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Lecture Note for MAT7093: Stochastic Analysis

LI Liying

June 12, 2024

1 Introduction

In this section we will give some motivations to study Brownian motions and stochastic integrals.

1.1 Stochastic processes

The well-known Central Limit Theorem (CLT) gives the universal behavior of the sum of many small
independent variables: for i.i.d. r.v.’s Xi with EXi = 0, EX2

i = 1, one has

X1 +X2 + · · ·+Xn√
n

⇒d N (0, 1).

Example 1.1 We can take Xi as the results of independent coin flips, so P(Xi = ±1) = 1/2.

Write the partial sum as Sn = X1 +X2 + · · ·+Xn. We can plot the trajectory n 7→ Sn as below:

n

Sn

The plotted trajectory, which linearly interpolates between (n, Sn), n ∈ N, can be written as

S̃t =

{
Sn, t = n ∈ N,
(n+ 1− t)Sn + (t− n)Sn+1, t ∈ (n, n+ 1).

Question What is the limit of t 7→ S̃t as (continuous) trajectories?

The Donsker’s invariance principle, a.k.a. the Functional CLT, states that in an appropriate sense,
the limit is given by the Brownian motion, which is a “continuous stochastic process”.

Theorem 1.1 (Functional CLT) ( S̃nt√
n
, t ≥ 0

)
⇒d

(
Bt, t ≥ 0

)
,

where (Bt)t≥0 is the Brownian motion (BM).
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Remark 1.2 We will define rigorously what is a “continuous stochastic process” below.

Remark 1.3 The convergence “⇒d” means convergence in distribution/law. As we are studying random functions
rather than random variables, we need to work on probability measures on functional spaces, which are infinite-
dimensional and quite different from finite-dimensional spaces like Rd. We will return to this in Section 1.2.

Using the CLT, we can obtain the finite-dimensional distribution (f.d.d.) for Brownian motion.
For fixed t ≥ 0,

L(Bt) = lim
n→∞

L
( S̃[nt]√

n

)
= lim

n→∞
L
( S̃[nt]√

[nt]
·
√
t
)
= N (0,

√
t).

In general, for 0 = t1 < t2 < · · · < tm, it is believable that

Bt1 , Bt2−t1 , · · · , Btm −Btm−1

should have the same distribution as independent N (0, t1), N (0, t2 − t1), · · · ,N (0, tm − tm−1) r.v.’s.

Definition 1.1 A stochastic process (Xt)t∈T (T = Z,R, etc) on a probability space (Ω,F ,P) is such
that for every fixed t ∈ T ,

ω ∈ Ω 7→ Xt(ω)

is a measurable map from (Ω,F) to (R,B(R)).

Remark 1.4 As a notation, we may simply write “Xt is B(R)/F-measurable”.

Definition 1.2 For a stochastic process (Xt)t∈T , its finite-dimensional distribution (f.d.d.) is the
collection of all the laws

L(Xt1 , Xt2 , . . . , Xtm), t1, t2, . . . , tm ∈ T.

It follows from Definition 1.1 that all the sets

{(Xt1 , Xt2 , . . . , Xtm) ∈ A}, A ∈ B(Rm)

are measurable, and hence f.d.d. of a stochastic process is well-defined.

Homework (Transformation of BM)

1. Prove the equivalency of the following two conditions: for 0 = t0 ≤ t1 < · · · < tm,

L(Bt1 , Bt2 −Bt1 , . . . , Btm −Btm−1
) = N (0,diag{ti+1 − ti}0≤i≤m−1)

⇔ (Bt1 , Bt2 , . . . , Btm) is a centered Gaussian vector with covariance EBtiBtj = ti ∧ tj .
(1.1)

2. Suppose that (Bt)t≥0 has f.d.d. (1.1). Show that all the following processes have the same f.d.d. (1.1).

a) (−Bt)t≥0.

b) (Bλ
t )t≥0 := (

1

λ
Bλ2t)t≥0. (Fix λ > 0.)

c) (B
(s)
t )t≥0 := (Bt+s −Bs)t≥0. (Fix s > 0.)

d) (tB1/t)t≥0 (with the convention 0 ·B1/0 = 0).

Hint: You can find some basic properties of Gaussian vectors in Section 2.1. This exercise is basically about
covariance computation.
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It is believable that a stochastic process is more or less determined by all its f.d.d. (which is done
by Komolgorov’s Extension Theorem, see for example [Shi96, Chap. II.3, Theorem 4]). With the
definition of stochastic processes at hand, the next question is what makes a “continuous” stochastic
process. To discuss continuity we now take T to be an interval of R (T = [a, b], [0,∞), etc). Then, a
“continuous” process requires additionally that the map

t 7→ Xt(ω)

is continuous for P-a.e. ω.

Remark 1.5 For a generic stochastic process (Xt)t∈R, the sets

C = {ω : t 7→ Xt(ω) is continuous.}

and (for t0 ∈ T )
Ct0 = {ω : t 7→ Xt(ω) is continuous at t = t0.}

are NOT measurable.
To see this, recall that we can characterize the continuity of a function by sequential convergence, namely,

lim
t→t0

f(t) = f(t0) ⇔ ∀tn → t0, lim
n→∞

f(tn) = f(t0).

Although for any fixed sequence (tn), the set

{ω : lim
n→∞

Xtn = Xt0)} =

∞⋂
m=1

∞⋃
N=1

∞⋂
n=N

{ω : |Xtn −Xt0 | <
1

m
}

is in F (hence measurable), there are uncountably many such sequences (tn) such that tn → t0.

Homework Let (Xn)n≥1 and X∞ be r.v.’s on (Ω,F ,P). Show that

{ω : lim
n→∞

Xn(ω) = X∞(ω)} =

∞⋂
m=1

∞⋃
N=1

∞⋂
n=N

{ω : |Xn(ω)−X∞(ω)| < 1

m
}

Conclude that the left hand side belongs to F .

Due to the potential measurability issue, the continuity of a stochastic process is somehow an
“independent” property to consider, so additional efforts are always needed for the justification. There
are generally two approaches: one is to use Komolgorov’s Continuity Test (its usage summarized in
Theorem 1.2), the other one is to directly build up probability measures on the desired functional
spaces (Section 1.2).

But assuming that this can be done, we are ready to rigorously define what a Brownian motion is.
One last thing to do is to specify how we distinguish between different stochastic processes.

Definition 1.3 Two stochastic processes X = (Xt)t∈T , Y = (Yt)t∈T , defined on (Ω,F ,P), are called
modifications of each other if

P(Xt = Yt) = 1, ∀t ∈ T.

That is, X and Y have the same f.d.d.

Definition 1.4 Y is called a version of X, or indistinguishable from X, if for a.e. ω,

Xt = Yt, ∀t ∈ T.

Clearly, when T is uncountable, the above two definitions are not equivalent.
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Remark 1.6 It is tempting to write P(Xt = Yt, ∀t ∈ T ) = 1. However, without additional assumptions on the
processes X and Y , it is not clear whether the set {Xt = Yt, ∀t ∈ T} is measurable. If some statement holds
for “a.e. ω”, what is means is that it is true on an event Ω̃ with P(Ω̃) = 1. It may still be true or not true for
some ω in Ω̃c, but the point is that at least such exceptional points are contained in a set of zero probability.
The issue could be resolved if additionally the probability space (Ω,F ,P) is assumed to be complete, in which
case all subsets of zero-probability sets are measurable.

Homework Let X = (Xt)t≥0 be a stochastic process on (Ω,F ,P) such that t 7→ Xt(ω) is continuous for almost
every ω ∈ Ω. Let τ be a continuous r.v. on (Ω,F ,P) and Y = (Yt)t≥0 be defined as

Yt(ω) =

{
Xt(ω), t ̸= τ(ω),

Xt(ω) + 1, t = τ(ω).

Show that Y is a stochastic process which is a modification of X, but t 7→ Yt(ω) is NOT continuous for almost
every ω ∈ Ω.

Definition 1.5 The (1d, standard) Brownian motion (Bt)t≥0 is a continuous stochastic process with
f.d.d. given by

L(Bt1 , Bt2 −Bt1 , . . . , Btm −Btm−1) = N (0,diag{ti+1 − ti}0≤i≤m−1), 0 = t0 ≤ t1 < · · · < tm. (1.2)

In particular, P(B0 = 0) = 1.

The information of f.d.d. of Brownian motion indeed sheds some light on the continuity property.
In fact, the continuity condition can be dropped in the above definition, if we allow ourselves to
consider stochastic processes up to modifications. The next result is a consequence of the Kolmogorov’s
Continuity Test.

Theorem 1.2 If (Xt)t≥0 has the f.d.d. given in (1.2), then (Xt)t≥0 has a continuous modification.

Idea of the proof: We can use the f.d.d. on Q+ to show that for a.e. ω, t 7→ Bt(ω) is uniformly
continuous on Q+, that is, ∀ε > 0, ∃δ = δ(ε, ω) such that

|Xt1(ω)−Xt2(ω)| < δ, ∀|t1 − t2| < ε, t1, t2 ∈ Q+.

Then we can extend the function t 7→ Xt(ω) on Q+ to a continuous function on R+. 2

The existence of a stochastic process with any given consistent f.d.d. is guaranteed by Kolmogorov’s
Extension Theorem, although later in this note we will exploit the Gaussian f.d.d. more to give another
more explicit construction of Brownian motion (Section 2.2) . Then, using the above theorem we obtain
a continuous stochastic process. We will fill in the gaps later in this note.

1.2 Probability measures on metric spaces

Recall that X is a r.v. on a probability space (Ω,F ,P) if X : Ω → R is B(R)/F-measurable. The
distribution of X is a measure on (R,B(R)), given by

L(X)(A) = P ◦X−1(A) = P(X ∈ A), A ∈ B(R).

The measure L(X) is determined by P(X ≤ a), a ∈ R, since B(R) = σ
(
(−∞, a], a ∈ R

)
.

We want to replace R by a general metric space (M,d), where M can be as large as the space of all
continuous functions. Any stochastic process from a probability measure on the space of continuous
functions will automatically be continuous. We start by some basic notions on probability measures
on metric spaces.

A metric space (M,d) is a set M equipped with a metric d : M ×M → R+ which satisfies
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• (symmetry) d(x, y) = d(y, x);

• (positivity) d(x, y) ≥ 0, and the equality holds only when x = y.

• (triangle inequality) d(x, y) + d(y, z) ≥ d(x, z) .

Example 1.7 1. M = Z, d(x, y) = |x− y|.

2. M = Rm, with ℓp-distance

dp(x, y) =


[ m∑

i=1

|xi − yi|p
]1/p

, 1 < p < ∞,

max
1≤i≤m

|xi − yi|, p = ∞.

3. M = C[0, 1], d(x, y) = sup
t∈[0,1]

|x(t)− y(t)|.

For a metric space, its Borel σ-algebra B(M) is the σ-algebra generated by all the open sets in M ,
or equivalently, the smallest σ-algebra containing all the open balls

Br(x0) = {x : d(x, x0) < r}, x0 ∈ M, r > 0.

Definition 1.6 Let (M,d) be a metric space. An M -value random element (r.e.) on (Ω,F ,P) is
a measurable map from (Ω,F) to (M,B(M)). The distribution of X is a probability measure on
(M,B(M)), given by

(P ◦X−1)(A) = P(X ∈ A), A ∈ B(M). (1.3)

The measure in (1.3) is determined its value on all open balls Br(x0).

Example 1.8 Let X be a C[0, 1]-valued random element. Then (Xt)t∈[0,1] is a stochastic process.
In fact, for t ∈ [0, 1], we have the composition

ω 7→ X(ω) 7→ Xt(ω),

where the first map is B(M)/F-measurable by the definition of random elements, and the second map is
continuous since it is the evaluation map at given t of continuous functions and hence B(R)/B(M)-measurable.
Therefore, the map ω 7→ Xt(ω) is B(R)/F-measurable.

Example 1.9 (Coordinate process) Let µ be a measure on
(
C(R+),B(C(R+))

)
. Define

(Ω,F ,P) =
(
C(R+),B(C(R+)), µ

)
, Xt(ω) = ωt, t ≥ 0.

Then (Xt)t≥0 is a continuous stochastic process.

A function F : M → R is continuous if d(x, x0) → 0 implies |F (x)− F (x0)| → 0.

Definition 1.7 Let X(n) and X be C[0, 1]-valued random elements defined on (Ω(n),F (n),P(n)) and
(Ω,F ,P). We say that X(n) converge weakly (or converge in distribution/law) to X, denoted by
X(n) ⇒d X, if for all bounded and continuous F : C[0, 1] → R,

lim
n→∞

E(n)F (X(n)) = EF (X).

Remark 1.10 It is annoying to work with different probability spaces, but the good news is that the underlying
probability spaces are not relevant for the notion of weak convergence. Let µn = P(n)◦[X(n)]−1 and µ = P◦X−1.
Then µn, µ are all (probability) measures on (C[0, 1],B(C[0, 1])). By standard functional analysis terminologies,
the above definition says that µn → µ in the weak-* topology (since measures on metric spaces form the dual
space of bounded continuous functions). In probability it is conventional to call it weak convergence.
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The Brownian motion gives rise to a measure on C[0, 1], called the Wiener measure. It is a
probability measure on C[0, 1] whose coordinate process has specific f.d.d.’s. To construct the Wiener
measure directly:

• Functional CLT: need to understand (pre-)compact sets in C[0, 1], and use the information of
f.d.d. to verify tightness. A good read is [Bil99]).

• Gaussian measures on Banach spaces: more general, but still using the Gaussian information in
an essential way. Such construction is needed for the study of stochastic PDEs, where the state
space of the Gaussian processes is infinite-dimensional. This is a little beyond the scope of this
course, and we will not go into more details other than Definition 2.4. Interesting readers can
take a look at [PZ14, Chap. 2] or [Hai, Chap. 2-3].

With the Wiener measure at hand, we can now think of Brownian motion as random continuous
functions. We conclude by mentioning the Hölder-continuity property of Brownian motion.

Definition 1.8 Let α ∈ (0, 1]. A continuous function f is called (locally) α-Hölder if every x,

sup
y: y ̸=x

|f(x)− f(y)|
|x− y|α

< ∞.

The α-Hölder continuous functions on [0, T ] form a complete metric space Cα[0, 1] ⊂ C[0, 1] under the
norm:

|f |Cα = sup
x

|f(x)|+ sup
x ̸=y

|f(x)− f(y)|
|x− y|α

.

Theorem 1.3 For α ∈ (0, 1/2), the Wiener measure PW is supported on α-Hölder continuous func-
tions, that is,

∀α ∈ (0, 1/2), PW (ω ∈ Cα[0, 1]) = 1.

Remark 1.11 One can show that for every α ∈ (0, 1], the set of α-Hölder continuous function in C[0, 1] is in
B
(
C[0, 1]

)
, using that fact that a continuous function can be determined by its values on rational points.

1.3 Stochastic integrals and SDEs

Denote by x(t) the position of a particle at time t. The Langevin dynamics of the particle is described
by the equation

mẍ(t) = −
(
∇U

)(
x(t)

)
− γẋ(t) + cη(t).

The equation arises from Newton’s second law:

• mẍ(t) is the mass multiplied by the acceleration. It should be equal to the force, which is the
right hand side of the equation.

• U is the potential, and −
(
∇U

)(
x(t)

)
gives the potential force.

• −γẋ(t) represents the friction which is usually proportional to the velocity ẋ(t).

• cη(t) is the random forcing, with c controlling its magnitude.

In an ideal physical model, η(t) is the so-called white noise. As a “stochastic process”, it should
have at least the following two properties.
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• independence η(t) should be independent over disjoint intervals, namely, if I1 and I2 are two
disjoint intervals of R, then the two σ-fields

σ
(
η(t), t ∈ I1

)
, σ

(
η(t), t ∈ I2

)
are independent.

• stationarity the one-dimensional distribution of η(t) does not change:

L
(
η(t1)

)
= L

(
η(t2)

)
, ∀t1 ̸= t2.

Brownian motion in fact got its name from the botanist Robert Brown who observed the motion of
pollen of plants through a microscope. For things like the pollen, the termmẍ(t) is negligible compared
to other terms sincem is so small, the above equation can be approximated by the overdamped Langevin
dynamics:

ẋ(t) = −(∇u)
(
x(t)

)
+ η(t) (1.4)

For simplicity, we will set all constants (c, γ, etc) to 1 hereafter.
Free motion case. Let us set U ≡ 0 in (1.4). This means that no external potential (such as the

gravity) is taking effect. We can simply integrate (1.4) to obtain (assuming x(0) = 0)

x(t) =

∫ t

0
η(s) ds.

The function t 7→ x(t) is just the trajectory of a randomly moving light-weighted particle. Based on
our assumption on the white noise η(t), its antiderivative x(t) will satisfy

• t 7→ x(t) is continuous; this is really a physical constraint.

• x(t) has independent increments: for all 0 = t0 ≤ t1 < · · · < tm, {x(ti+1) − x(ti)}1≤i≤m are
independent.

• The increments are centered Gaussian: x(t)− x(s) ∼ N (0, σ2
t−s). This is because any increment

can be written as i.i.d. sums of small r.v.’s:

x(t)− x(s) =
N−1∑
i=0

x(ti+1)− x(ti), ti = s+
i(t− s)

N
.

Moreover, due to stationarity, it only makes sense to have σ2
t−s to be linear: σ2

t−s = K · (t − s)
for some constant K > 0.

Up to a constant, the only process that satisfies all these conditions is Brownian motion. This means
the write noise η(t) should be interpreted as the “derivative” of Brownian motion. However, there is
one fundamental issue of such interpretation:

Question The Brownian motion is only α-Hölder continuous for α < 1/2. In fact it is nowhere
monotone and nowhere differentiable (we will see proofs of these statements later on). Then how

should we define η(t) =
dBt

dt
?
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The U ̸≡ 0 case. Let us consider a more general form

ẋ(t) = b
(
x(t)

)
+ η(t), (1.5)

where b : R → R is a sufficiently nice function. We are now entering the realm of the stochastic
differential equation (SDE) . It has a lot of applications in other fields, for example stable diffusion in
text-to-image AI models. As we mentioned above, η(t) is not a function. At best it could be defined
as a generalized function (viewed as a linear functional acting on C∞

0 (R)). Due to the special structure
of (1.5), this issue could be circumvented by considering the equivalent integral equation

x(t) = x(0) +

∫ t

0
b
(
x(s)

)
ds+B(t). (1.6)

Now the noise enters the equation as a Brownian motion B(t), which is a random continuous function.
All terms in (1.6) make sense as long as x(t) is a continuous function. Then standard fixed-point or
Picard-iteration techniques can be applied here to construct a unique solution x(t).

