length of circle is 1 by our parametrization).

As a consequence of Theorem 10.17, if f(ω) = 1[a,b](ω), then for Lebesgue almost every x ∈ S, we
have

#{1 ≤ n ≤ N : xn = x+ nρ ∈ [a, b]}
N

→ b− a.

This says that irrational rotation tries to evenly distribute points in the limit.

There are more than one proofs of Theorem 10.17, but none of them is easy, as one may expect
from the simplicity of the theorem. We include the following proof for the completeness of this note.
Proof of Theorem 10.17: Without loss of generality we can assume f ≥ 0. Let us write (ANf)(ω) =
1
N

∑N
n=1 f(θ

nω) and define

f̄(ω) = lim sup
n→∞

(Anf)(ω), f(ω) = lim inf
n→∞

(Anf)(ω).

First, both f̄ and f are measurable with respect to I∗. Indeed, from the structure of Cesaro sums,
we have

|(Anf)(ω)− (Anf)(θω)| ≤
1

n
f(ω) +

1

n
f(θnω). (10.35)

For fixed ω, the first term goes to 0. Since Ef <∞, we have

∞∑
n=1

P
(
f(θnω) ≥ εn

)
=

∞∑
n=1

P
(
f(ω) ≥ εn

)
<∞,

and hence by Borel–Cantelli, the second term in (10.35) also goes to zero.
In the rest of the proof, we will show that

Ef̄1B ≤ Ef1B ≤ Ef1B, ∀B ∈ I. (10.36)

If (10.36) holds, then P(f = f̄) = 1, and f̄ = E[f | I]; this proves (10.33).
Fix M > 0 and let f̄M (ω) = f̄(ω) ∧M . Since f̄ ∈ I∗, we have f̄M ∈ I∗, that is, f̄M (θ)

a.s.
= f̄M (θω).

Let n(ω) = inf{n ≥ 0 : f̄M ≤ Anf(ω) + ε}. We have

n(ω)−1∑
j=0

f̄M (θjω)
a.s.
=n(ω)f̄M (ω) ≤

n(ω)−1∑
j=0

f(θjω) + n(ω)ε. (10.37)

If (10.37) holds for arbitrary large n, we can take expectation and obtain (10.36); but n is fixed here.
Since P

(
n(ω) <∞

)
= 1 by the definition of lim sup, we can make a further truncation: let N > 1 be

such that
P
(
n(ω) < N

)
≥ 1− ε/M.

Let C = {n(ω) < N} and define

fM,ε = f1C + (f ∨M)1Cc , ñ(ω) = n(ω)1C(ω) + 1Cc . (10.38)

We have
ñ(ω)−1∑
j=0

f̄M (θjω) = ñ(ω)f̄M (ω) ≤
ñ(ω)−1∑
j=0

fM,ε(θ
jω) + ñ(ω)ε. (10.39)
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Let
n0(ω) = 0, nk(ω) = nk−1(ω) + ñ(θnk−1(ω)ω).

For nK(ω) ≤ L < nK+1(ω), applying (10.39) to ω = θnk−1 , k = 1, 2, . . . ,K and summing up, we have

L−1∑
j=0

f̄M (θjω) ≤
K∑
k=1

nk(ω)−1∑
j=nk−1(ω)

f̄M (θjω) +
L−1∑
j=nK

f̄M ≤
L−1∑
j=0

fM,ε(θ
jω) + Lε+NM. (10.40)

Multiplying 1B to both sides, integrating and dividing by L, we have

Ef̄M1B ≤ 1

L

L−1∑
j=0

EfM,ε(θ
jω)1B + ε+

NM

L
. (10.41)

Since B
a.s.
= θ−jB, we have

EfM,ε(θ
jω)1{ω∈B} = EfM,ε(ω)1{ω∈θ−jB} = EfM,ε(ω)1B. (10.42)

From (10.38) we have
EfM,ε1B ≤ EfM1B +MP(Cc) ≤ EfM1B + ε. (10.43)

Combining (10.41) to (10.43) and sending L→ ∞, we obtain

Ef̄M1B ≤ EfM1B + 2ε.

The first inequality in (10.36) follows by letting M ↑ ∞ and ε ↓ 0.
The other inequality follows from a similar argument, where we do not need to truncate f from

above since the last sum in (10.40) is bounded from below by 0 as f ≥ 0. This completes the proof.
□

10.6 Ergodic measures for Markov chains

In this section we will use the general result on ergodic theorem from last section to have a better
understanding of invariant measures of the Markov chain.

Theorem 10.19 let µ and µ̃ be different ergodic measures. Then µ and µ̃ are mutally singular.

Proof: Since µ ̸= µ̃, there exists a bounded measurable function f such that
∫
f dµ ̸=

∫
f dµ̃. Let

B = { 1

N

N∑
n=1

f(Xn) →
∫
f dµ}.

