HW7

May 24, 2025

Exercise 1 Consider the one-dimensional SDE

$$dX_t = b(t, X_t)dt + \sigma(t, X_t) dB_t$$

where b, σ satisfy:

 \bullet b is bounded, measurable, and

$$|b(t,x) - b(t,y)| \le g(|x-y|)$$

for some continuous, strictly increasing, concave function $g: \mathbb{R}_+ \to \mathbb{R}_+$ with g(0) = 0 and $\int_0^1 \frac{du}{g(u)} = \infty$.

• σ is bounded, measurable and

$$|\sigma(t,x) - \sigma(t,y)| \le h(|x-y|)$$

for some continuous, strictly increasing function $h: \mathbb{R}_+ \to \mathbb{R}_+$ with h(0) = 0 and $\int_0^1 \frac{du}{h^2(u)} = \infty$. Show that pathwise uniqueness holds for this SDE.

Hint: You may use the following result: for g given above, if f is a non-negative continuous function, then

$$f(t) \le \int_0^t g(f(s)) ds, \quad t \ge 0 \implies f(t) \equiv 0, \quad t \ge 0.$$

If $X^{(j)}$, j=1,2 are two weak solutions, you are aiming at $f(t)=\mathsf{E}|X_t^{(1)}-X_t^{(2)}|$ satisfying the above integral inequality.

Exercise 2 Let $(M_t)_{t\geq 0}$ be a c.l.m. on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbf{P})$ with

$$\langle M \rangle_t = \int_0^t a(s) \, ds$$

for some progressively measurable process $a \geq 0$. Show that there exists an extended probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, (\tilde{\mathcal{F}}_t)_{t\geq 0}, \tilde{\mathbf{P}})$ and a standard Brownian motion B on it such that

$$M_t = \int_0^t \sqrt{a(s)} \, dB_s.$$

Hint: consider

$$B_t := \int_0^t \mathbb{1}_{\{a(s) > 0\}} \frac{1}{\sqrt{a(s)}} dM_s + \int_0^t \mathbb{1}_{\{a(s) = 0\}} dW_s$$

where W is a standard Brownian motion independent of everything else.

Exercise 3 Write $\mathbf{y} = (y(t))_{t \geq 0}$. Suppose $b(t, \mathbf{y})$ and $\sigma(t, \mathbf{y})$ are progressively measurable functionals from $[0, \infty) \times \mathcal{C}[0, \infty)$ into \mathbb{R} satisfying

$$|b(t, \mathbf{y})|^2 + |\sigma(t, \mathbf{y})|^2 \le K \Big(1 + \max_{0 \le s \le t} |y(s)|^2 \Big), \quad 0 \le t < \infty, \ \mathbf{y} \in \mathcal{C}[0, \infty),$$

where K is a positive constant. Let (X, W) be a weak solution on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathsf{P})$ to the SDE

$$X_t = X_0 + \int_0^t b(s, X) \, ds + \int_0^t \sigma(s, X) \, ds,$$

and $E|X_0|^{2m}$, ∞ for some $m \ge 1$. Show that for any finite T > 0,

$$\mathsf{E}\Big(\max_{0 \le s \le t} |X_s|^{2m}\Big) \le C\Big(1 + \mathsf{E}|X_0|^{2m}\Big)e^{Ct}, \quad 0 \le t \le T,$$

and

$$E|X_t - X_s|^{2m} \le C(1 + E|X_0|^{2m})(t - s)^m, \quad 0 \le s < t \le T,$$

where C = C(m, T, K) is a constant.

Exercise 4 Suppose that $u(t,x) \in \mathcal{C}([0,t] \times \mathbb{R}) \cap \mathcal{C}^{1,2}((0,t] \times \mathbb{R})$ solves the heat equation

$$\begin{cases} \partial_t u(t,x) = \frac{1}{2} \partial_{xx} u(t,x) - k(t,x) u(t,x), & (t,x) \in (0,t] \times \mathbb{R}, \\ u(0,x) = f(x), & x \in \mathbb{R}, \end{cases}$$

where k(t,x) is a bounded continuous function. Suppose that u satisfies the growth condition

$$\sup_{0 \le s \le t} |u(s,x)| \le M e^{a|x|^2}$$

for some $0 < a < \frac{1}{2t}$ and M > 0. Show that u admits the Feynman–Kac representation

$$u(t,x) = \mathsf{E}^x f(B_t) e^{-\int_0^t k(t-s,B_s) \, ds}.$$

Hint: consider $Y_s = u(t-s, B_s)e^{-\int_0^s k(t-\theta, B_\theta) d\theta}$; apply the Optional Sampling Theorem with respect to the stopping times $\tau_n = \inf\{s \geq 0 : |B_s| \geq n\}$ and pass to the limit carefully.