First variation of (1.5): the magnitude of the noise is time-dependent.
Let us consider

ẍ(t) = b
(
x(t)

)
+ f(t)η(t),

where f(t) is a nice (say bounded and smooth) function. Inspired from the integral equation, it suffices
to define the so-called stochastic integral∫ t

0
f(s)η(s) ds :=

∫ t

0
f(s) dB(s) (1.7)

The notation on the right hand side is to mimic that of the Riemann–Stieltjes integral. We recall
its definition below.

Definition 1.9 Let g be a function of finite variation (i.e., g = g+ − g−, where both g+ and g− are

increasing) and f be a continuous function. Then the Riemann–Stieltjes integral

∫
fdg is defined as

∫ b

a
f(s) dg(s) := lim

|∆|→0

N∑
i=1

f(ξi)
(
g(ti+1)− g(ti)

)
, (1.8)

where ∆ : a = t0 < t1 < · · · < tN = b is a partition, ξi ∈ (ti, ti+1) is arbitrary, and |∆| = max |ti+1−ti|.
The limit does not depend on the sequence of partitions or (ξi) that are chosen.

Example 1.12 When g(t) = t, the Riemann–Stieltjes integral is just the Riemann integral.

A nice thing about the Riemann–Stieltjes integral is that integration by parts holds.

Proposition 1.4 Let f , g be functions of bounded variation. Then∫ b

a
f(t) dg(t) = f(b)g(b)− f(a)g(a)−

∫ b

a
g(t) df(t).

Homework Use the Abel transformation (summation by parts)

n∑
k=1

uk(vk+1 − vk) = un+1vn+1 − u1v1 −
n∑

k=1

vk+1(uk+1 − uk)

to show that integration by parts holds for Riemann–Stieltjes integrals for functions f and g of bounded
variation.
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Of course, Brownian motion does not have bounded variation; such property is almost requiring
differentiability. However, we can still use the idea of integration by parts to define simple stochastic
integrals in the form of (1.7) by∫ t

0
f(s) dBs := f(t)Bt −

∫ t

0
Bs df(s).

It requires only that f has bounded variation.
In fact, the integration-by-part formula suggests a trade-off between the regularities of f and g.

A further generalization of Riemann–Stieltjes integral is the Young’s integral, which says that (1.8)
makes sense for f ∈ Cα, g ∈ Cβ with α+β > 1. Intuitively, the Riemann–Stieltjes integral corresponds
roughly to the case α = 0 and β = 1.

Second variation of (1.5): the magnitude of the noise is both time- and space-
dependent.
We are now consider the SDE

ẍ(t) = b
(
x(t)

)
+ σ

(
t, x(t)

)
η(t), (1.9)

where both b, σ are smooth. Again, with the integral form of the SDE, it all boils down to defining
the stochastic integral ∫ t

0
σ
(
s, x(s)

)
dBs. (1.10)

We already know that t 7→ Bt is Cα with α < 1/2. We also note that x(t) cannot be more regular
than B(t), and hence no matter how smooth the function σ is, the map t 7→ σ

(
t, x(t)

)
is at most Cβ

with β < 1/2. One such simple example is

∫ t

0
Bs dBs. Therefore, it is hopeless to define (1.10) even

as a Young’s integral, since α + β < 1. This is as far as classical analysis can take us to. It tells us
that the stochastic integral (1.10) cannot be defined for a fixed realization of (Bt). In fact, it could
only be defined (or constructed) as a new stochastic process with the help of some new probabilistic
tools.

To summarize, two central goals of this course are

1. Define the stochastic integral ∫ t

0
Ys dBs

for very irregular stochastic processes Y = (Yt)t≥0.

Again,we emphasize that if Y ∈ Cβ, β > 1/2, then the stochastic integral can be defined for
every fixed realization of Brownian motion, but such treatment cannot cover even the simple
case where Yt = Bt itself.

2. Develop a good solution theory for the SDE (1.9).

2 Construction and properties of Brownian motion

2.1 Gaussian r.v.’s and vectors

Gaussianity is crucial in the study of Brownian motion. In many ways, Brownian motion can be seen
as a generalization of Gaussian vectors. In this section, we review some basic facts about Gaussian
r.v.’s and vectors.

We begin with the definition of a (generalized) Gaussian r.v.
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Definition 2.1 Let µ ∈ R and σ ≥ 0. A Gaussian r.v. X with N (µ, σ2) distribution is characterized
by any of the following:

1) Its characteristic function is φX(ξ) = EeiξX = eiµξ−
σ2

2
ξ2.

2) L(X) = L(µ+ σ · Y ), where Y ∼ N (0, 1) is the standard normal, a r.v. with density
1√
2π

e−
x2

2 .

3) If σ ̸= 0 (non-degenerate case), then X is a continuous r.v. with density
1√
2π

e−
(x−µ)2

2σ2 ; if σ = 0,

then P(X = 0) = 1.

Proposition 2.1

1. If X is a Gaussian r.v. on (Ω,F ,P), then X ∈ Lp(Ω,F ,P), ∀p ∈ (0,∞). In particular, for
X ∼ N (µ, σ2), EX = 0 and Var(X) = σ2.

2. If Xi ∼ N (µi, σ
2
i ) and Xi are independent, then X1+X2+· · ·+Xn ∼ N (µ1+· · ·+µn, σ

1
1+· · ·+σ2

n).

Proof: The proof is elementary.

1. Direct computation using the Gaussian density.

2. Use the ch.f. of Gaussian r.v.’s.

2

Gaussian r.v.’s have nice properties as elements in L2(Ω,F ,P).

Proposition 2.2 If Xm ∼ N (µm, σ2
m) and Xm → X in L2(Ω,F ,P), then X ∼ N (µ, σ2) with

µ = lim
m→∞

µm, σ = lim
m→∞

σm. (2.1)

Moreover, Xm → X in Lp(Ω,F ,P) for any p > 0.

Proof: The L2-convergence of Xm → X implies the existence of both limits in (2.1). Hence, for

each ξ ∈ R, we have φXm(ξ) → exp(iµξ − σ2ξ2

2
), which is the ch.f. of N (µ, σ2)-Gaussian. On the

other hand, the L2-convergence of Xm → X also implies that Xm → X in probability, and thus in

distribution. so φXm(ξ) → φX(ξ). Therefore, φX(ξ) = exp(iµξ − σ2ξ2

2
), and X indeed has N (µ, σ2)

distribution, with µ, σ given by (2.1).
For any q > 0, it is easy to get a uniform upper bound by direct computation:

sup
m

E|Xm −X|q ≤ C = C(sup
m

µm, sup
m

σm).

By choosing q > p, we see that |Xm−X|p is uniformly integrable. Since |Xm−X| → 0 in probability,
this and uniform integrability imply (see [Dur07, Sec. 4.5]) that E|Xm −X|p → 0. 2

Definition 2.2 A random vector X ∈ Rd is Gaussian if for all v ∈ Rd, ⟨v,X⟩ is a Gaussian r.v.

Example 2.1 1. X = (X1, . . . , Xd) where all Xi’s are independent Gaussian random variables.

2. Let X ∈ Rd be Gaussian and Q be a d×d matrix. Then Y = QX is Gaussian, since ⟨v,QX⟩ = ⟨QT v,X⟩
for any vector v.

10
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3. Let (Bt)t≥0 be Brownian motion. For any 0 ≤ t1 < t2 < · · · < tm, both random vectors

(Bt1 , Bt2 −Bt1 , . . . , Btm −Btm−1
), (Bt1 , Bt2 , . . . , Btm)

are Gaussian.

Definition 2.3 A stochastic process (Xt)t∈T is a Gaussian process if for any t1, t2, . . . , tm ∈ T ,
(Xt1 , . . . , Xtm) is a Gaussian vector.

Example 2.2 The Brownian motion is a (centered) Gaussian process.

Theorem 2.3 Each of the following is an equivalent definition for a random vector X ∈ Rd to be
Gaussian.

1. There exists µX ∈ Rd and a non-negative quadratic form Q : Rd ×Rd → R such that the ch.f. of
X is

φX(ξ) = Eei⟨ξ,X⟩ = ei⟨µX ,X⟩− 1
2
Q(ξ,ξ).

2. There exists µX ∈ Rd, an orthonormal basis (ONB) {b1, . . . , bd}, and ε1 ≥ ε2 ≥ · · · ≥ εr > 0 =
εr+1 = · · · = εd such that

X
d
= Y = µX +

r∑
i=1

εηi · bi, ηi
i.i.d.∼ N (0, 1). (2.2)

Proof: From Definition 2.2 to Item 1. Since ⟨ξ,X⟩ is Gaussian for every ξ ∈ Rd, we have

φX(ξ) = Eei⟨ξ,X⟩ = eiE⟨ξ,X⟩− 1
2
Var(⟨ξ,X⟩).

We can take µX = EX (coordinate-wise) so that E⟨ξ,X⟩ = ⟨ξ, µX⟩, and take

Q(ξ, ζ) = Cov(⟨ξ,X⟩, ⟨ζ,X⟩).

It is easy to check that Q(·, ·) is bilinear, symmetric, and defines a non-negative quadratic form on Rd.
From Item 1 to Item 2. Since Q is a non-negative quadratic form, it can be diagonalized in an

ONB {b1, b2, . . . , bd} with eigenvalues ε2i ≥ 0:

Q(ξ, ζ) =
d∑

i=1

(εi)
2⟨ξ, bi⟩⟨ζ, bi⟩.

(In matrix form, this is just Q = BTΣB where B = {b1, . . . , bd} and Σ = diag{ε21, . . . , ε2d}.) Without
loss of generality we can take εi ≥ 0 and order them from the largest to the smallest.

Suppose on some probability space we have i.i.d. N (0, 1) Gaussian r.v.’s ηi and let Y be defined
by (2.2). For all v ∈ Rd,

⟨v, Y ⟩ =
r∑

i=1

εi⟨v, bi⟩ηi

is a sum of independent Gaussian r.v.’s, and hence is Gaussian. This verifies that Y is a Gaussian
vector. Also, we have

E⟨v, Y ⟩ = ⟨v, µX⟩, Var(⟨v, Y ⟩) =
r∑

i=1

ε2i ⟨v, bi⟩2 = Q(v, v).

11
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So X and Y have the same ch.f., and hence L(X) = L(Y ) as desired.
From Item 2 to Definition 2.2. It is already done above. 2

A Gaussian vector is non-degenerate if the quadratic form Q is non-degenerate, i.e., all eigenvalues
are strictly positive. A non-degenerate Gaussian vector has a density, which is more familiar to most
people.

Proposition 2.4 A non-degenerate Gaussian vector X ∈ Rd has density

p(x) =
1

(2π)d/2
1√

det(Q)
e−

1
2
(x−µX)TQ−1(x−µX),

where Q = (Qij) =
(
Cov(Xi, Xj)

)
is the covariance matrix.

Remark 2.3 Since the distribution of a Gaussian vector is determined by its covariance matrix, the f.d.d. of a
centered Gaussian process X = (Xt)t∈T is completely determined by its covariance function

Γ(s, t) := Cov(Xs, Xt) = EXsXt, s, t ∈ T.

For Brownian motion, Γ(s, t) = s ∧ t.

Homework Let X and Y be i.i.d. with EX = EY = 0 and EX2 = EY 2 = 1. Suppose that the distribution of
(X,Y ) is rotational invariant, i.e.,

L(X,Y ) = L(X cos θ + Y sin θ,−X sin θ + Y cos θ), ∀θ ∈ R.

Show that L(X) = L(Y ) = N (0, 1).
Hint: rotational invariance implies that the ch.f. takes the form φX,Y (ξ, η) = F (ξ2 + η2).

A Banach space is an infinite-dimensional vector space. The generalization of Gaussian vectors to
the infinite dimension is Gaussian measures on Banach spaces.

Definition 2.4 (Gaussian measure on Banach spaces) Let E be a separable Banach space. We say
that an E-valued random element X has Gaussian distribution, if ⟨λ,X⟩ is a Gaussian r.v. for any
linear functional λ ∈ E∗.

Example 2.4 For Gaussian vectors in Rd, E = Rd = E∗, that is, any linear functional is the inner product with
a fixed vector v. This is exactly Definition 2.2.

Example 2.5 For Brownian motion, X = (Bt)t∈[0,1], E = C[0, 1], and E∗ is the space of all finite signed measures
on [0, 1]. Then for λ = λ(dt) ∈ E∗, ⟨λ,X⟩ is a centered Gaussian with variance

Var(⟨λ,X⟩) = E

∫ 1

0

∫ 1

0

Bs λ(ds)Btλ(dt) =

∫ 1

0

[
EBsBt

]
λ(ds)λ(dt)

∫ 1

0

∫ 1

0

(s ∧ t)λ(ds)λ(dt),

where in the last equality the exchange of integration and expectation needs justification.
For the construction of Brownian motion, the variance of ⟨λ,X⟩, λ ∈ E∗, will be given first, and then

some general theory will guarantee the existence of a corresponding (centered) Gaussian measure as long as the
variance functional induces a positive definite quadratic form, similar to Gaussian vectors.

Homework Let f(t) = λ((t, 1]).

1. Suppose that λ(dt) = ρ(t) dt for some ρ ∈ C[0, 1]. Show that∫ 1

0

∫ 1

0

(s ∧ t)λ(ds)λ(dt) =

∫ 1

0

|f(t)|2 dt.

Hint: use integration by parts.

2. (Optional) Prove the same identity for an arbitrary signed measure λ(dt).

Hint: if λ(dt) is a signed measure, then f defined as above has bounded variation and λ(dt) = d
(
− f(t)

)
.

Use integration by parts for Riemann–Stieltjes integrals.
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2.2 Gaussian white noise

The goal of this section is to construct a centered Gaussian process (Bt)t∈[0,1] with covariance EBtBs = t ∧ s.
After the construction, the resulting process (called “pre-Brownian motion” in [LeG16]) may not be
a.s. continuous; we will discuss how to get continuity in Sections 2.2 and 2.3.

The Kolmogorov’s Extension Theorem ([Shi96, Chap. II.3, Theorem 4]) already guarantees the
existence of a stochastic process with any prescribed consistent f.d.d. However, in the special case of
Brownian motion, it is advantageous to have a more explicit construction using the Gaussian white
noise.

Surprisingly, it is more convenient to first define a more general stochastic integralG(f) =

∫ 1

0
f(t)dBt,

and then define Brownian motion as a special stochastic integral

Bt =

∫ 1

0
1[0,t](s) ds.

The following discussion shows that the natural class of functions to define G(f) is L2[0, 1], and
for such f , G(f) is in fact a Gaussian r.v. This will also motivate the introduction of Gaussian white
noise, and the definition of Itô integrals later.

First: f piecewise constant

Suppose that [0, 1] is partitioned into 0 = t0 < t1 < · · · < tm = 1 and f(s) =

m−1∑
i=0

fi1[ti,ti+1)(s). Then

in light of the Riemann–Stieltjes integral, it only makes sense to define G(f) as

G(f) :=
m−1∑
i=0

fi · (Bti+1 −Bti). (2.3)

We did not specify f(1), but it does not enter the definition of (2.3) anyway, so it is safe to ignore
it. The r.v. in (2.3) is a sum of i.i.d. Gaussian r.v.’s, so it is also Gaussian. It has zero mean, and a
variance

Var
(
G(f)

)
=

m−1∑
i=0

f2
i (ti+1 − ti) =

∫ 1

0
|f(t)|2dt

Second: difference of G(f1) and G(f2) for piecewise constant fi.
Without loss of generality we can assume that f1 and f2 has the same partition of [0, 1], since otherwise
we can enlarge their partitions to a common partition by including all the endpoints. Then, a similar
computation yields that G(f1)−G(f2) is also a centered Gaussian, with variance

E|G(f1)−G(f2)|2 = |f1 − f2|2L2[0,1].

Last: general f ∈ L2[0, 1]
Every function f ∈ L2[0, 1] can be approximated by piecewise functions fn in L2[0, 1]. One way to see
is to first approximate any L2[0, 1] function by continuous functions, then to approximate continuous
functions by piecewise constant functions. Suppose that fn → f in L2[0, 1] and fn are all piecewise
constant. Note that

|G(fn)−G(fm)|2L2(Ω,F ,P) = E|G(fn)−G(fm)|2 = |fn − fm|2L2[0,1]

Since fn → f , (fn) is a Cauchy sequence in L2[0, 1], and hence
(
G(fn)

)
is a Cauchy sequence

in L2(Ω,F ,P). But L2(Ω,F ,P) is a complete metric space, which means every Cauchy sequence
has a limit; let us denote the limit of GN (f) by G(f). Note that all G(fn) are Gaussian, so by
Proposition 2.2, the limit G(f) is also Gaussian.

13



D
RA
FT

Definition 2.5 (Gaussian white noise) Let (E, E) be a measurable space, µ be a σ-finite measure
on (E, E). Denote by H = L2(E, E , µ). A Gaussian white noise (with intensity µ) is an isometry (i.e.,
preserving the inner product between two inner product spaces) from H to L2(Ω,F ,P) with values
being (centered) Gaussian r.v.’s. The isometry is given by

G : f 7→ G(f) ∼ N (0, |f |2H).

Theorem 2.5 If the Hilbert space H = L2(E, E , µ) is separable, then there exists a probability space
(Ω,F ,P) such that the Gaussian white noise G : H → L2(Ω,F ,P) exists.

Remark 2.6 A Hilbert space is an inner product space which is also complete. One can think of a Hilbert
space as an infinite-dimensional Euclidean space. All L2-spaces are Hilbert space by standard real analysis.
“Separable” means that there is a dense countable set, which is true when H = L2([0, 1]).

In proving the theorem, the ONLY thing we will use about a separable Hilbert space is the existence
of an ONB.

Proposition 2.6 If H is a separable Hilbert space, then there exist (en)n≥1 ⊂ H, such that

• ⟨en, em⟩ = 1n=m.

• (basis) for every f ∈ H, it can be written as

f =
∞∑
n=1

⟨en, f⟩fn,

where the infinite sum is converging in H.

Such collection (en)n≥1 is called an orthonormal basis of H.

Proof of Theorem 2.5: Pick an ONB (en)n≥1 for H = L2(E, E , µ). Let (Ω,F ,P) be a probability
space on which there are i.i.d. N (0, 1) r.v.’s ξn, n ≥ 1. Let us define

GN (f) =
N∑

n=1

ξn⟨en, f⟩.

Then GN (f), N ≥ 1, each being a sum of independent Gaussians, are all Gaussian. Also, for N < N ′,

E|GN (f)−GN ′(f)|2 =
∑

N≤n<N ′

|⟨en, f⟩|2.