By ergodicity of µ and µ̃, the invariant σ-algebra I is trivial, and hence Theorem 10.17 implies Pµ(B) =
1 and Pµ̃(B) = 0. Let A = π−1

0 B be the projection of B onto the zero-th coordinate. Then µ(A) = 1
and µ̃(A) = 0. This completes the proof. □

If µ1 and µ2 are invariant distributions, then their convex combinations αµ1+(1−α)µ2, α ∈ (0, 1)
are also invariant distribution, due to the linearity of the condition µP = µ for invariance. In other
words, the space of invariant distribution, denoted by PI , is a convex set. We say that µ ∈ PI is
extremal, if there is no non-trivial convex combination to represent µ, that is, if α ∈ (0, 1) and ν1, ν2 ∈
PI are such that

µ = αν1 + (1− α)ν2,

then µ = ν1 = ν2.
The next result gives geometric meaning to ergodic measures.
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Theorem 10.20 A probability measure µ ∈ PI is ergodic, if and only if µ is an extremal point of PI .

Proof: The “if” part. Suppose that µ is not ergodic, then there exists an invariant set A such
that µ(A) ∈ (0, 1). Let

ν1(C) = µ[C |A] = µ(C ∩A)
µ(A)

, ν2(C) = µ[C |Ac] =
µ(C ∩Ac)

µ(Ac)
.

Then µ = αν1 + (1 − α)ν2 where α = µ(A) ∈ (0, 1). We will show that νi ∈ PI and thus arrive at a
contradiction that µ is extremal.

For C ∈ S, we have

(ν1P)(C) =

∫
νi(dx)p(x,C) =

∫
µ(dx)1A(x)

µ(A)
p(x,C). (10.44)

We claim that
1A(x)p(x,C) = p(x,A ∩ C). (10.45)

Indeed, if x ∈ A, then by invariance of A, p(x,A) = 1, so p(x,C) = p(x,C∩A); if x ̸∈ A, then p(x,A) =
0 = p(x,A ∩ C), so both sides of (10.45) is 0. Using (10.44), we can continue (10.44) to obtain

(ν1P)(C) =
1

µ(A)

∫
µ(dx)p(x,A ∩ C) = 1

µ(A)
µ(A ∩ C) = ν1(C).

Similarly, we can show that ν2 is invariant. This proves the “if” direction.
The “only if” part. Let µ be ergodic and µ = αν1 + (1 − α)ν2 where νi ∈ PI and α ∈ (0, 1).

Then νi ≪ µ, and hence Pν ≪ Pµ. By Theorem 10.17, for every bounded measurable f , we have

1

N

N∑
n=1

f(Xn) →
∫
f dµ, Pµ-a.s.

The limit is a constant since µ is ergodic. Applying Theorem 10.17 to νi, we obtain

1

N

N∑
n=1

f(Xn) → Eνi [f | I] Pνi-a.s.

Since Pµ-a.s. limit impies Pνi-a.s. limit by absolute continuity, we have

Eνi [f | I] =
∫
f dµ, Pνi-a.s.

Taking another expectation, we have ∫
f dνi =

∫
f dµ.

As this holds for arbitrary f , we see that µ = ν1 = ν2. So µ is extremal. □

Now let us consider an irreducible, positive recurrent Markov chain. From a fixed state i, by
Proposition 10.11 we obtain an invariant distribution µ∗, with µ∗(i) > 0. Note that

PI(i) = {µ ∈ PI : µ(i) > 0}

is also a convex set, and its extremal points, denoted by PE(i), by a similar argument to Theorem 10.20,
are ergodic. But ergodic measures are mutually singular due to Theorem 10.19, so there can be at
most one ergodic measure µ such that µ(i) > 0. Since µ∗ ∈ PI(i), we know that PI(i) is non-empty; a
non-empty convex set has one extremal point, if and only if the convex set contains only one points.
Therefore, PI(i) = {µ∗} = PE(i), and we arrive at the conclusion that the Markov chain has a unique
invariant measures, which is also ergodic.
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11 Notation

11.1 Abbreviations

i.i.d. independent, identically distributed
r.v. random variable
p.m. probability measure
c.d.f. cumulative distribution function
f.d.d. finite-dimensional distribution
ch.f. characteristic function
u.i. uniformly integrable

11.2 Relations

⇒d or ⇒ convergence in distribution/law
d
= equal in law

11.3 Functional spaces

C[a, b] continuous function defined on the interval [a, b]
Cα[a, b] α-Hölder continuous function defined on the interval [a, b]
M(E) probability measures on a metric space E