Since f ∈ H = L2(E, E , µ) and |f |2H =

∞∑
n=1

|⟨en, f⟩|2 < ∞, {GN (f)}N≥1 is Cauchy in L2(Ω,F ,P).

Therefore, the following limit in L2(Ω,F ,P)

G(f) = lim
N→∞

GN (f) =

∞∑
n=1

ξn⟨en, f⟩ (2.4)

exists. Since G(f) is the L2-limit of Gaussians, it is also Gaussian; moreover, by Proposition 2.1, it
has distribution N (0, |f |2H). 2
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Example 2.7 A Gaussian vector in Rd is also associated with a Gaussian white noise expansion, with H =
(Rd, | · |H), and

|v|2H = vTQv =

r∑
i=1

ε2i |⟨v, bi⟩|2.

Compare with Item 2 in Theorem 2.3.

Example 2.8 H = L2(R≥0,B(R≥0), dt). Then Bt = G(1[0,t]) is a centered Gaussian process, with covariance

EBtBs =

∫ ∞

0

1[0,t](r)1[0,s](r) dr = s ∧ t.

That is, (Bt)t≥0 has the same f.d.d. as Brownian motion.
The definition of Gaussian white noise only shows Bt is Gaussian for a fixed t. To see that any f.d.d. is jointly

Gaussian, we need to do a little bit more work. This can be also derived from the definition of Gaussian white
noise. In fact, any isometry between Hilbert spaces must be linear, so for any t1 < · · · < tm and v1, . . . , vm,

v1Bt1 + · · ·+ vmBtm = G
( m∑

i=1

vi1[0,ti]

)
is indeed Gaussian. The covariance computation from variance is a consequence of applying the following
polarization identity to the inner product spaces L2(Ω,F ,P) and L2[0, 1]:

4⟨f, g⟩ = ⟨f + g, f + g⟩ − ⟨f − g, f − g⟩.

Remark 2.9 Use the GWN construction of BM, for f ∈ L2[0,∞),

E
∣∣∣ ∫ ∞

0

f(t) dBt

∣∣∣2 = E
∣∣G(f)

∣∣2 =

∫ ∞

0

f2(t) dt. (2.5)

This is the simplest form of the celebrated “Itô’s Isometry”.

2.3 Continuity of Brownian motion via Kolmogorov’s Continuity Theorem

A powerful tool to get continuous modification of a stochastic process is the celebrated Komolgorov
Continuity Theorem. It extracts information of path regularity from the f.d.d.

Theorem 2.7 Let (Xt)t∈[0,T ] be a stochastic process that satisfies

E|Xt −Xs|α ≤ K|t− s|1+β, ∀0 ≤ s, t ≤ T.

Then X has a modification X̃ which is γ-Hölder continuous for all γ < β/α.

Example 2.10 Let (Bt)t∈[0,1] be a Gaussian process with EBtBs = t∧ s. Then Bt −Bs ∼ N (0, t− s), and hence

E|Bt−Bs|n ≤ Kn(t− s)n/2 for all n ≥ 1. Since
n/2− 1

n
can be arbitrarily close to 1/2, (Bt) has a modification

which is γ-Hölder for all γ < 1/2.

We first reduce Theorem 2.7 to the case of a fixed γ.

Lemma 2.8 If X and Y are continuous stochastic processes on R, and Y is a modification of X,
then Y is a version of X.
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Proof: By the definition of modifications, P(Xt = Yt) = 1 for all t ∈ R. Since the set of rational
numbers Q is countable, we have P(Xt = Yt, ∀t ∈ Q) = 1. That is, there is a set N with probability
P(N ) = 0, such that for all ω ∈ N ,

Xt(ω) = Yt(ω), ∀t ∈ Q. (2.6)

Noting that t 7→ Xt(ω) and t 7→ Yt(ω) are always continuous. Hence, if for any ω the condition (2.6)
holds, then it follows that

Xt(ω) = Yt(ω), ∀t ∈ R. (2.7)

So (2.7) holds except on a null-set N ; this means that Y is a version of X. 2

Lemma 2.9 For Theorem 2.7, it suffices to prove it for any fixed γ < α/β.

Proof: Suppose that there are modifications X(n) of X which is γn = (α/β−1/n)-Hölder continuous.
Then by Lemma 2.8, X(n), n ≥ 1, are all versions of each other. In particular, there exist null-sets N (n)

such that
∀ω ∈ (N (n))c : X

(1)
t = X

(n)
t , t ∈ [0, T ].

Let N =
⋃
n≥2

N (n). Then N is also a null-set, and for all ω ∈ N c, X
(1)
t = X

(n)
t , ∀n, t. Hence, X(1)

is γn-Hölder for all n ≥ 1 on the set N . Since γn is arbitrarily close to α/β, X(1) is γ-Hölder for
any γ < α/β on N . The proof is complete. 2

Proof of Theorem 2.7: Without loss of generality set T = 1. Let γ < β/α.
By Markov inequality,

P
(
|Xk/2n −Xk−1/2n | > 2−γn

)
≤ K

(1/2n)1+β

2−γnα
= K2−n(1+β−αγ).

By a union bound,
P
(

sup
1≤k≤2n

|Xk/2n −Xk−1/2n | > 2−γn
)
≤ K · 2−(β−αγ)n.

Since
∞∑
n=1

2−(β−αγ)n < ∞, by Borel–Cantelli, there exists n0 = n0(ω) such that for n ≥ n0,

|Xk/2n −X(k−1)/2n | ≤ 2−γn, ∀1 ≤ k ≤ 2n. (2.8)

Claim: for a.e. ω, X is uniformly γ-Hölder continuous on D = ∪Dn =
⋃

(Z/2n ∩ [0, 1]), that is,

there exists M = M(ω) > 0 such that

|Xs −Xt| < M |t− s|γ , ∀t, s ∈ D.

Assume that the claim is proved. Noting that D is dense in [0, 1], we can define

X̃t =

Xt, t ∈ D,

lim
D∋tm→t

Xtm , t ̸∈ D.

By the uniform γ-Hölder continuity, the limit is independent of (tm), and the resulting X̃t is γ-Hölder
continuous with the same constant C(ω).

Now we turn to the proof of the claim.
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Let t ∈
[ k

2n
,
k + 1

2n
]
∩ D, 0 ≤ k ≤ 2n − 1, n ≥ n0. Then there exist a sequence k/2n = pn/2

n,

pn+1/2
n+1, . . . , pN/2N = t such that∣∣∣pm

2m
− pm+1

2m+1

∣∣∣ = 1

2m+1
, n ≤ m < N.

By triangle inequality and (2.8),

|Xt −Xk/2n | ≤
N−1∑
m=n

|Xpm/2m −Xpm+1/2m+1 | ≤
∞∑

m=n

2−γm =
2−γn

1− 2−γ
. (2.9)

In particular, this and triangle inequality imply that Xt is bounded on t ∈ D. Let M0(ω) = sup
D

Xt.

For every s < t in D, we can find the biggest n such that

k − 1

2n
≤ s <

k

2n
≤ t <

k + 1

2n
,

and such n necessarily satisfies
1

2n+1
≤ |t− s| ≤ 1

2n−1
. (2.10)

There are two cases.
Case 1: n < n0. Since |t− s| ≥ 2−n0 , we have

|Xt −Xs|
|t− s|γ

≤ 2M0

(2−n0)γ
=: M1(ω).

Case 2: n ≥ n0. By triangle inequality, (2.9) and (2.10), we have

|Xs −Xt| ≤ |Xs −Xk/2n |+ |Xk/2n −Xt| ≤
2−γn+1

1− 2−γ
≤ 2

1− 2−γ

(
2|t− s|

)γ
=: M2|t− s|γ .

Let M = max(M1(ω),M2). Then |Xt −Xs| ≤ M |t− s|γ for all t, s ∈ D. The claim is proved. 2

Homework The Brown sheet (Bs,t)s,t∈[0,1] is a centered Gaussian process with covariance

EBs,tBs′,t′ = (s ∧ s′)(t ∧ t′), s, t, s′, t′ ∈ [0, 1].

It can be constructed via GWN with H = L2([0, 1]2,B([0, 1]2), ds× dt) and Bs,t = G
(
1[0,s]×[0,t]

)
.

1. Show that for each p ≥ 1, there is some constant Kp > 0,

E|Bs,t − Bs′,t′ |2p ≤ Kp

(
|s− s′|p + |t− t′|p

)
, s, t, s′, t′ ∈ [0, 1].

2. Let 0 < γ < 1/2. Show that with probability one, there is a random constant n0 = n0(ω) such that for
all n ≥ n0, ∣∣∣B k

2n , ℓ
2n

− B k′
2n , ℓ′

2n

∣∣∣ ≤ 2−γn, 0 ≤ k, ℓ, k′, ℓ′ ≤ 2n, |k − k′|+ |ℓ− ℓ′| ≤ 1.
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2.4 Lévy’s construction of Brownian motion

Using the proof of Theorem 2.5, we can express Brownian motion explicitly in the form of (2.4). In

fact, let {en} be an ONB of L2([0, 1], dt) and ξn
i.i.d.∼ N (0, 1) on (Ω,F ,P). Then by Theorem 2.5,

Bt(ω) =
∞∑
n=1

ξn(ω)⟨en(x), 1[0,t](x)⟩ (2.11)

is a Gaussian process with the f.d.d. of a Brownian motion; moreover, the infinite sum converges
in L2(Ω,F ,P). But we cannot derive continuity of t 7→ Bt(ω) for fixed ω.

Let us take a closer look at the infinite series (2.11). Note that βn(t) = ⟨en(x),1[0,t](x)⟩ is a
deterministic, continuous function. Hence, for every fixed N ,

BN
t (ω) =

N∑
n=1

ξn(ω)βn(t)

is also continuous in t for every ω. From classical analysis, for P-a.e. ω, if the Cauchy criterion holds:

sup
t∈[0,1]

|BN
t −BN ′

t |(ω) → 0, N,N ′ → ∞, (2.12)

then (BN
t (ω))t∈[0,1] converges uniformly to some (random) continuous function

(
B̃t(ω)

)
t∈[0,1]. The two

processes B and B̃ must have the same f.d.d., since for fixed t, B̃t is the a.s.-limit of BN
t , while Bt is

the L2-limit of BN
t ; in other words, B̃ will be a continuous modification of B.

The usual approach to verify the Cauchy criterion is to useWeierstrass M -test, which is an estimate
for absolute convergence:

sup
t∈[0,1]

|BN
t −BN ′

t |(ω) ≤
∑

N≤n<N ′

|ξn| sup
t∈[0,1]

|βn(t)|. (2.13)

Since ξn
i.i.d.∼ N (0, 1), it is easy to control the growth of ξn: by Borel–Cantelli and the Gaussian tail

estimate P(|N (0, 1)| ≥ a) ≤ e−a2/2, with probability one, there is a random constant n0 = n0(ω) s.t.

|ξn| ≤ lnn, ∀n ≥ n0(ω).

Therefore, to apply the M -test, all we need is

∞∑
n=1

lnn · sup
t∈[0,1]

|βn(t)| < ∞. (2.14)

Can (2.14) be true? Let us look at a common choice for ONB on L2[0, 1] from Fourier series:

{en(x)} = {1,
√
2 sin(2πn · x),

√
2 cos(2πn · x)}.

For the corresponding βn(t), one has

sup
t∈[0,1]

|βn(t)| ∼
1

n
.

Since

∞∑
n=1

lnn

n
diverges, the M -test cannot apply.

There are two fixes. The first one to choose {en(x)} more cleverly, so the Cauchy criterion (2.12)
holds. See Lévy’s construction in the exercise below.
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Homework For n ≥ 0 and 0 ≤ k ≤ 2n − 1, let

en,k(x) =


2

n
2 ,

k

2n
≤ x <

2k + 1

2n+1
,

−2
n
2 ,

2k + 1

2n+1
≤ x <

k + 1

2n
,

0, otherwise,

βn,k(t) = ⟨en,k,1[0,t]⟩,

and ξn,k
i.i.d.∼ N (0, 1). Define ∆Bn

t =

2n−1∑
k=0

ξn,kβn,k(t) and BN
t =

N∑
n=0

∆Bn
t .

1. Show that {en,k} is orthonormal, i.e.,∫ 1

0

en,k(x)en′,k′(x) dx = 1n=n′1k=k′ .

2. Show that
sup

t∈[0,1]

|∆Bn
t | ≤ 2−n/2 · max

0≤k≤2n−1
|ξn,k|.

Hint: note that for fixed n, en,k has disjoint support for different k.

3. Use P(|N (0, 1)| ≥ a) ≤ e−a2/2 and Borel–Cantelli Lemma to show that with probability one, there is a
random constant n0 = n0(ω) such that

|ξn,k| ≤ n, ∀0 ≤ k ≤ 2n − 1, n ≥ n0.

4. Conclude that with probability 1, {BN
t (ω), t ∈ [0, 1]}N≥1 is Cauchy in C[0, 1], that is,

lim
N,N ′→∞

sup
t∈[0,1]

|BN
t (ω)−BN ′

t (ω)| = 0, a.e. ω.

Another convenient description of Lévy’s construction is the following. Let Xk be i.i.d. N (0, 1)
and Sk = X1 + · · ·+Xk. Define

S̃t =

{
Sk, t = k ∈ Z,
(t− k)Sk+1 + (t+ 1− k)Sk, t ∈ (k, k + 1).

Then

BN
t

d
=

S̃2N t

2N/2
.

In this representation, it is easy to verify that BN has the same f.d.d. as Brownian motion at t ∈ Z/2N .
By the Functional CLT, BN converges to Brownian motion in distribution.

Another fix is to utilize the fluctuation of i.i.d. Gaussian and improve the bound on the right hand
side of (2.13). As a comparison, recall the Kolmogorov’s One-Series Theorem.

Theorem 2.10 Let Xn be independent with EXn = 0 and
∞∑
n=1

EX2
n < ∞. Then

∞∑
n=1

Xn converges a.s.

As a consequence of Theorem 2.10, we can put random ±1 in front of 1/n and get a conditionally

converging sum
∞∑
n=1

±1

n
since

∞∑
n=1

1

n2
< ∞. However,

∞∑
n=1

1

n
= ∞ so absolute convergence bound

like (2.13) will fail.
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In infinite dimension, the analogue is

∞∑
n=1

β2
n < ∞ in the L2-sense:

∞∑
n=1

∫ 1

0
β2
n(t) dt =

∫ 1

0

∞∑
n=0

⟨en, 1[0,t]⟩2 dt =
∫ 1

0
|1[0,t]|2L2[0,1] dt =

∫ 1

0
t dt < ∞.

Some general theory about Gaussian measures is develop to guarantee that (2.11) always converges
almost surely, whatever the choice of the ONB {en}, which is a refinement of the construction in The-
orem 2.5 (see e.g. [PZ14, Part I, Theorem 2.12]).

3 Filtration and Markov property

3.1 Filtration and stopping times

Definition 3.1 Let (Xt)t≥0 be a stochastic process defined on (Ω,F ,P).

1. A filtration (Ft)t≥0 is a family of increasing sub–σ-field of Ft, namely,

Ft1 ⊂ Ft2 ⊂ F , ∀0 ≤ t1 < t2.

2. Xt is said to be adapted to (Ft)t≥0, if Xt is measurable w.r.t. Ft for all t ≥ 0.

Example 3.1 (Natural filtration) Let (Xt)t≥0 be a stochastic process on (Ω,F ,P). The natural filtration is

FX
t := σ

(
Xs : 0 ≤ s ≤ t

)
.

Roughly speaking, FX
t is the information contained by the process X up to time t. By definition, Xt is FX

t -
measurable, so X is (FX

t )-adapted.

Definition 3.2 On the space (Ω,F , (Ft)t≥0,P),

1. a r.v. T is called a stopping time if {T ≤ t} ∈ Ft, ∀t ≥ 0;

2. a r.v. T is called an optional time if {T < t} ∈ Ft, ∀t ≥ 0.

There is a small difference between optional times and stopping times, but under mild assumptions
they will be the same. We will see these assumptions by the end of this section. Nevertheless, the
next two propositions give some relations between them.

Proposition 3.1 If T is a stopping time, then T is also optional.

Proof: We have

{T < t} =
∞⋃
n=1

{T ≤ t− 1

n
} ∈ σ

(
Ft− 1

n
, n ≥ 1

)
⊂ Ft.

So T is optional. 2

Let Ft+ :=
∞⋂
n=1

Ft+ 1
n
=

⋂
s>t

Fs. The two intersections are equivalent since Ft is a increasing in t.

Proposition 3.2 If T is an optional time for (Ft), then it is a stopping time for (Ft+).
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Proof: We have

{T ≤ t} =
∞⋂
n=1

{T < t+
1

n
} ∈

∞⋂
n=1

Ft+ 1
n
= Ft+.

2

Example 3.2 The most common examples of stopping times and optional times are the hitting time of a set.
Let Γ ⊂ R and (Xt)t≥0 be a (Ft)-adapted process. Then

TΓ = inf{s ≥ 0 : Xs ∈ Γ}.

Proposition 3.3

1. If Γ is open and X has right-continuous sample paths, then TΓ is optional.

2. If Γ is closed and X has continuous sample paths, then TΓ is stopping.

Proof:

1. For t ≥ 0, we have

{TΓ < t} = {∃s < t : Xs ∈ Γ} = {∃q < t, q ∈ Q : Xs ∈ Γ} =
⋃

q∈Q,q<t

{Xq ∈ Γ} ∈ Ft,

where the first equality is due to the definition of infimum,and the second equality due to right-
continuity of paths and openness of Γ.

2. For t ≥ 0, we have

{TΓ > t} =
{
{Xs}s∈[0,t]∩Γ = ∅

}
=

∞⋃
n=1

{
dist({Xs}s∈[0,t],Γ) ≥

1

n

}
=

∞⋃
n=1

⋂
q∈[0,t]∩Q

{
dist(Xq,Γ) ≥

1

n

}
∈ Ft.

The continuity of X implies that {Xs}s∈[0,t] is a compact set, and hence if it does not intersect
a closed set Γ, it must have positive distance to Γ; this gives the second equality.

2

Definition 3.3 A filtration (Ft)t≥0 is right-continuous if Ft+ = Ft for all t ≥ 0.

For a right-continuous filtration, stopping times and optional times are the same. An effortless
way to get right-continuous filtration is just to replace Ft by Ft+. Noting that since Ft ⊂ Ft+, if Xt

is (Ft)-adapted, then it is also (Ft+)-adapted.

Proposition 3.4 Let Gt = Ft+. Then (Gt)t≥0 is right-continuous.

Proof: We have

Gt+ =
∞⋂
n=1

Gt+ 1
n
=

∞⋂
n=1

F(t+ 1
n
)+ ⊂

∞⋂
n=1

Ft+ 2
n
= Ft+ = Gt.

2

It is still a valid question to ask how much Ft is different from Ft+. If the filtration is generated
by a nice process like the Brownian motion, then the answer is that Ft and Ft+ only differ by null
sets. In the case t = 0, this can be formulated by the following zero-one law.
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Theorem 3.5 (Blumenthal’s 0-1 law) Let B = (Bt)≥0 be the standard Brownian motion and FB
t be

its natural filtration. Then FB
0+ is trivial, i.e., P(A) = 0 or 1 for all A ∈ FB

0+.

Remark 3.3 Since B0 = 0 for all ω, FB
0 = {∅,Ω}.

Proof: For any A ∈ FB
0+, 0 < t1 < · · · < tm and bounded continuous g : Rm → R, we have

E1Ag(Bt1 , · · · , Btm) = lim
n→∞

E1Ag(Bt1 −B1/n, · · · , Btm −B1/n)

= E1A lim
n→∞

E1Ag(Bt1 −B1/n, · · · , Btm −B1/n)

= P(A) · Eg(Bt1 , · · · , Btm),

where in the first and last equalities, we use the (right-)continuity of t 7→ Bt at t = 0 and the continuity
of g, and the Bounded Convergence Theorem, and in the second equality, we use the independence of
Btk −B1/n with A ∈ F1/n. Then, this implies that FB

0+ is independent of σ(Bt, t > 0).

On the other hand, FB
0 = {∅,Ω}, so σ(Bt, t > 0) = σ(Bt, t ≥ 0). Since FB

0+ ⊂ σ(Bt, t ≥ 0), we see
that FB

0+ is independent of itself. Any such σ-algebra has to be trivial, and this completes the proof.
2

Using the zero-one law we can get some surprising results about the sample path of the Brownian
motion.

Proposition 3.6 With probability one,

∀ε > 0, sup
0≤t≤ε

Bt > 0 > inf
0≤t≤ε

Bt. (3.1)

Proof: Consider the event

A =
∞⋂
n=1

{ sup
0≤t≤1/n

Bt > 0}.

Then since A is the intersection of decreasing events, we have

P(A) = lim
n→∞

P( sup
0≤t≤1/n

Bt > 0) ≥ lim inf
n→∞

P(B1/n > 0) = 1/2.

On the other hand, A ∈ FB
0+, so by Theorem 3.5, P(A) = 1. Hence,

P
(

sup
0≤t≤1/n

Bt > 0
)
= 1, ∀n ≥ 1.

This implies that with probability one, sup
0≤t≤ε

Bt > 0 for all ε > 0. The other statement for the infimum

can be proven similarly. 2

We can say something about the zero set of Brownian motion.

Proposition 3.7 With probability one, there exists a decreasing sequence t1(ω) > t2(ω) > · · · > 0
such that Bti = 0, i.e., 0 is the limit point of the zero set of Bt.

Proof: We will construct the sequence (ti) inductively. By Theorem 3.5, assume (3.1) holds with
probability one.

Take ε = 1 in (3.1). Then there exists s1, s
′
1 ∈ (0, 1] such that Bs1 > 0 > Bs′1

. Since t 7→ Bt is

continuous, there exists t1 between s1 and s′1 such that Bt1 = 0.
Now suppose that t1, t2, . . . , tn have been constructed. Then in (3.1) taking ε = tn, there exist

sn+1, s
′
n+1 ∈ (0, tn] such that Bsn+1 > 0 > Bs′n+1

. Hence there exists tn+1 between these two numbers
such that Btn+1 = 0. Clearly tn+1 < tn by this construction. 2
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Remark 3.4 Suppose that our Brownian motion is constructed on (C[0, 1],B(C[0, 1]),P). Then clearly, the
continuous function f defined by f(t) = 0 is not in the set A, so A ̸= Ω = C[0, 1]. This means that FB

0 ⊊ FB
0+.

Homework For M > 0, define AM =
⋂
n≥1

{ sup
0<t≤1/n

Bt√
t
> M}.

1. Show that P(AM ) ≥ P(N (0, 1) ≥ M).

2. Use the zero-one law to deduce that P(AM ) = 1.

3. For every M > 0, show that with probability one,

sup
0<t≤ 1

n

Bt√
t
> M, ∀n ≥ 1.

4. Show that with probability one,

sup
0<t≤ 1

n

Bt√
t
= +∞, ∀n ≥ 1.

3.2 Markov property

We begin with the definition of a Markov process. If the range of t below is restricted to t = n ∈ N,
then one obtains a discrete-time Markov process.

Definition 3.4 A stochastic process X = (Xt)t≥0 is Markov if ∀t, s > 0,

P(Xt+s ∈ A | FX
t ) = P(Xt+s ∈ A | Xt), ∀A ∈ B(R), (3.2)

or equivalent,

E
[
F (Xt+s) | FX

t

]
= E

[
F (Xt+s) | Xt

]
, ∀F bounded and measurable. (3.3)

The intuitive meaning of Markov properties is that, conditioned on the past (FX
t ) is the same as

conditioned at the present (Xt), or in other words, knowing the present state Xt, the future Xt+s, s > 0
is independent of the past FX

t .

Remark 3.5 With some more efforts, (3.2) or (3.3) are equivalent to their multidimensional versions: for any
t, s1, . . . , sm > 0,

P((Xt+s1 , · · · , Xt+sm) ∈ A | FX
t ) = P((Xt+s1 , · · · , Xt+sm) ∈ A | Xt), ∀A ∈ B(Rm) (3.4)

and

E
[
F (Xt+s1 , · · · , Xt+sm) | FX

t

]
= E

[
F (Xt+s1 , · · · , Xt+sm) | Xt

]
, ∀F bounded and measurable. (3.5)

Since we will deal with conditional expectation very often, it is useful to collect some basic facts
about conditional expection here.

Definition 3.5 Let X ∈ L1(Ω,F ,P) and G ⊂ F be a sub–σ-field. Then E[X | G] is the unique
G-measurable r.v. (up to modification on a zero-probability set) such that for all A ∈ G,

E
(
E[X | G]1A

)
= EX1A.

Conditional expectation has the following properties. Their proofs can be found in any standard
graduate probability textbook, say [Dur07, Shi96], etc.
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Proposition 3.8 The following identities are valid as long as the (conditional) expectations involved
make sense.

1. If X ∈ G, then E[XY | G] = XE[Y | G].

2. If X is independent of G, then E[X | G] = EX (that is, an almost sure constant).

3. If G1 ⊂ G2, then E
[
E[X | G1] | G2

]
= E

[
E[X | G2] | G1

]
= E[X | G1].

In particular, if E[X | G2] is G1-measurable, then E[X | G1] = E[X | G2].

Besides, all the well-known limit theorems (Fatou, Monotone/Dominated/Bounded Convergence
Theorems, etc) and inequalities (Jensen’s equality) also a version for conditional expectation.

A key lemma we will use a lot in the context of Markov processes is the following.

Lemma 3.9 If X ∈ G and Y is independent of G, then for any bounded measurable function F : R2 →
R, we have

E[F (X,Y ) | G] = φ(X),

where φ is a deterministic (Borel measurable) function given by

φ(x) = EF (x, Y ).

The above can also be written in short as

E[F (X,Y ) | G] =
(
E[F (x, Y ) | G]

)∣∣∣
x=X

. (3.6)

Remark 3.6 We stress that the substitution of x = X into a deterministic function φ makes the right-hand side
of (3.6) σ(X)-measurable and hence G-measurable.

Proof: Consider the class of functions

S = {F bounded measurable : R2 → R such that (3.6) holds}.

Then S forms a monotone class, that is, if Fn ∈ S and Fn∧F , then F ∈ S as well. Therefore, to show
that S contains all the bounded measurable functions, by standard measure-theoretical argument, it
suffices to show that F (x, y) = 1A(x)1B(y) ∈ S for all A,B ∈ B(R).

Indeed, since 1A(X) ∈ G and 1B(Y ) is independent of G, we have

E
[
1A(X)1B(Y ) | G

]
= 1A(X)E

[
1B(Y ) | G

]
= 1A(X)P(Y ∈ B) = φ(X)

where
φ(x) = E1A(x)1B(Y ) = 1A(x)P(Y ∈ B).

This proves the proposition. 2

Example 3.7 The Brownian motion is a Markov process.
In fact, Bt+s − Bt is independent of (Bt1 , · · · , Btm) for all t1, · · · , tm ∈ [0, t], so Bt+s − Bt is independent

of FX
t . Hence, for all F bounded measurable, applying Lemma 3.9 to G(x, y) = F (x+ y), we have

E
[
F (Bt+s) | FX

t

]
= E

[
G(Bt+s −Bt, Bt) | FX

t

]
=

[
EG(Bt+s −Bt, y)

]∣∣∣
y=Bt

,

which is a function of Bt and hence σ(Bt)-measurable. Then Markov property follows from Item 3 in Proposi-
tion 3.8.
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Example 3.8 Let f ∈ L2
loc[0,∞) = {g : g1[0,t] ∈ L2[0, t], ∀t > 0}. Consider the stochastic integral define via the

Gaussian white noise:

Xt =

∫ t

0

f(s) dBs =: G
(
f1[0,t]

)
.

Then (Xt)t≥0 is a Markov process.
In fact, the previous analysis for Brownian motion only uses the fact “independent increment” property.

To see that such property also holds for Xt, we have from the definition of Gaussian white noise isometry,
if [t1, t2] ∩ [t3, t4] = ∅, then

E(Xt4 −Xt3)(Xt2 −Xt1) = EG(f1[t3,t4])G(f1[t1,t2]) =

∫ ∞

0

f2(s)1[t1,t2](s)1[t3,t4](s) ds = 0.

Since the increments are centered Gaussian, if their covariance is zero, then they are independent.

Homework Let (Bt)t∈[0,1] be the Brownian motion and defineXt = Bt−tB1, t ∈ [0, 1]. The processX = (Xt)t∈[0,1]

is called the “Brownian Bridge”.

1. Show that (Xt)t≥0 is a centered Gaussian process with covariance

EXtXs = s(1− t), ∀0 ≤ s < t ≤ 1.

2. Let t > s > s1 > s2 > · · · > sn ≥ 0. Show that

E
(
Xt −

1− t

1− s
Xs

)
Xsi = 0, 1 ≤ i ≤ n.

Deduce that Xt −
1− t

1− s
Xs is independent of (Xs1 , . . . , Xsn).

3. Let t > s. Show that Xt −
1− t

1− s
Xs is independent of FX

s .

4. Show that (Xt)t∈[0,1] is Markov.

Next we will introduce the strong Markov property. While the usual Markov property states that
future and past are conditionally independent if knowing the present, the strong Markov property
allows the “present” to occur at a random stopping time. But first we need to understand how to
condition on the information before a stopping time. Recall that a stopping time is a r.v. T ∈ [0,∞]
such that {T ≤ t} ∈ FX

t , ∀t ≥ 0. In what follows, unless otherwise stated, Ft = FX
t and F∞ =

σ(Ft, t ≥ 0).

Definition 3.6 The stopping σ-algebra is

FT = {A ∈ F∞ : ∀t ≥ 0, A ∩ {T ≤ t} ∈ Ft}.

Intuitively, FT contains the information before a stopping time T .

Example 3.9 Let a ≥ 0 and consider T = a (a constant r.v.). Then T is a stopping time since

{T ≤ t} =

{
Ω, a ≤ t,

∅, a > t
∈ Ft, ∀t ≥ 0.

Moreover, FT = Fa.

We can compare the stopping σ-algebras for different stopping time, or extract information from
the stopping σ-algebra.

Proposition 3.10 If S ≤ T are two stopping times, then FS ⊂ FT .
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Remark 3.10 Since S ≤ T , “information before S” is less than “information before T”.

Proof: If A ⊂ FS , then for every t ≥ 0,

A ∩ {T ≤ t} =
(
A ∩ {S ≤ t}

)
∩ {T ≤ t} ∈ Ft.

So A ⊂ FT . This completes the proof. 2

Proposition 3.11 If T is a stopping time and S ≥ T is random time such that S is FT -measurable,
then S is also a stopping time.

Proof: For each t ≥ 0, since {S ≤ t} ∈ FT ,

{S ≤ t} = {S ≤ t} ∩ {T ≤ t} ∈ Ft.

This completes the proof. 2

Remark 3.11 The stopping time S will take the form S = f(T ) for some measurable function f with f(x) ≥ x.

We also need to impose more measurability constraint on our process X = (Xt)t≥0.

Definition 3.7 Let X = (Xt)t≥0 be a stochastic process on (Ω,F ,P). We say that X is measurable
if the map

(t, ω) 7→ Xt(ω) :
(
[0,∞)× Ω,B

(
[0,∞)

)
⊗F

)
→ (R,B(R))

is measurable.

Proposition 3.12 Let X = (Xt)t≥0 be measurable and T be a (finite) r.v., then XT (ω) := XT (ω)(ω)
is a r.v.

Proof: The map ω 7→ XT (ω)(ω) is the composition of the following two measurable maps:

ω 7→ (t′, ω′) = (T (ω), ω′), (t′, ω′) 7→ Xt′(ω
′).

The first map is measurable since T is a r.v., and the second map is measurable since X is measurable.
This proves the proposition. 2

For adapted process, we introduce the notion of progressive measurability.

Definition 3.8 Let X = (Xt)t≥0 be an adapted process on (Ω,F , (Ft)t≥0,P). We say that X is
progressively measurable if for every fixed t ≥ 0, the map

(t, ω) 7→ Xt(ω) :
(
[0, t]× Ω,B

(
[0, t]

)
⊗Ft

)
→ (R,B(R))

is measurable.

Proposition 3.13 Let X = (Xt)t≥0 be an adapted process on (Ω,F , (Ft)t≥0,P) which is progressively
measurable and let T be a (finite) stopping time. Then XT := XT (ω)(ω) is a FT -measurable r.v.

Proof: Let A ∈ B(R). We have

{XT ∈ A} ∩ {T ≤ t} = {XT∧t ∈ A} ∩ {T ≤ t}.

It suffices to check that {XT∧t ∈ A} ∈ Ft.
In fact, the map ω 7→ XT (ω)∧t(ω) can be written as the composition of the two maps:

ω 7→ (t′, ω′) = (T (ω) ∧ t, ω), (t′, ω′) 7→ Xt′(ω
′).

The first map is measurable from (Ω,Ft) to ([0, t] × Ω,B([0, t]) × Ft) by the definition of stopping
times, while the second is measurable since X is progressively measurable. Hence, their composition
is also measurable. This proves the proposition. 2
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Proposition 3.14 If X is (Ft)-adapted and has right-continuous path, then X is also progressively
measurable w.r.t. (Ft).

Proof: Fix t > 0. For n ≥ 1 and 0 ≤ k ≤ 2n − 1, define

X(n)
s (ω) = X(k+1)/2n(ω), s ∈

( kt

2n
,
(k + 1)t

2n

]
.

andX
(n)
0 (ω) = X0(ω). Then for each n, sinceX is (Ft)-adapted, it is easy to check that (s, ω) 7→ X(n)

s (ω)
is B([0, t]) × Ft-measurable. Since for every ω, the sample path s 7→ Xs(ω) is right-continuous, we
have lim

n→∞
X(n)

s (ω) = Xs(ω) for any (s, ω) ∈ [0, t] × Ω. Therefore, the limit map (s, ω) 7→ Xs(ω) is

also B([0, t])×Ft-measurable. This proves the proposition. 2

We are ready to state the strong Markov property.

Definition 3.9 A progressively measurable Markov process X = (Xt)t≥0 has the strong Markov prop-
erty if for each a.s. finite stopping time S,

P(XT+t ∈ A | FT ) = P(XT+t | XT ). (3.7)

Remark 3.12 The strong Markov property can be stated including stopping time T with P(T = ∞) > 0. In
that case XT+t makes no sense when {T = ∞}, so (3.7) only needs to hold on the set {T < ∞}. For simplicity,
we always assume T < ∞ a.s. in the sequel.

The Brownian motion has the strong Markov property. We know more about the conditioned
process after the any stopping time.

Theorem 3.15 Let T be a stopping time and define B
(T )
t = BT+t−BT . Then (B

(T )
t )t≥0 is a standard

Brownian motion independent of FT .
In particular, Brownian motion has the strong Markov property.

We now use the theorem to check that (Bt)t≥0 is strongly Markov. The proof of Theorem 3.15 will
be postpone to the end of this section.
Derivation of the strong Markov property for (Bt)t≥0 from Theorem 3.15: Since B is

progressively measurable, BT is FT -measurable. By Lemma 3.9 and the assumption that (B
(T )
t )t≥0 is

independent of FT , for any bounded measurable function F ,

E
(
F (BT+t) | FT

)
= E

(
F (BT +B

(T )
t ) | FT

)
= E

(
F (B

(T )
t + x)

)
|x=BT

∈ σ(BT ).

So by Item 3 of Proposition 3.8, the strong Markov property holds. 2

An important consequence of the strong Markov property is the reflection principle. Consider the
maximal process B∗

t = sup
0≤s≤t

Bt and the hitting time Ta = inf{t ≥ 0 : Bt = a} for a > 0.

Theorem 3.16 (Reflection Principle) For a ≥ b,

P(B∗
t ≥ a, Bt < b) = P(Bt > 2a− b).

Proof: Clearly, {B∗
t ≥ a} = {Ta ≤ t} ∈ FTa and we have

{B∗
t ≥ a, Bt < b} = {Ta ≤ t, B

(Ta)
t−Ta

< b− a}.
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By Theorem Theorem 3.15, (B(Ta)
s )s≥0 is independent of FT . Since Ta ∈ FT and Brownian motion is

symmetric, we see that in distribution,

(Ta, (B
(Ta)
s )s≥0)

d
= (Ta, (−B(Ta)

s )s≥0).

Therefore,

P(Ta ≤ t, B
(Ta)
t−Ta

< b− a) = P(Ta ≤ t, −B
(Ta)
t−Ta

< b− a) = P(Ta ≤ t, B
(Ta)
t−Ta

> a− b).

But on the event on the right-hand side, Bt = BTa + B
(Ta)
t−Ta

> 2a − b ≥ a, and by continuity, Bt ≥ a
implies that Ta ≤ t. So we have

P(Ta ≤ t, B
(Ta)
t−Ta

> a− b) = P(B
(Ta)
t−Ta

> a− b) = P(Xt > 2a− b),

where we use strong Markov property in the last equality. This proves the theorem. 2

As a corollary, we have the distribution of the hitting time.