11.4 Miscellaneous

L(X) distribution/law of a random variable/element X
N (µ, σ2) normal distribution
Exp(λ) exponential distribution
Poi(λ) Poisson distribution
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Index

additivity

countable, σ-, 1

finite, 2

sub-, 2

algebra, 5

σ-, or σ-field, 3

Borel σ-, 4

semi-, 5

Borel

σ-algebra, 4

(measurable) function, 12

(measurable) set, 12

space, 35

Borel–Cantelli Lemma

First, 19

Brownian motion, 11, 35

Cantor

function, 10

set, 9

Carathéodory’s

condition, 8

Extension Theorem, 7

characteristic functions (ch.f.), 58

Chebyshev’s inequality, 21

consistency condition, 33, 35

continuity

absolute (for functions), 9

absolute (for measures), 10

at ∅, 7

from above (fom measures), 2

from below (for measures), 2

continuous

absolutely, 9, 10

singularly, 9

convergence

almost sure, 18

in Lp, 18

in distribution, 18

in probability, 18

weak, 53

weak, weak-*, 23

Convergence Theorem

Bounded (BCT), 16

Dominated (DCT), 16

Monotone (MCT), 15
cumulative distribution function/c.d.f., 5

distribution
of a r.v., 5

distribution function
cumulative (c.d.f.), 1
empirical, 38

Fatou’s Lemma, 16
finite-dimensional distribution, 35
Fourier transform, 58
Fubini’s Theorem, 29

for complete measure spaces, 31

generalized inverse, 26

Hausdorff distance, 58
Helly selection theorem, 54
Hölder’s inequality, 17

independence
for σ-algebras, 24
for a collection of r.v.s, 25
for events/sets, 24
for r.v.s, 24
pairwise, 25

independent and identically distributed, 25
inequality

Chebyshev’s, 21
Hölder’s, 17
Jensen, 16
Young’s, 17

infinitely often, 19

Jensen inequality, 16

Kolmogorov’s
Extension Theorem, 33
Extension Theorm for general spaces, 35

law of large nubmers
weak, 37

law of large numbers
strong (SLLN), 35

Lévy distance, 57

measurable
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Borel-, 12
map, 12
space, 3

measure, 1
Dirac, 10
Lebesgue, 8
outer, 8
product, 27
reference, 11
signed, 23

monotone class, 5
Monotone Class Theorem, 5

functional, 17

normal number, 38

principle of appropriate sets, 6

random variable, 3
continuous, 11
simple, 14
singular, 11

random vector, 12

set
Cantor, 9
cylinder, 33
i.o., 19

simple r.v./function, 14

singularity (for measures), 11

space

Borel, 35

complete measure, 8

dual, 23

measurable, 3

measure, 3

probability, 3

stochastic process, 35

stopping time, 48

system

π-, 6

Dynkin, d-system, λ-class, 6

tightness, 54

total variation

distance, 52

of functions, 53

uncorrelated r.v.s, 36

uniform integrability, 22

vague convergence, 55

weak convergence

in Rd, 68

Young’s inequality, 17

122



D
RA
FT

References

[Bil99] Patrick Billingsley. Convergence of Probability Measures. Wiley Series in Probability and
Statistics. Probability and Statistics. Wiley, 2nd ed edition, 1999.

[Dur19] Richard Durrett. Probability: Theory and Examples. Number 49 in Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press, fifth edition edition,
2019.

[Kol33] A.N. Kolmogorov. Foundations of the Theory of Probability (English Translation). 1933.

[KS] Ioannis Karatzas and Steven Shreve. Brownian Motion and Stochastic Calculus. Graduate
Texts in Mathematics. Springer-Verlag, 2 edition.

[Shi96] A. N. Shiryaev. Probability, volume 95 of Graduate Texts in Mathematics. Springer New
York, 1996.

123


	Measure theory preliminaries
	Random variables, σ-fields and measures
	Construction of σ-algebra and (probability) measures
	Decomposition of distribution functions
	Random variables and measurable maps
	Integration and expectation

	Mode of convergence for random variables
	Definitions
	Almost sure convergence and convergence in probability
	Convergence in L^p and uniform integrability
	Weak convergence

	Independence and product measures
	Definitions of independence
	Product measures
	Existence of random variables
	Product Measures and Fubini's Theorem

	Measures on ℝ^∞ and Kolmogorov's Extension Theorem

	Law of large numbers
	L^2-weak law of large numbers
	Weak law for triangular arrays
	First proof of SLLN
	Some preparation
	Etemadi's argument

	Second proof of SLLN
	Tail σ-algebras and zero-one law
	Kolmogorov's proof


	Weak convergence and central limit theorem
	Definition of weak convergence
	Other characterizations of weak convergence
	Characteristic functions
	*Notes on Fourier transform
	Central limit Theorem
	CLT for i.i.d random variables
	CLT for triangular arrays
	Multidimensional CLT


	Weak convergence on general spaces and functional CLT
	Preliminaries for probability measures on metric spaces
	Donsker invariance principle
	*Tightness and weak-* convergence

	Poisson limit theorem and stable laws
	Poisson limit theorem and Poisson point processes
	stable law limit theorem
	Stable laws and infinite divisible laws

	Martingales
	Conditional expectation
	Definition
	Uniqueness and Existence
	Properties of conditional expectation
	Regular conditional expectation

	Basic martingale theory
	Convergence of martingales
	Optional Sampling Theorem
	Doob's Maximal inequality

	Examples of martingales
	Radon–Nikodym derivatives
	Simple random walks on Rd
	Random walks on R
	Branching process

	Markov process
	Markov property
	Strong Markov property
	Invariant measures
	Recurrence
	Ergodic theorem
	Ergodic measures for Markov chains

	Notation
	Abbreviations
	Relations
	Functional spaces
	Miscellaneous