Proposition 3.17 For a > 0,

P(Ta ≤ t) = P(B∗
t ≥ a) = 2P(Bt ≥ a).

Proof: Using Theorem 3.16 for b = a, we have

P(B∗
t ≥ a) = P(B∗

t ≥ a, Bt < a) + P(B∗
t ≥ a,Bt ≥ a) = P(Bt > 2a− a) + P(Bt ≥ a) = 2P(Bt ≥ a).

2

Proof of Theorem 3.15: Denote by W = (Wt)t≥0 be a Brownian motion independent of B =
(Bt)t≥0. By the definition of conditional probability, it suffices to show that for all 0 ≤ t1 < t2 < · · · <
tm , all A ∈ FT and all bounded continuous function F on Rm, we have

EF
(
B

(T )
t1

, B
(T )
t2

, · · · , B(T )
tm

)
1A =

[
EF (Wt1 ,Wt2 , · · · ,Wtm)

]
P(A). (3.8)

Suppose T takes countably many values. Let T ∈ {s1, s2, · · · }. Then the LHS of (3.8) is
equal to

∞∑
n=1

EF
(
B

(T )
t1

, B
(T )
t2

, · · · , B(T )
tm

)
1A1{T=sn}

=

∞∑
n=1

EF
(
Bsn+t1 −Bsn , · · · , Bsn+tm −Bsn

)
1A∩{T=sn}

=

∞∑
n=1

E
[
E
[
F
(
Bsn+t1 −Bsn , · · · , Bsn+tm −Bsn

)
1A∩{T=sn} | Fsn

]]
=

∞∑
n=1

E
[
1A∩{T=sn}E

[
F
(
Bsn+t1 −Bsn , · · · , Bsn+tm −Bsn

)
| Fsn

]]
=

∞∑
n=1

(
E1A∩{T=sn}

)
EF (Wt1 , · · · ,Wtm)

= P(A) · EF (Wt1 , · · · ,Wtm).
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There are two crucial steps: in the third equality we use that A∩{T = sn} ∈ Fsn , which holds since T
is a stopping time; in the fourth equality we use the simple Markov property for B.

General case. We approximate T be a sequence discrete stopping times:

Tk(ω) =
[2kT ] + 1

2k
=

∞∑
n=0

n+ 1

2k
1[ n

2k
,n+1

2k
)(T (ω)). (3.9)

Indeed, Tk is stopping since for t ∈ [n02
−k, (n0 + 1)2−k),

{Tk(ω) ≤ t} = {T ≤ n0

2k
} ∈ Fn0

2k
⊂ Ft,

or by Proposition 3.11. Also, since |Tk − T | ≤ 2−k and Tk ≥ T , we have Tk(ω) ↓ T (ω) for every ω.

Then by the right continuity of t 7→ Bt, B
(Tk)
t → B

(T )
t as k → ∞.

Now the left-hand side of (3.8) is equal to

lim
k→∞

E1AF
(
Bt1+Tk

−BTk
, · · · , Btm+Tk

−BTk

)
= lim

k→∞

∞∑
n=0

E1A∩{T∈[n2−k,(n+1)2−k)}F
(
B

(Tk)
t1

, · · · , B(Tk)
tm

)
= lim

k→∞

∞∑
n=0

E
[
E
[
1A∩{Tk=(n+1)2k}F

(
B

(Tk)
t1

, · · · , B(Tk)
tm

)
| FTk

]]
= lim

k→∞

∞∑
n=0

E
[
1A∩{Tk=(n+1)2k}E

[
F
(
B

(Tk)
t1

, · · · , B(Tk)
tm

)
| FTk

]]
= lim

k→∞

∞∑
n=0

(
E1A∩{Tk=(n+1)2k}

)
· EF (Wt1 , · · · ,Wtm)

= P(A)EF (Wt1 , · · · ,Wtm).

In the third equality we use A ∈ FT ⊂ FTk
(Proposition 3.10), and in the fourth equality we use the

strong Markov property for Tk. 2

Remark 3.13 The proof only relies on the simple Markov property (which guarantees strong Markov property for
discrete stopping times) and the right-continuity of sample path (which is used for approximation argument).

Homework LetB = (Bt)t≥0 and B̃ = (B̃t)t≥0 be two independent (Ft)-adapted Brownian motion on (Ω,F , (Ft)t≥0,P).
Let T be an a.s. finite stopping time. Define

Wt(ω) =

{
Bt(ω), t ≤ T (ω),

BT (ω) +
(
B̃t(ω)− B̃T (ω)(ω)

)
, t > T (ω).

1. Show that (Wt)t≥0 is a continuous, (Ft)-adapted stochastic process.

2. Prove that W = (Wt)t≥0 is a standard Brownian motion by showing that W and B have the same finite
dimensional distribution, namely, for all 0 ≤ t1 < t2 < · · · < tm and all Borel sets A1, A2, . . . , Am,

P(Wt1 ∈ A1, · · · ,Wtm ∈ Am) = P(Bt1 ∈ A1, · · · , Btm ∈ Am).

Homework Let B = (Bt)t≥0 be the standard Brownian motion. For a > 0, let Ta = inf{t ≥ 0 : Bt = a} be the

first hitting time of a. For λ > 0, define the Laplace transform of Ta: e
−φ(λ,a) = Ee−λTa . It is not hard to show

that φ is a continuous function and we will assume that.
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1. Use the strong Markov property to show that Ta, T2a − Ta, T3a − T2a, . . . are i.i.d. random variables.

2. Show that
φ(λ, na) = nφ(λ, a), n ≥ 1,

and use continuity to conclude that φ(λ, a) = φ(λ, 1)a, a > 0.

3. Use the fact that (λBλ−2t)t≥0 is also a standard Brownian motion for every λ > 0 to show that Taλ

and λ2Ta have the same distribution.

4. Show that φ(λ2, a) = φ(1, λa) and conclude that there is a constant c > 0 such that

Ee−λTa = e−c
√
λa.

3.3 Augmentation and usual condition

On a probability space (Ω,F ,P), A is a P-null/negligible set if there exists N ∈ F such that A ⊂ N
and P(N) = 0. We recall the definition of a complete σ-field.

Definition 3.10 We say that G is complete under the probability measure P if N1 ⊂ N2 where N2 ∈ G
and P(N2) = 0, then N1 ∈ G.

Definition 3.11 Let (Ft)t≥0 be a filtration on a probability space (Ω,F ,P). we say that a filtration
(Ft) satisfies the “usual condition” if

1. Ft = Ft+, i.e., it is right-continuous,

2. Ft contains all the P-null sets, i.e., if A ⊂ N ∈ F and P(N) = 0, then A ∈ Ft.

We have seen that if a filtration is right-continuous, then optional times and stopping times are the
same. In general, it is just simpler to work with complete probability space. We can always complete
a σ-field by adding all the subsets of null sets. The completion of G under the probability measure P
is

Ḡ = {G : ∃F ⊂ G and P-null set N ∈ G s.t. F∆G ⊂ N}
= {G : ∃F1, F2 ∈ G, F1 ⊂ F2,P(F1) = P(F2) s.t. F1 ⊂ G ⊂ F2}.

The completed measure on Ḡ is defined by P(G) = P(F ).
With a (Ft)-adapted process X, define the following collections of P-null sets

Nt = {N : ∃F ⊂ FX
t : P(F ) = 0, N ⊂ F}

N∞ = {N : ∃F ⊂ FX
∞ : P(F ) = 0, N ⊂ F}.

There are two ways to complete a filtration.

• Completion
F t = σ(FX

t ∪Nt) = {G : ∃F ∈ FX
t s.t. F∆G ∈ Nt}.

• Augmentation

F̃t = σ(FX
t ∪N∞) = {G : ∃F ∈ FX

t s.t. F∆G ∈ N∞}. (3.10)
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As we seen in Section 3.1, F t may not be right continuous: using the set A in the proof of
Proposition 3.6, we see

{∅,Ω} = F0 = F0 ⊊ F0+ ⊂ F0+.

Indeed, from the zero-one law Theorem 3.5, even though F0+ is trivial, it still contains information
strictly after time t = 0. This tells us just doing completion by adding null sets up to time t cannot
lead to right-continuous filtration. However, if we do the augmentation, then the resulting filtration
will be right-continuous, and thus satisfies the “usual condition”.

Theorem 3.18 Let X be the standard Brownian motion. Then the augmented filtration (F̃t)t≥0 is
right-continuous.

Proof: The first step is to show that for every bounded FB
∞-measurable r.v. Y and t ≥ 0,

E
[
Y | FB

t+

]
= E

[
Y | Bt

]
. (3.11)

To prove (3.11), it suffices to consider Y taking the form

Y = f(Bt1 , · · · , Btn), 0 ≤ t1 < . . . < tm−1 < t ≤ tm < · · · < tn,

where f is a bounded continuous function. For t = 0, this is the main step in the proof of Theorem 3.5.
For t > 0, the proof is similar; in order to get FB

t+ instead of FB
t , one needs to use the right-continuity

of t 7→ Bt: for A ∈ FB
t+,

E1Af(Bt1 , · · · , Btn) = lim
ε↓0

E1Af(Bt1 , · · · , Btm−1 , Btm+ε, · · · , Btn+ε).

Suppose that (3.11) is proved. Let F ∈ FB
t+ ⊂ FB

∞. Then by (3.11), E[1F | FB
t+] has a σ(Bt)-

measurable version Z. On the other hand, E[1F | FB
t+] = 1F a.s. Hence, for A = {Z = 1} ∈ FB

t , we

have F∆A ∈ N∞. This implies F ∈ F̃t. Since F is arbitrary, FB
t+ ⊂ F̃t.

Next, let F ⊂ F̃t+ =
⋂
n≥1

F̃t+ 1
n
. Then by definition, there exist Gn ∈ FB

t+ 1
n

such that F∆Gn ∈ N∞.

We have

F∆Gn ∈ N∞

⇔ 1F + 1Gn = 0 mod 2 a.s., ∀n ≥ 1,

⇔ 1F + lim sup
n→∞

1Gn = 0 mod 2 a.s.

⇔ F∆(lim sup
n→∞

Gn) ∈ N∞,

where

lim sup
n→∞

Gn =
∞⋂
k=1

∞⋃
m=k

Gm ∈
∞⋂
k=1

FB
t+ 1

k

⊂ FB
t+.

Since FB
t+ ⊂ F̃t and F̃t is complete, we have F ⊂ F̃t. This shows F̃t+ ⊂ F̃t and hence the right-

continuity of (F̃t)t≥0. 2

Remark 3.14 We only use the simply Markov property and the right-continuity of the Brownian motion.
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3.4 Sample path properties of Brownian motion

In this section we mention some interesting sample path properties of Brownian motion.

Proposition 3.19 (Nowhere monotone) With probability one, there is no interval [a, b] such that

Bt1 ≤ Bt2 ≤ Bt3 , ∀a ≤ t1 < t2 < t3 ≤ b,

or
Bt1 ≥ Bt2 ≥ Bt3 , ∀a ≤ t1 < t2 < t3 ≤ b,

Proof: For any q1 < q2, by Proposition 3.6, with probability one,

sup
q1≤s≤q2

Bs > Bq1 > inf
q1≤s≤q2

Bs. (3.12)

Hence, with probability one, Brownian motion is non-monotone in any given interval. By a union
bound, Brownian motion is non-monotone simultaneously in all intervals [q1, q2], q1, q2 ∈ Q. Since any
monotone interval [a, b], if existing, will contain a monotone sub-interval with rational endpoints, the
desired conclusion follows. 2

Proposition 3.20 (Nowhere differentiable) With probability one, for every t ≥ 0, either

D+Bt = lim sup
h→0+

Bt+h −Bt

h
= ∞,

or

D+Bt = lim inf
h→0+

Bt+h −Bt

h
= −∞,

Proof: See [KS98, pp. 110, Chap. 2, Theorem 9.18]. 2

Proposition 3.21 With probability one, all local maxima of t 7→ Bt is strict.

Proof: For t1 < t2 < t3 < t4, let

At1,t2,t3,t4 = {ω : sup
s∈[t3,t4]

Bs − sup
s∈[t1,t2]

Bs ̸= 0}.

Then on
⋂
ti∈Q

At1,...,t4 , all local maxima are strict. It suffices to show that P(At1,...,t4) = 1 for all ti.

Indeed, we have

sup
s∈[t3,t4]

Bs − sup
s∈[t1,t2]

Bs = (Bt3 −Bt2) + inf
s∈[t1,t2]

(Bt2 −Bs) + sup
s∈[t3,t4]

(Bs −Bt3)

which are sum of three independent, continuous random variables. Hence P(At1,...,t4) = 1. 2

Proposition 3.22 With probability one, the zero set

N(ω) = {t ≥ 0 : Bt = 0}

is a perfect set (a closed, measure-zero set with no isolated point, like the Cantor set).
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Proof: We have

{ω : N(ω) has an isolated point} =
⋃

a,b∈Q
{ω : there is exactly one s ∈ (a, b) such that Bs(ω) = 0}.

For t ≥ 0, let βt = inf{s > t : Bs = 0}. Then βt are stopping times. By Proposition 3.7, β0 = 0. By
the strong Markov properties, Bβ(t)+h − Bβ(t) is a standard Brownian motion, so ββ(t) = βt almost
surely. Hence,

{ω : there is exactly one s ∈ (a, b) such that Bs(ω) = 0} ⊂ {ω : βa(ω) < b and ββa(ω)(ω) > b}

has zero probability. This completes the proof. 2

4 Martingales

4.1 Basic martingale theory

Definition 4.1 An adapted stochastic process (Mt)t≥0 on a probability space (Ω,F , (Ft)t≥0,P) is called
a martingale if Mt ∈ L1(Ω,F ,P) for all t ≥ 0, and for all s, t ≥ 0,

E
[
Mt+s | Ft

]
= Mt.

If t only takes discrete values (like Z), then we call (Mt) a discrete martingale.

Remark 4.1 If the filtration is not specified, we take the natural filtration Ft = FX
t .

Example 4.2 Let Xi be independent random variables with EXi = 0. Then the partial sum Sn = X1 + · · ·+Xn

forms a martingale, since by independence,

E
[
Sn+m | X1, · · · , Xn

]
= X1 + · · ·+Xn + E[Xn+1 + · · ·+Xm] = Sn.

Proposition 4.1 Let (Xt)t≥0 be a stochastic process with mean zero independent increments. Then

1. (Xt)t≥0 is a martingale.

2. If Xt ∈ L2 for all t ≥ 0, then (X2
t − EX2

t )t≥0 is a martingale.

3. If for some λ ∈ R, EeλXt < ∞ for all t ≥ 0, then
( eλXt

EeλX−t

)
t≥0

is a martingale.

Proof:

1. This is obvious.

2. We have for t > s,

E
[
X2

t −X2
s | Fs

]
= E

[(
Xt −Xs +Xs

)2 −X2
s | Fs

]
= E

[
(Xt −Xs)

2 | Fs

]
+ 2XsE

[
Xt −Xs | Fs

]
= E(Xt −Xs)

2 = E(Xt −Xs)(Xt +Xs)− 2EXs(Xt −Xs)

= EX2
t − EX2

s .
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3. We have for t > s,

E
[
eλXt | Fs

]
= eλXsE

[
eλ(Xt−Xs) | Fs

]
= eλXsEeλ(Xt−Xs)

= eλXs
EeλXt

EeλXs
.

2

Example 4.3 Let (Bt)t≥0 be Brownian motion. Then (Bt)t≥0, (B
2
t − t)t≥0, (e

λBt− 1
2λ

2t2)t≥0 are all martingales.

Example 4.4 Let f ∈ L2
loc[0,∞) and consider the stochastic integral defined via Gaussian white noise

Mt =

∫ ∞

0

1[0,t](s)f(s) dBs = G
(

1[0,t]f
)
.

Then (Mt) has mean zero independent increments, and the processes

(Mt)t≥0,
(
M2

t −
∫ t

0

f2(s) ds
)
t≥0

,
(
eλMt− 1

2λ
2
∫ t
0
f2(s) ds

)
t≥0

are all martingales.

Example 4.5 Let (Nt)t≥0 be a Poisson process with intensity λ, i.e.,

Nt = max{n ≥ 0 : ξ1 + · · ·+ ξn ≤ t}

where (ξi)i≥1 are i.i.d. Exp(λ) random variables. Then (Nt − λt)t≥0 has mean zero independent increments.

Definition 4.2 Let (Mt)t≥0 be an adapted process and assume that Mt ∈ L1 for all t ≥ 0. We say
that (Mt)t≥0 is a super-martingale if

E[Xt | Fs] ≤ Xs, ∀0 ≤ s < t,

and say that (Mt)t≥0 is a sub-martingale if

E[Xt | Fs] ≥ Xs, ∀0 ≤ s < t.

One can use convex/concave functions to generate super- or sub-martingale from martingales.

Proposition 4.2 If (Mt)t≥0 is a martingale, and φ : R → R is a convex function, then
(
φ(Mt)

)
t≥0

is a sub-martingale.

Proof: Using Jensen’s inequality for conditional expectation, we have for all s < t,

E
[
φ(Mt) | Fs

]
≥ φ

(
E
[
Xt | Fs

])
= φ(Xs). (4.1)

2

Corollary 4.3 If (Mt)t≥0 is a sub-martingale and φ : R → R is convex and increasing, then
(
φ(Mt)

)
t≥0

is also a sub-martingale.

Proof: Since φ is increasing and (Mt)t≥0 is a sub-martingale, the last equality in (4.1) will become

φ
(
E
[
Xt | Fs

])
≥ φ(Xs),

and this completes the proof. 2

Example 4.6 The function |x|p (p ≥ 1) is convex. The functions x ∨ a (a ∈ R), x+ = x ∨ 0 are convex and
increasing.
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4.2 Convergence of martingales

In this section we discuss the a.s.-limit and L1-limit of martingales. The main tools are Doob’s Up-
crossing Theorem and uniform integrability.

Let (Xt) be an adapted process (continuous-time or discrete-time) and a < b. Consider the

following stopping times: T
(0)
b = −∞,

T (ℓ)
a = inf{t ≥ T

(ℓ−1)
b : Xt ≤ a}, T

(ℓ)
b = inf{t ≥ T (ℓ)

a : Xt ≥ b}, ℓ ≥ 1.

In every interval [T (ℓ)
a , T

(ℓ)
b ], the process (Xt) completes an up-crossing. The total number of up-

crossing in a given interval [0, n] is defined by

UX
ab [0, n] = max{k : T

(k)
b ≤ n}.

Theorem 4.4 Let (Xn)n≥1 be a sub-martingale, then

EUX
ab [0, n] ≤

1

b− a
E(Xn − a)+.

We have the following corollary about a.s. convergence of martingales.

Proposition 4.5 If (Xn)n≥1 is a sub-martingale, and sup
n

EX+
n < ∞. Then there exists X such that

Xn → X a.s.

Proof: The up-crossing number is increasing in n, and hence by assumption,

EUX
ab [0,∞) = lim

n→∞
EUX

ab [0, n] ≤
supn EX

+
n + |a|

b− a
< ∞.

This implies UX
ab [0,∞) < ∞ a.s., that is, with probability one, any interval [a, b] is being up-crossed

by at most finitely many times. As a consequence, for fixed

lim inf
n→∞

Xn < a < b < lim sup
n→∞

Xn

cannot happen. Taking a union bound over all [a, b] with a, b ∈ Q, we see that with probability one,

lim sup
n→∞

Xn = lim inf
n→∞

Xn.

This proves the statement. 2

Example 4.7 If a martingale (Xn)n≥0 is non-negative, then EX+
n = EXn = EX0, and hence lim

n→∞
Xn exists.

Next we will discuss the L1-convergence. Recall the definition of uniform integrability for a family
of random variables {Xn}.

Definition 4.3 A family of random variables (Xn) is uniformly integrable, if

lim
M→∞

sup
n

E1{|Xn|≥M}|Xn| = 0.

Uniform integrability is the necessary and sufficient condition for L1-convergence.

Theorem 4.6 If Xn → X a.s., then Xn → X if and only if (Xn) is uniformly integrable.
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Example 4.8 The following conditions will imply uniform integrability.

1. If there exists Z ∈ L1 such that |Xn| ≤ Z for all n, then (Xn) is uniformly integrable. (This is Dominated
Convergence Theorem.)

2. If sup
n

E|Xn|p < ∞ for some p > 1, then (Xn) is uniformly integrable.

3. Let Z ∈ L1. Then the collection of r.v.’s {E[Z | G] : G ⊂ F} is uniformly integrable.

We will prove the last point.

Proposition 4.7 Let Z ∈ L1(Ω,F ,P). Then the collection of r.v.’s

{E[Z | G] : G is a sub–σ-field of F}

is uniformly integrable.

Proof: Since Z ∈ L1(Ω,F ,P), for every ε > 0, there is δ > 0 such that whenever P(A) < δ,
E|Z|1A < ε.

By Jensen’s inequality, for A = {|E[Z | G]| ≥ M} ∈ G, we have

E1A|E[Z | G]| ≤ E1AE[|Z| | G] = EE[|Z|1A | G] = E|Z|1A.

When A = Ω, the above inequality gives E|E[Z | G]| ≤ E|Z|. Then by Markov inequality,

P(A) ≤ E|Z|
M

,

uniformly for all sub–σ-field G. Combining all these together we prove the statement. 2

Proposition 4.8 A martingale (Xn) is uniformly integrable, if and only if there exists X∞ ∈ L1 such
that Xn = E[X∞ | Fn].

Proof: The “⇒” direction. Uniform integrability implies that sup
n

E|Xn| < ∞, hence Proposi-

tion 4.5 implies that there exists X∞ such that Xn → X∞ a.s. But (Xn) is also uniformly integrable,
so the limit is also in L1. Then,

E[X∞ | Fn] = lim
m→∞

E[Xn+m | Fn] = Xn

as desired.
The “⇐” direction. It follows from Proposition 4.7. 2

Adaption to the continuous-time.

The L1-convergence relies on the uniform integrability, which holds true for continuous-time. The
a.s. convergence relies on the up-crossing inequality, and we need extra continuity assumption to take
the limit of approximation.

Theorem 4.9 (Continuous-time Doob’s Up-crossing Inequality) Let (Xt)t≥0 be a right-continuous
sub-martingale, then for all T > 0

EUX
ab [0, T ] ≤

1

b− a
E(XT − a)+.
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Proof: We can restrict the definition of up-crossings to Dn = Z/2n. We denote the number of
up-crossing observed on Dn by UX

ab [0, T ] ∩ Dn. Since Dn has few points, the number of up-crossing
is smaller (an up-crossing can occur on an interval (k/2n, (k + 1)/2n) and not “seen” by the set Dn).
But since X has right-continuous path,

UX
ab [0, T ] ∩Dn ↑ UX

ab [0, T ], n → ∞,

almost surely. Now on Dn, (Xt)t∈Dn is just a discrete martingale, and we have

EUX
ab [0, T ] ∩Dn ≤ 1

b− a
E(XT − a)+.

Taking the limit n → ∞ and using the Monotone Convergence Theorem prove the statement. 2

4.3 Optional Sampling Theorem

Theorem 4.10 Let (Xt)t≥0 be a right-continuous martingale, and S ≤ T be two stopping times.
Suppose that either

1. S, T are bounded, i.e., there is a constant N > 0 such that S, T ≤ N , or

2. (Xt)t≥0 is uniformly integrable.

Then
XS = E[XT | FT ].

In particular, EXS = EXT = EX0.

Remark 4.9 The first condition implies that Xt = E[XN | Ft], and the second condition by Proposition 4.8
implies that Xt = E[X∞ | Ft]. So both conditions implies that there is a r.v. Z ∈ L1 such that Xt = E[Z | Ft]
for all t that we care about.

Proof: Let Z = XN if the first condition holds and Z = X∞ if the second condition holds. It suffices
to show

XT = E[Z | FT ]. (4.2)

Indeed, if (4.2) holds, since FS ≤ FT , we have

E[XT | FS ] = E
[
E[Z | FT ] | FS

]
= E[Z | FS ] = XS .

The proof of (4.2) will be done in two steps. First we prove it for discrete stopping times, then we
use approximation.

Suppose that the range of T is countable, i.e., T ∈ {t1, t2, . . .}. Then for all A ∈ FS ,

E
(
E[Z | FS ]1A

)
= EZ1A =

∞∑
n=1

EZ1A∩{T=tn}

=
∞∑
n=1

E
(
1A∩{T=tn}E[Z | Ftn ]

)
=

∞∑
n=1

E1A∩{T=tn}Xtn = EXT1A,

where in the second line we use that A ∩ {T = tn} ∈ Ftn since T is a stopping time.
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General case T ≥ 0. As before, we can approximate T by discrete stopping times

Tk =
[2kT ] + 1

2k
↓ T.

Let A ∈ FT ⊂ FTk
. Then by the first step,

E1AXTk
= E1AZ

for all Tk. The right continuity of X and Tk ↓ T imply that XTk
→ XT a.s., and XTk

= E[Z | FTk
]

and Proposition 4.7 imply that XTk
are uniformly integrable. Therefore,

E1AXT = lim
k→∞

E1AXTk
= E1AZ.

2

Example 4.10 If T is a stopping time, (Mt)t≥0 is a martingale, then (Mt∧T )t≥0 is also a martingale. We only
need to verify for all s < t,

E[Mt∧T | Fs∧T ] = Ms∧T .

This follows from Theorem 4.10 and the boundedness of the stopping time s ∧ T , t ∧ T .

Example 4.11 Let (Bt)t≥0 be Brownian motion, and Ta, Tb be the first hitting time of a > 0 > b. Applying
Theorem 4.10 to the bounded stopping time Ta ∧ Tb ∧ n gives

EBTa∧Tb∧n = EB0 = 0. (4.3)

Since |BTa∧Tb∧n| ≤ |a| ∨ |b| and P(Ta ∧Tb < ∞) = 1 (one can easily show for some ρ < 1, P(Ta ∧Tb ≥ k) ≤ ρk),
we can take n → ∞ in (4.3) and get

0 = EBTa∧Tb
= aP(Ta < Tb) + bP(Ta > Tb).

Also P(Ta < Tb) + P(Ta > Tb) = 1. Hence, we have

P(Ta < Tb) =
−b

a− b
, P(Ta > Tb) =

a

a− b
. (4.4)

In particular, letting b ↓ −∞ and Tb ↑ ∞, we obtain P(Ta < ∞) = 1.

Example 4.12 Apply 4.10 to the martingale (Bt − t2)t≥0 and the stopping time Ta ∧ Tb ∧ n, we have

EB2
Ta∧Tb∧n − (Ta ∧ Tb ∧ n) = 0.

In the limit n → ∞, the first term is bounded by |a|2 ∨ |b|2, the second term is increasing in n, so by Bounded
Convergence Theorem and Monotone Convergence Theorem, we have

EBTa∧Tb
− (Ta ∧ Tb).

Combining with (4.4) we have ETa ∧ Tb = |ab|. Letting b ↓ −∞ and obtain ETa = ∞.

Homework Recall that (Zt = eλBt−λ2

2 t)t≥0 is a martingale for every λ ∈ R. It is a non-negative super-martingale
so it has an almost sure limit Z∞.

1. Let Ta be the hitting time of a > 0. Use the Optional Sampling Theorem to show that

Ee−cTa = e−a
√
2c, c > 0.
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2. Show that Z∞ = 0.
Hint: One possible proof is to use Borel–Cantelli to show that for any ε,M > 0, Bn ≤ εn+M for large
enough n.

3. Let Sa = inf{t ≥ 0 : Bt ≥ at+ 1}, a > 0. Use the Optional Sampling Theorem to show that

Ee2a1{Sa≤t} + Ee2aBt−2a2t1{Sa>t} = 1.

Take the limit t → ∞ and show that P(Sa < ∞) = e−2a.

We will also mention the Optional Sampling Theorem for sub-/super-martingales.

Definition 4.4 A (sub-/super-)martingale (Xt)t≥0 has a last element/is closed by X∞, if ∃X∞ ∈ L1

such that (Xt)0≤t≤∞ forms a (sub-/super-)martingale.

Example 4.13 If (Mt)t≥0 is a martingale, then by 4.8, it has a last element if and only if it is uniformly integrable.
Moreover, M∞ is the a.s. and L1 limit of Mt.

Example 4.14 If (Xt)t≥0 is a non-negative super-martingale, then it always has a last element X∞ = 0, since it
is trivially true that

Xt ≥ 0 = E[X∞ | Ft], ∀t ≥ 0.

But having a last element is weaker than uniform integrability. Consider Xt = 1 + Bt∧T−1
which is a

martingale and hence super-martingale. It is non-negative. It is easy to see that

X∞ = lim
t→∞

Xt = 1 +BT−1
= 0,

but 1 = lim
t→∞

EXt ̸= EX∞ = 0, so it cannot be uniformly integrable.

Theorem 4.11 Let (Xt)t≥0 is a right-continuous sub-martingale and S ≤ T be two stopping times.
If either

1. S, T are bounded, or

2. (Xt)t≥0 has a last element X∞ ∈ L1,

then
E[XT | FS ] ≥ XS .

A similar statement also holds for super-martingale.

Sketch of proof: The first step is to prove the theorem for discrete sub-martingales. This is more
delicate than the martingale case since it cannot be derived from E[X∞ | FT ] ≥ XT . For a proof,
see [Chu74, Chap. 9] (which is also a good read on discrete martingale theory). Here, discreteness is
really essential, while previously we only use the ranges of stopping times are countable.

The second step is to approximate the stopping times S and T by discrete stopping times by above.
From E1AXSn ≤ E1AXTn , A ∈ FS , pass the limit n → ∞ by establishing the uniform continuity of
(XSn)n≥1 and (XTn)n≥1. 2
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4.4 Doob’s Maximal inequality

We will state the maximal inequality for sub-martingales. Similar statements also hold for super-
martingales.

Theorem 4.12 Let (Xt)t≥0 be a continuous sub-martingale and λ > 0. Then

λP
(

sup
0≤s≤t

Xs > λ
)
≤ EX+

t , (4.5)

λP
(

inf
0≤s≤t

Xs < −λ
)
≤ EX+

t − EX0. (4.6)

Proof: Denote the event in (4.5) as A. Note that A is indeed measurable since by continuity, the
supremum over [0, t] is the same as the supremum over [0, t] ∩ Q, and the later is measurable. Let
T = inf{t : Xt ≥ λ}. Then A = {T ≤ t}. Since X is a sub-martingale, X+ is also a sub-martingale,
hence Theorem 4.11 implies that

EX+
t ≥ EX+

t∧T ≥ EX+
t∧T1{T≤t} = λP(A).

This proves (4.5).
Denote the event in (4.6) by B and let S = inf{t : Xt ≤ λ}. Then B = {S ≤ t}. Again by

Theorem 4.11, we have

EX0 ≤ EXt∧S = EXt1{T>t} + EXT1{T≤t}

≤ EXt1{T>t} − λP(B) ≤ EX+
t − λP(B),

and (4.6) follows. 2

Corollary 4.13 Let (Mt)t≥0 be a continuous martingale. Then for every λ > 0,

λP
(

sup
0≤s≤t

|Mt| ≥ λ
)
≤ E|Xt|.

Proof: We apply (4.5) in Theorem 4.12 to the sub-martingale (|Mt|)t≥0. 2

For martingales, we also have the control on the maximal of Lp norm.

Theorem 4.14 Let (Mt)t≥0 be a continuous martingale. Then for every p > 1,

E sup
0≤s≤t

|Ms|p ≤
( p

p− 1

)p
E|Xt|p.

Proof: Let Y = sup
0≤s≤t

|Ms|. Since (|Mt|)t≥0 is a continuous sub-martingale, by the proof of (4.5), we

have
λP(Y ≥ λ) + E|Mt|1{Y <λ} ≤ E|Mt|,

and hence

P(Y ≥ λ) ≤ 1

λ
E|Mt|1{Y≥λ}.
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Now

EY p = p

∫ ∞

0
λp−1P(Y ≥ λ) dλ

≤ p

∫ ∞

0
λp−2E

(
|Mt|1{Y≥λ}

)
= E

(
|Mt|

∫ Y

0
pλp−2 dλ

)
=

p

p− 1
· E

(
|Mt| · Y p−1

)
≤ p

p− 1

(
E|Mt|p

)1/p(
EY p

)p/(p−1)
.

The last inequality is just Hölder inequality. Hence, if EY p < ∞, then we can divide both sides by(
EY p

)p/(p−1)
and then take the p-th power to get EY p ≤

( p

p− 1

)p
E|Mt|p. To treat the general case

where EY p < ∞ is not known, we use truncation, that is, we first get the estimate

E(Y ∧m)p ≤
( p

p− 1

)p
E|Mt|p

for the bounded r.v (Y ∧m) with any m > 0. Then we let m → ∞ and get the desired conclusion. 2

As an application of the Doob’s Lp-maximal inequality, let us study the continuity of the stochastic
integral Mt = G(1[0,t]f) for f ∈ L2

loc[0,∞). Recall that the Gaussian white noise construction in
Theorem 2.5 only ensures that Mt has independent increments, and hence is both a Markov process
and a martingale. We can use Theorem 2.7 to get continuity of M if |f | is bounded, but that is still to
restrictive. Using martingale argument, we can show that (Mt)t≥0 has a continuous modification as
long as f ∈ L2

loc([0,∞)). This is essentially the argument that we will use for more general stochastic
integral. See XXX.

Fix T > 0. We just need to show that (Mt)t∈[0,T ] has a continuous modification for every T > 0

and f ∈ L2[0, T ]. By standard argument, there exist piecewise constant functions fn ∈ L2[0, T ] such
that ∥fn − f∥L2[0,T ] → 0. It is easy to check that

Mfn
t = G

(
1[0,t]fn

)
is a continuous martingale. Without loss of generality we assume ∥fn − fn+1∥2L2 ≤ 8−n. For every n,

applying Theorem 4.12 to the submartingale Xt = |Mfn
t −M

fn+1

t |2, we have

P
(

sup
0≤t≤T

|Mfn
t −M

fn+1

t | ≥ 1

2n

)
≤ 4nE|Mfn

T −M
fn+1

T |2 ≤ 4n∥fn − fn+1∥2L2[0,T ] ≤ 2−n.

Then, by Borel–Cantelli, there exists n0 = n0(ω) such that for all n ≥ n0(ω),

sup
0≤t≤T

|Mfn
t −M

fn+1

t | ≤ 1

2n
,

and hence with probability, the infinite function series

M∞
t = Mf0

t +

∞∑
n=0

(M
fn+1

t −Mfn
t )

converges absolutely, and the limiting function is continuous in t. It is easy to check that (M∞
t )t≥0 is

a continuous modification of G
(
1[0,t]f

)
.
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Homework Let (Xt)t≥0 be a (Ft)-adapted, bounded continuous process. For any partition ∆ : 0 = t0 < t1 <

· · · < tn = t we define X∆
s =

n−1∑
k=0

Xtk1[tk,tk+1)(s). By continuity of X, it is easy to see that the limit

lim
|∆|→0

∫ t

0

X∆
s ds = lim

|∆|→0

n−1∑
k=0

Xtk(tk+1 − tk) =

∫ t

0

Xs ds

exists almost surely, so

∫ t

0

Xs ds is a well-defined r.v.

1. Show that for any sub–σ-field G ⊂ F∞, there exists a bounded continuous process (Yt)t≥0 such that for
every t ≥ 0, Yt = E[Xt | G] a.s.
Hint: define Yt first for t ∈ Q and then consider the extension to t ∈ R.

2. Show that

E
[ ∫ t

0

Xs ds | G
]
=

∫ t

0

E[Xs | G] ds.

Hint: The identity is true for X∆
t ; then justify the limit |∆| → 0 carefully using boundedness and conti-

nuity.

3. Let i =
√
−1. For any λ ∈ R, show that

eiλBt +

∫ t

0

1

2
λ2eiλBs ds, t ≥ 0

is a martingale.

Note: this implies f(Bt)−
∫ t

0

1

2
f ′′(Bs) dBs is a martingale if f has a sufficiently nice Fourier transform

representation f(x) =

∫
ei2πxξ f̂(ξ) dξ, since f ′′(x) = −

∫
4π2ξ2eiλxξ f̂(ξ) dξ.

5 Local martingales and quadratic variation

Previously we have define the stochastic integral∫ t

0
f(s) dBs =: G

(
1[0,t]f

)
for f ∈ L2

loc[0,∞). At the end of last section we have also seen that

∫ t

0
f(s) dBs is a continuous

martingale, essentially because the prelimiting process

∞∑
n=0

ftn(Bt∧tn+1 −Bt∧tn) (5.1)

is a continuous martingale. We will consider the following generalizations.

1. First, we want to replace the deterministic function f(t) by a random process. Consider

f(t) =

∞∑
n=0

ξn(ω)1(tn,tn+1](t) (5.2)
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and ∫ t

0
f(s) dBs =

∞∑
n=0

ξn(ω)(Bt∧tn+1 −Bt∧tn). (5.3)

The equation (5.3) defines a martingale as long as ξn ∈ Ftn . For such f , we also have the Itô’s
isometry:

E
(∫ t

0
f(s) dBs

)2
= E

∫ t

0
f2(s) ds. (5.4)

By approximation, we can define

∫ t

0
f(s) dBs for all processes that can be approximated by

processes of the form (5.2), known as the progressively measurable process, such that the right-
hand side of (5.4)is finite.

2. But even the Brownian motion Bt is not necessary in (5.3) to define a martingale. We can
replace (Bt)t≥0 by any continuous martingale (Mt)t≥0. Then the term ds in (5.4) also needs
to be adjusted, since t = EB2

t is no longer true for other continuous martingales (in fact,
it uniquely determines the Brownian motion, see XXX). To this end, we will introduce the
quadratic variation of a continuous martingale.

3. Lastly, the condition E

∫ t

0
f2(s) ds < ∞ can by replaced by a much weaker condition

P
( ∫ t

0
f2(s) ds < ∞

)
= 1. (5.5)

This requires a general technique called “localization”. In this context, consider the stopping
time

Tn = inf{t :
∫ t

0
f2(s) ds ≥ n}.

Then

∫ t∧Tn

0
f(s) dBs will be a martingale. To define the stochastic integral for all t > 0, we

only need Tn ↑ ∞ if n ↑ ∞, which follows from (5.5).

5.1 Continuous local martingales

Continuous local martingales form the natural class of processes that will be invariant after stochastic
integration. It works well with stopping times.

Definition 5.1 A process (Mt)t≥0 is called a continuous local martingale, if

1. the sample path t 7→ Mt(ω) is continuous for all ω, and

2. there exists stopping times Tn ↑ ∞ such that (Mt∧Tn)t≥0 is a (u.i.) martingale.

Remark 5.1 If (Mt∧Tn
)t≥0 is a u.i. martingale, then (Mt∧Tn∧n)t≥0 is u.i., since it is closed by XTn∧n (see

Definition 4.4). This means we can always require Tn to be sequence of bounded stopping times.

Proposition 5.1 Let (Mt)t≥0 be a c.l.m. and T be any stopping time. Then (Mt∧T )t≥0 is also a
continuous local martingale.
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Proof: By definition and Remark 5.1, for some bounded stopping time Tn ↑ ∞, Xt = Mt∧Tn form a
u.i. martingale, and hence by Theorem 4.10,

M(t∧T )∧Tn
= E[MTn | Ft∧T ],

so by Proposition 4.7, (Mt∧Tn∧T )t≥0 is u.i. 2

Proposition 5.2 Let M be a c.l.m. If there exists Z ∈ L1 such that |Mt| ≤ Z for all t, then M is a
u.i. martingale.

Proof: Suppose that (Mt∧Tn)t≥0 is u.i. Then by Theorem 4.10, for t > s,

Ms∧Tn = E
[
Mt∧Tn | Fs

]
. (5.6)

By assumption, |Ms∧Tn |, |Mt∧Tn | ≤ Z, so by Dominated Convergence Theorem, we can take Tn ↑ ∞
in (5.6) to get EMt = [Mt | Fs]. Uniform integrability follows from the fact that Mt is dominated by
Z for all t. 2

Proposition 5.3 Let Sn = inf{t ≥ 0 : |Mt| ≥ n}. Then (Mt∧Sn)t≥0 is a u.i. martingale.

Proof: By Proposition 5.1, (Mt∧Sn)t≥0 is a c.l.m. But |Mt∧Sn | ≤ n for all t, so by Proposition 5.2
it is a u.i. martingale. 2

Remark 5.2 This means that we can remove the “uniform integrability” assumption from the definition of
continuous local martingales.

5.2 Quadratic variation for continuous local martingales

In this section, for a partition ∆ : 0 = t0 < t1 < · · · < tn = t, |∆| will be the maximum length of the
intervals in ∆. For a process (Xt)t≥0, we write ∆Xi = Xti+1 −Xti for short if there is no ambiguity.

Theorem 5.4 Let (Mt)t≥0 be a c.l.m. Then the quadratic variation process

⟨M,M⟩t = ⟨M⟩t = P- lim
|∆|→0

∑
ti∈∆

(Mti+1 −Mti)
2 (5.7)

exists, and M2
t − ⟨M⟩t is a c.l.m.

We should compare Theorem 5.4 with the Doob–Meyer decomposition for local sub-martingales.

Theorem 5.5 (Doob-Meyer Decomposition) Let (Xt)t≥0 be a continuous local sub-martingale. Then
there exists a c.l.m. (Mt)t≥0 and a continuous increasing process (At)t≥0 such that

Xt = Mt +At. (5.8)

The decomposition (5.8) is unique up to an additive constant.

For the detailed proof of Theorem 5.5, one can see [KS98, Chap. 1]. Here we only give the proof of
uniqueness, which itself is an interesting fact about c.l.m’s. Note that the quadratic variation process
⟨M⟩t in Theorem 5.4 is the increasing process in Theorem 5.5.
Proof of existence of Theorem 5.5: Suppose there are two decompositions

Xt = Mt +At = M ′
t +A′

t.

44



D
RA
FT

Then
Yt = A′

t −At = Mt −M ′
t

is both a c.l.m. and has finite variation (as it is the difference of two increasing functions). We will
show that such process Yt must be a constant.

Without loss of generality we assume Y0 = 0. Fix K and define

T = inf{t ≥ 0 : |At|+ |A′
t| ≥ K}.

Consider the c.l.m. Zt = Yt∧T . Since |Zt| ≤ K, by Proposition 5.2 it is in fact a u.i. martingale. Then
we have for any partition 0 = t0 < t1 < · · · < tm = t,

EZ2
t =

m−1∑
k=0

(Ztk+1
− Zk)

2 ≤ KE sup
0≤k≤m−1

|Ztk+1
− Ztk |. (5.9)

Since Z is continuous, sup
0≤k≤m−1

|Ztk+1
− Ztk | → 0 a.s., so by Bounded Convergence Theorem, the

expectation at the right-hand side of (5.9) goes to zero. Hence Zt = Yt∧T for every K. Letting K ↑ ∞
we obtain Yt = 0 for all t. 2

Next we will prove Theorem 5.4. Let us first look at the case of Brownian motion. We already
know that for any partition ∆,

E
∑
ti∈∆

|∆Bi|2 =
∑
ti∈∆

|∆ti| = t.

We will show the L2-convergence

E
∣∣∣ ∑
ti∈∆

|∆Bi|2 − t
∣∣∣2 → 0, |∆| → 0, (5.10)

which implies the convergence in probability. Indeed,

E
∣∣∣ ∑
ti∈∆

|∆Bi|2 − t
∣∣∣2 = E

{∑
i

[
|∆Bi|2 −∆ti

]}2

= E
∑
i,j

[
|∆Bi|2 −∆ti

][
|∆Bj |2 −∆tj

]
= E

∑
i

[
|∆Bi|2 −∆ti

]2
.

In the last line we use that all the cross terms are zero, which follows from the fact that (B2
t − t)t≥0

is a martingale. To see this, for i > j, we have

0 = E[B2
ti+1

−B2
ti − (ti+1 − ti) | Ftj+1 ] = E[|∆Bi|2 −∆ti | Ftj+1 ], (5.11)

and since |∆Bj |2 −∆tj ∈ Ftj+1 ,

E
[
|∆Bi|2 −∆ti

][
|∆Bj |2 −∆tj

]
= E

[
|∆Bj |2 −∆tj

]
E
[
|∆Bj |2 −∆tj | Ftj+1

]
= 0.

Finally, it is easy to see that∑
i

E
(
|∆Bi|2 −∆ti

)2 ≤ C
∑
i

|∆ti|2 ≤ C|∆|
∑
i

|∆ti| ≤ C|∆|t → 0

as desired.
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Homework Let t > 0 and consider the partition ∆n : ti = it · 2−n, 0 ≤ i ≤ 2n. Show that

lim
n→∞

2n−1∑
i=0

(Bti+1 −Bti)
2 = t, a.s.

Hint: Compute the L2-distance, and then use Markov inequality and Borel–Cantelli.

Proof of Theorem 5.4: Since (Mt)t≥0 is a c.l.m., there are Tn ↑ ∞ such that (Mt∧Tn)t≥0 is
a bounded martingales. Then (M2

t∧Tn
)t≥0 is a sub-martingale, and by Theorem 5.5 there exists a

continuous martingale Nt and a continuous increasing process At such that M2
t = Nt + At. We can

further assume that At is bounded, otherwise we replace the stopping Tn by

T̃n = Tn ∧ inf{t ≥ 0 : At ≥ n}.

So let us first prove the statement under condition |Mt|, |At| ≤ K for some K > 0. Now Nt =
M2

t −At is a bounded c.l.m., so it is a martingale.
We will show

E
∣∣∣∑

i

(∆Mi)
2 −At

∣∣∣2 → 0.

In fact, the left-hand side is equal to∑
i,j

E
(
(∆Mi)

2 −∆Ai

)(
(∆Mj)

2 −∆Aj

)
.

Since Nt = M2
t −At is a martingale, by the same computation as (5.11), all the cross terms are zero.

For the diagonal terms, we have

E
∑
i

[
(∆Mi)

2 −∆Ai

]2
≤ 2E

∑
i

|∆Mi|4 + 2E
∑
i

|∆Ai|2

≤ 2E sup
i

|∆Mi|2 ·
∑
i

|∆Mi|2 + 2E sup
i

|∆Ai| ·
∑

|∆Ai|.

For the second term, sup
i

|∆Ai| → 0 a.s. by continuity of A, so the expectation goes to 0 by Bounded

Convergence Theorem. For the first term, we use Cauchy–Schwartz and obtain

E sup
i

|∆Mi|2 ·
∑
i

|∆Mi|2 ≤
[
E sup

i
|∆Mi|4

]1/2
·
[
E
(∑

i

|∆Mi|2
)2]1/2

.

The first term goes to zero by the continuity of M and Bounded Convergence Theorem. It remains
to show that the second term is bounded. In fact, after we expand the square, for the diagonal terms
we have

E
∑
i

|∆Mi|4 ≤ 4K2E
∑
i

|∆Mi|2 = 4K2EM2
t ≤ 4K4,

and for the cross terms we have:

E
∑
j:j>i

|∆Mj |2|∆Mi|2 = E|∆Mi|2 · E
[ ∑
j:j>i

|∆Mj |2 | Fti+1

]
= E|∆Mi|2 · E

[
M2

t −M2
ti+1

| Fti+1

]
≤ 2K2 · E|∆Mi|2,

and summing over all i we obtain that the sum of all the cross terms are bounded by CK4.
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Let TK be the corresponding stopping time. Clearly lim
k→∞

P(TK > t) = 1. We have just shown

that there is an increasing process At such that M2
t∧TK

−At∧TK
is a martingale, and

∑
i

(Mti+1∧TK
−

Mti∧TK
)2 → At∧TK

in L2 and hence in probability. Now

P
(
|
∑
i

|∆Mi|2 −At| > ε
)
≤ P

(
t < TK ; |

∑
i

(Mti+1∧TK
−Mti∧TK

)2 −At∧TK
| > ε

)
+ P(t ≥ TK).

For any δ > 0, we first choose K such that P(t ≥ TK) < δ/2, and then choose |∆| small enough such
that

P
(
|
∑
i

(Mti+1∧TK
−Mti∧TK

)2 −At∧TK
| > ε

)
< δ/2

Then P
(
|
∑
i

|∆Mi|2 −At| > ε
)
< δ as desired. This completes the proof. 2

5.3 Cross variation and continuous semi-martingales

Definition 5.2 Let M,N be two c.l.m.’s. The cross variation, or bracket of M and N is defined by

⟨M,N⟩t =
1

4

(
⟨M +N⟩t − ⟨M −N⟩t

)
.

The cross variation has the following properties.

Proposition 5.6 Let M,N be c.l.m.’s.

1. ⟨M,N⟩ is the unique (up to indistinguishability) finite variation process such that MtNt−⟨M,N⟩t
is a c.l.m.

2. For every t ≥ 0, we have convergence in probability

⟨M,N⟩t = lim
|∆|→0

∑
(Mti+1 −Mti)(Nti+1 −Nti).

3. The map (M,N) 7→ ⟨M,N⟩ is bilinear and symmetric.

4. For every stopping time,
⟨MT , NT ⟩ = ⟨MT , N⟩ = ⟨M,NT ⟩.

Proof: For Item 1, noting that MtNt =
1

4

(
(Mt +Nt)

2 − (Mt −Nt)
2
)
, the difference of two c.l.m.’s

MtNt − ⟨M,N⟩t =
1

4

[(
(Mt +Nt)

2 − ⟨M +N⟩t
)
−
(
(Mt −Nt)

2 − ⟨M −N⟩t
)]

is still a c.l.m. The uniqueness follows the same argument as Theorem 5.5.
For Item 2, it suffices to notice that before taking the limit,∑

∆Mi ·∆Ni =
1

4

[∑
|∆(M +N)i|2 −

∑
|∆(M −N)i|2

]
.

Item 3 follows from Item 3 since each product ∆Mi ·∆Ni is symmetric and bilinear.
Item 4 also follows from Item 3 since

∆MT
i ·∆Ni = (MT∧ti+1 −MT∧ti)(Nti+1 −Nti) = ∆MT

i ·∆NT
i = ∆Mi ·∆NT

i .

2
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Definition 5.3 A process X = (Xt)t≥0 is called a continuous semi-martingale (c.sm.) if it has the
decomposition

Xt = Mt +At,

where Mt is a c.l.m. and At is a continuous finite variation process.

The cross variation between c.l.m’s can be extended to continuous semi-martingales.

Proposition 5.7 1. If A is a finite variation process and X is a continuous process, then for every
t > 0 and partition ∆ of [0, t],

lim
|∆|→0

∑
∆Ai ·∆Xi = 0, a.s.

2. If X = M + A and Y = N + A′ are two continuous semi-martingales, then for every t > 0 and
partition ∆ of [0, t],

lim
|∆|→0

∑
∆Xi ·∆Yi = lim

|∆|→0

∑
i

∆Mi ·∆Ni = ⟨M,N⟩t, in probability.

In particular, we can define ⟨X,Y ⟩t = ⟨M,N⟩t as the cross variation between X and Y .

Proof: It suffices to prove the first part. We note that

|
∑

∆Ai∆Xi| ≤
(
sup
i

|∆Xi|
)
·
∑

|∆Ai|.

By continuity of X, as |∆| → 0, the first term converges to 0, while by definition of finite variation
processes, the second term is bounded a.s. Hence, the left-hand side converges to 0 a.s. 2

6 Stochastic integrals

As we have seen in the discussion at the beginning of Section 5, the stochastic integral∫ t

0
Ys dXs

is defined by some limit of the left Riemann sum
∑

Yti(Xti+1 −Xti). We have seen the case where Yt

is a deterministic L2 function and X is the Brownian motion; this is the stochastic integral constructed
in the Gaussian white noise expansion Theorem 2.5. In general, we will need more assumptions on the
process X (some martingale properties) than Y . Indeed, the appropriate class of processes to consider
is the continuous local semi-martingales.

We will first present the celebrated Itô’s Formula, which says for twice continuously differentiable
function f and a continuous semi-martingale X, f(Xt) is also a continuous semi-martingale, and gives
the decomposition into local martingale and finite variation processes. This justifies that continuous
semi-martingales are the right class of processes to perform stochastic integration. On the other hand,
Itô’s Formula plays the role of Fundamental Theorem of Calculus in classical calculus.

Then we will detail the approximation scheme to define stochastic integrals. It will rely on some
Hilbert space theory and the localization techniques.
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6.1 Itô’s Formula

Let C2(D) = {f : D → R : ∇f,∇2f exist and are continuous on D}.

Theorem 6.1 Let f ∈ C2(R) and X = M +A be a continuous semi-martingale Then f(Xt) is also a
continuous semi-martingale, such that

f(Xt)− f(X0) =

∫ t

0
df(Xs) =

∫ t

0
f ′(Xs) dXs +

1

2

∫ t

0
f ′′(Xt) d⟨X⟩t (6.1)

=
[ ∫ t

0
f ′(Xs) dMs

]
+
[ ∫ t

0
f ′(Xs) dAs +

1

2

∫ t

0
f ′′(Xt) d⟨X⟩t

]
. (6.2)

The first and second brackets in (6.2) are the local martingale and the finite variation term for the
continuous semi-martingale f(Xt), respectively.

We also formally write (6.1) and (6.2) in the derivative form

df(Xt) = f ′(Xt) dXt +
1

2
f ′′(Xt)d⟨X⟩t = f ′(Xt) dMt + f ′(Xt) dAt +

1

2
f ′′(Xt)d⟨X⟩t. (6.3)

In (6.2), the second and third integrals can be interpreted as Riemann–Stieltjes integral, so only
the first integral is new.

Since we have not defined stochastic yet, we will only assume the following fact in our proof of
Theorem 6.1: if M is a c.l.m. and Y is a nice process (in the theorem Yt = f ′(Xt)), then as a limit in
probability the stochastic integral∫ t

0
Ys dMs = lim

|∆|→0

∑
Yti(Mt∧ti+1 −Mt∧ti) (6.4)

can be defined, and is also a c.l.m.
There is also a multi-dimensional version of the Itô’s Formula.

Theorem 6.2 Let f ∈ C2(Rd) and X(1), . . . , X(d) be continuous semi-martingales. Then f(Xt) =

f(X
(1)
t , . . . , X

(d)
t ) is also a continuous semi-martingale, and

df(Xt) =
d∑

j=1

∂f

∂xj
(Xt)dX

(j)
t +

1

2

d∑
j,k=1

∂2f

∂xj∂xk
(Xt)d⟨X(j), X(k)⟩t. (6.5)

Remark 6.1 One can take X
(1)
t = t, so the function f can also depend on time. In this case, since X

(1)
t = t has

finite variation, ⟨X(1), X(j)⟩t = 0 for all j ̸= 1.

It is not enough to give definition for the stochastic integral (6.4). After applying Itô’s formula
multiple times, it is inevitable to compute the cross variation between stochastic integrals. Namely, if
dXt = HtdMt, dYt = KtdNt are two c.l.m.’s given by the stochastic integral, we need to know ⟨X,Y ⟩t
to apply Itô’s formula again on X and Y . This will be a key property of stochastic integral we need
to establish. We will show

d⟨X,Y ⟩t = HtKtd⟨M,N⟩t
in this case.

We will prove Theorem 6.1 assuming (6.4). Proof of Theorem 6.1: By localization, we can
assume that Mt, At, f

′, f ′′ are all bounded. If they are not, we can define a stopping time

TK = inf{t ≥ 0 : |Mt| ≥ K, |At| ≥ K, |f ′(Xt)| ≥ K, |f ′′(Xt)| ≥ K}
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and prove the statement for XTK , and then let K → ∞. Note that by continuity of X and f ′, f ′′, we
have TK → ∞ as K → ∞.

Let ∆ : 0 = t0 < t1 < · · · < tn = t be a partition of [0, t]. Applying Taylor’s expansion on each
interval [ti, ti+1] with Lagrangian remainder, we have

f(Xt)− f(X0) =
n−1∑
i=0

f(Xti+1)− f(Xti)

=
n−1∑
i=0

f ′(Xti)∆Xi +
1

2
f ′′(X̃ti,ti+1)(∆Xi)

2

=
n−1∑
i=0

f ′(Xti)∆Xi +
1

2

n−1∑
i=0

f ′′(Xti)(∆Xi)
2 +

1

2

n−1∑
i=0

[
f ′′(Xti)− f ′′(X̃ti,ti+1)

]
(∆Xi)

2

=: I1 + I2 + I3.

Here, X̃ti,ti+1 is some number between Xti and Xti+1 .

By (6.4), I1 →
∫ t

0
f ′(Xs) dXs in probability as |∆| → 0. Denote the modulus of continuity by

ω(g, δ) = sup
x ̸=y, |x−y|≤δ

|g(x)− g(y)|.

For I3 we have

I3 ≤
(

sup
0≤i≤n−1

|f ′′(Xti)− f ′′(Xti,ti+1)|
)
·
n−1∑
i=0

(∆Xi)
2

≤ ω
(
f ′′, ω(X, |∆|)

)
·
n−1∑
i=0

(∆Xi)
2.

The first term converges to zero a.s. as |∆| → 0, since X are bounded and X, f ′′ are uniformly
continuous on compact intervals. The second term converges to ⟨X⟩t in probability. Hence, their
product converges to 0 in probability.

Now it remains to show that

I3 →
1

2

∫ t

0
f ′′(Xs) d⟨X⟩s. (6.6)

We will indeed show that (6.6) holds almost surely. We will use some measure theory argument.
Recall that a sequence of r.v.’s have a limit in probability if and only if every subsequence has a
further subsequence that converges almost surely to that limit. In case of the quadratic variation
process ⟨X⟩ , there exist partition ∆n on [0, t] with |∆n| → 0 such that with probability one,∑

ti∈∆n

(
Xs∧ti+1 −Xs∧ti

)2 → ⟨X⟩s (6.7)

for a fixed s > 0.
By the diagonalization method, we can find require that (6.7) holds simultaneously for all s ∈

Q ∩ [0, t]. Indeed, enumerate Q ∩ [0, t] as q1, q2, . . .. We first have a sequence of partition (∆(1)
n )n≥1

such that (6.7) holds for t = q1. Then, there exists a subsequence (∆(2)
n )n≥1 ⊂ (∆(1)

n )n≥1 such that
(6.7) holds for t = q2, but being a subsequence, it also holds for t = q1. Continuing this construction
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we obtain (∆(k)
n )n≥1 that (6.7) holds simultaneously for t = q1, . . . , qk. Finally, the desired sequence

of partitions will be given by the diagonal sequence, ∆n = ∆(n)
n , which is a subsequence of every

(∆(k)
n )n≥1.
Since the limiting process ⟨X⟩s is increasing and continuous, if (6.7) holds for all s ∈ Q ∩ [0, t], it

holds for all s ∈ [0, t] since Q is a dense subset of R. Define the measures µn on [0, t] by

µn =
∑

ti∈∆n

δXti
(Xti+1 −Xti)

2

Then the distribution of µn[0, s] converges to ⟨X⟩s for all s ∈ [0, t]. Hence, with probability one, the
measure µn converge weakly to the measure µ(ds) = d⟨X⟩s. By weak convergence, for the continuous
function g(s) = f ′′(Xs), we have∫ t

0
g(s)µn(ds) =

∑
ti∈∆n

f ′′(Xti)(Xti+1 −Xti)
2 →

∫ t

0
g(s)µ(ds) =

∫ t

0
f ′′(Xs) d⟨X⟩s.

This proves (6.6) and completes the proof of the theorem. 2

6.2 Some preparation

We define the space

H2 = {M : continuous martingale, sup
t≥0

EM2
t < ∞, M0 = 0},

= {M : continuous local martingale, E⟨M,M⟩∞ < ∞, M0 = 0}.

This will be the martingale that will replace the Brownian motion. In fact, Brownian motion is not
in H2, but BT ∈ H for all bounded stopping time T .

The equivalence of these two definitions of H is guaranteed by the following proposition. For its
proof, see [LeG16, Theorem 4.13].

Proposition 6.3 Let M be a c.l.m. with M0 = 0. Then M is a martingale and sup
t

EX2
t < ∞ if and

only if E⟨M⟩∞ < ∞. And when this holds, M2
t − ⟨M⟩t is u.i. and E⟨M⟩∞ = EM2

∞.

The space H2 is an inner product space, on which the norm and inner product is given by

∥M∥2H2 = E⟨M⟩∞ = EM2
∞,

⟨M,N⟩H2 = E⟨M,N⟩∞ = EM∞N∞.

In fact, H is a Hilbert space, i.e., an inner product space which is also complete.

Theorem 6.4 Every Cauchy sequence in H2 has a limit in H2. Hence, H is a Hilbert space.

Sketch: Let Mn be a Cauchy sequence, i.e., E⟨Mm,Mn⟩∞ → 0 for n,m → ∞. Then by Theo-
rem 4.14, we have

E sup
t≥0

|Mm
t −Mn

t |2 ≤ 4E⟨Mm,Mn⟩∞ → 0.

The rest is essentially the same as the argument given at the end of Section 4.4. 2

Next, we define what should be the integrand process. Let M ∈ H2. We define

L2(M) = {H : progressively measurable, E

∫ ∞

0
H2

s d⟨M⟩s}.
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The space L2(M) can be identified as a L2 space. Indeed, define the progressive σ-field

P = {A ∈ F∞ : A ∩
(
Ω× [0, t]

)
∈ B([0, t])×Ft, ∀t ≥ 0}.

Then for Q = dPd⟨M⟩ defined by

Q(A) = E

∫ ∞

0
1A(ω, s) d⟨M⟩s =

∫
dP(dω)

∫ ∞

0
1A(ω, s) d⟨Mω⟩s, A ∈ P, (6.8)

we have
L2(M) = L2

(
Ω× [0,∞),P, Q = dPd⟨M⟩

)
.

The condition M ∈ H ensures that Q is a finite measure.
Note that the order of integration in (6.8) cannot be changed, since d⟨M⟩ depends on ω. In some

sense, (6.8) is more like a conditional expectation decomposition.
A special case is (Ms = Bt∧s)s≥0, where d⟨M⟩s = ds is independent of ω. Then Q will have the

product form Q = P⊗ ds.
As an L2-space, the norm on L2(M) is defined by

∥H∥2L2(M) = E

∫ ∞

0
H2

s d⟨M⟩s.

Finally, as we are doing approximation of stochastic integral by left Riemann sum, we need to
know that L2(M) has a dense subset that takes a simple form.

Define the space of elementary functions

E = {H : Hs(ω) = H0(ω) +
∞∑
i=0

Hti(ω)1(ti,ti+1](s), Hti ∈ Fti}.

Theorem 6.5 Let M ∈ H2. The set E is dense in L2(M), i.e., for every progressively measurable
process H, there exist Hn ∈ E ∩ L2(M) such that

∥Hn −H∥L2(M) → 0, n → ∞.

Sketch: If H is continuous, we can define

Hn(ω, s) =
n2∑
i=0

Hi/n(ω)1(i/n,(i+1)/n](s).

Then for a.e. ω, since H(ω, ·) ∈ L2(R≥0, d⟨M⟩) and continuous,∫ ∞

0
|Hn(ω, s)−H(ω, s)|2 d⟨M⟩s → 0.

It is not hard to show that the limit holds after taking expectation E.
If H is not continuous, we can approximate H by the continuous process,

H̃m
t =

∫ t
(t−1/m)+

Hs ds

(1/m) ∨ t
,

since by Lebesgue Differentiation Theorem, for a.s. ω, H̃m → H a.s. in t and in L2. Then we can use
the approximation on H̃m in the first step. 2
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6.3 Stochastic integral for square integrable martingales

Step 1: H ∈ E.
Let M ∈ H2 and H ∈ E ∩ L2(M). It only makes sense to define the stochastic integral as

(H ·M)t =

∫ t

0
Hs dMs :=

∞∑
i=0

Hti(ω)
(
Mt∧ti −Mt∧ti+1

)
.

One can verify that H ·M ∈ H2, with

∥H ·M∥2H2 = E(

∫ ∞

0
Hs dMs)

2 = E

∫ ∞

0
H2

s d⟨M⟩s =
∞∑
i=0

EH2
ti(Mti+1 −Mti)

2.

The identity
∥H ·M∥H2 = ∥H∥L2(M) (6.9)

is known as Itô’s isometry.
From E to L2(M).

Let H ∈ L2(M). By Theorem 6.5, there are Hn ∈ E such that

∥Hn −H∥2L2(M) = E

∫ ∞

0
(Hn

s −Hs)
2 d⟨M⟩s → 0.

By (6.9),
∥Hn ·M −Hm ·M∥H2 = ∥Hn −Hm∥L2(M) → 0, n,m → 0,

that is, Hn ·M forms a Cauchy sequence in H2. By Theorem 6.4, there is a unique X ∈ H such that
Hn · M → X in H2. We define H · M = X. Clearly, ∥H · M∥H2 = lim

n→∞
∥Hn · M∥H2 . So (6.9) also

holds for H ·M defined in this way.
The process H ·M can be characterized in the following way.

Theorem 6.6 Let H ∈ L2(M). Then H ·M is the unique process in H2 such that

⟨H ·M,N⟩ = H · ⟨M,N⟩

or, in the integral form,

⟨H ·M,N⟩t =
∫ t

0
Hs d⟨M,N⟩s, t ≥ 0.

Theorem 6.6 can be used to compute the quadratic variation of two stochastic integrals. Indeed,
if dXt = Ht dMt and Yt = Kt dNt, then

⟨X,Y ⟩ = ⟨H ·M,K ·N⟩ = H · ⟨M,K ·N⟩ = H ·
(
K · ⟨M,N⟩

)
= (HK) · ⟨M,N⟩, (6.10)

or in the derivative form,
d⟨X,Y ⟩t = HtKtd⟨M,N⟩t.

In the last step of (6.10), we in fact use the chain rule for Riemann–Stieltjes integral.
Another way to interpret Theorem 6.6 is through the general theory of Hilbert space. We recall

below the Riesz Representation Theorem.

Theorem 6.7 Let H be a Hilbert space. Let ℓ : H → R be a bounded linear functional. Then there
exists a unique u ∈ H such that

ℓ(x) = ⟨u, x⟩H, x ∈ H.
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We also need the following Kunita–Watanabe Inequality

Theorem 6.8 Let Hs and Ks be measurable processes. Then[ ∫ ∞

0
|Hs||Ks||d⟨M,N⟩s|

]2
≤

∫ ∞

0
H2

sd⟨M⟩s ·
∫ ∞

0
K2

sd⟨N⟩s.

Sketch: Consider the case H = K ≡ 1. Note that by Cauchy–Schwartz, we have[∑
|∆Mi| · |∆Ni|

]2
≤

∑
|∆Mi|2 ·

∑
|∆Ni|2.

Hence, by the definition of cross variation and quadratic variation, we have∣∣∣⟨M,N⟩ts
∣∣∣2 ≤ ⟨M⟩ts⟨N⟩ts, s < t.

Then, one can show that the inequality holds for all H, K to be simple functions, and then for all
measurable H and K. 2

To make the connection, we consider the following linear functional

N ∈ H2 7→ E

∫ ∞

0
Hs d⟨M,N⟩s.

By Theorem 6.8, we have (with K ≡ 1)

E

∫ ∞

0
Hs d⟨M,N⟩s ≤

[
E

∫ ∞

0
H2

s d⟨M⟩s
]1/2[

E⟨N⟩∞
]1/2

= ∥H∥L2(M) · ∥N∥H2 . (6.11)

So by Theorem 6.7, there exists X ∈ H2 such that

E⟨X,N⟩∞ = E

∫ ∞

0
Hsd⟨M,N⟩s.

Then Theorem 6.6 identifies that X = H ·M .
Proof of Theorem 6.6: Let H ∈ E ∩ L2(M). By direct computation we have

⟨Hti(M·∧ti+1 −M·∧ti), N⟩t = Hti

(
⟨M,N⟩t∧ti+1 − ⟨M,N⟩t∧ti

)
.

Summing over all i we have

⟨H ·M,N⟩t =
∫ t

0
Hs d⟨M,N⟩s, t ≥ 0.

By (6.11), this holds for all H ∈ L2(M). 2

Finally the stochastic integral we have define work well with stopping time.

Theorem 6.9 Let M ∈ H2 and H ∈ L2(M). If T is a stopping time, then(
1[0,T ]H

)
·M = (H ·M)T = H ·MT ,

or more explicitly in the integral form,∫ ∞

0
1[0,T ]Hs dMs =

∫ T

0
Hs dMs =

∫ T

0
Hs dMs∧T ,

that is, the stopping time and stochastic integrals behave like normal time and integrals.
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Proof: We will use the characterization in Theorem 6.6, although a direct approximation approach
is also straightforward.

We will use Item 4 in Proposition 5.6 many times.
For the first inequality, we have for any N ∈ H2

⟨1[0,T ]H ·M,N⟩ = 1[0,T ]H⟨M,N⟩,

where for the Riemann–Stieltjes integral,∫ ∞

0
1[0,T ](s)Hs d⟨M,N⟩s =

∫ ∞

0
Hs d⟨MT , N⟩s.

Hence, we have

⟨1[0,T ]H ·M,N⟩ = 1[0,T ]H⟨M,N⟩ = H · ⟨MT , N⟩ = ⟨H ·MT , N⟩.

For the second identity,

⟨(H ·M)T , N⟩ = ⟨H ·M,NT ⟩ = H · ⟨M,NT ⟩ = H · ⟨MT , N⟩ = ⟨H ·MT , N⟩.

2

6.4 Stochastic integral for local martingales

Let

L2
loc(M) = {H ∈ P :

∫ ∞

0
H2

s d⟨M⟩s < ∞}.

Theorem 6.10 Let M be a c.l.m. and H ∈ L2
loc(M).

1. There exist stopping times Tn ↑ ∞ a.s. such that MTn ∈ H2, H ∈ L2(MTn). There exists a
continuous local martingale X such that Xt∧Tn = (H ·MTn)t. We define H ·M to be the process
X.

2. For any c.l.m. N ,
⟨H ·M,N⟩ = H · ⟨M,N⟩.

3. For any stopping time,
(1[0,T ]H) ·M = (H ·M)T = H ·MT .

Proof: For the first part, consider

Tn = inf{t ≥ 0 :

∫ t

0
(1 +H2

s ) d⟨M⟩s ≥ n}.

Then ⟨MTn ,MTn⟩t ≤ n implies that MTn ∈ H2, and∫ ∞

0
H2

s d⟨MTn⟩s =
∫ Tn

0
H2

s d⟨M⟩s ≤ n

implies that H ∈ L2(MTn). So H ·MTn is well-defined.
To check that X is well-defined, we need to show that if m > n and Xt = (H ·MTn)t for t ≤ Tn

and X̃t = (H ·MTm)t for t ≤ Tm, then Xt = X̃t for t ≤ Tn. This is due to for t ≤ Tn,

X̃t = 1[0,Tn]X̃t = (H ·MTm∧Tn)t = (H ·HTn)t = Xt.

The second identity is by Theorem 6.9.
The second and third parts follows from our definition and Theorems 6.6 and 6.9. 2
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Homework For two c.l.sm.’s X and Y , define the Stratonovich integral∫ t

0

Ys ◦ dXs :=

∫ t

0

Ys dXs +
1

2
⟨X,Y ⟩t.

1. Show that if Z is another c.l.sm., then

⟨Z,
∫

Y ◦ dX⟩t =
∫ t

0

Ys d⟨X,Z⟩s.

2. Verify the chain rule for Stratonovich integrals: for c.l.sm.’s X, Y and Z,∫ t

0

ZsYs ◦ dXs =

∫ t

0

Zs ◦ d
(∫ s

0

Yr ◦ dXr

)
.

7 Representation of martingales

7.1 Lévy’s characterization of Brownian motions

We say that a stochastic process Bt =
(
B

(1)
t , · · · , B(d)

t

)
∈ Rd is a d-dimensional standard Brownian

motion if for each coordinate, B
(j)
t is a one-dimensional standard motion.

Theorem 7.1 Let X be a d-dimensional process. Then X is a d-dimensional Brownian motion if and
only if X(j) are c.l.m. with quadratic variation

⟨X(j), X(k)⟩t = δjk · t =

{
t, j = k,

0, j ̸= k.

Example 7.1 (Counter-example) The condition on continuity is essential. As an counterexample, consider the
Poisson process defined by

Nλ
t = max{k : ξ1 + ξ2 + · · ·+ ξk ≤ t},

where ξ1, ξ2, · · · are a sequence of i.i.d. Exp(λ) r.v.’s. Then Nλ
t has independent increments and Nλ

t − Nλ
s ∼

Poi(λ(t− s)). One can show that (Nλ
t )

2 − λt is a martingale, and hence ⟨Nλ⟩t = λt. If λ = 1, the condition of
Theorem 6.10 except continuity of the process is satisfied, but obviously N1 is not the Brownian motion.

Proof: The “⇒” direction is easy, noting that the quadratic variation of two independent Brownian
motion is 0 since E∆B(j)∆B(k) = E∆B(j)E∆B(k) = 0.

For the other direction, we will show that for every ξ ∈ Rd, t > s, we have

E
[
eiξ·(Xt−Xs) | Fs

]
= e−

1
2
|ξ|2(t−s) = eiξ·(Bt−Bs).

If this is true, then (Xt) will have independent increments, and the increments has the same distribution
as the d-dimensional Brownian motion, i.e., the standard N (0, Id) Gaussian vector. So indeed X will
be a d-dimensional Brownian motion.

It suffices to show that
Mt = f(t,Xt) = eiξ·Xt+

1
2
|ξ|2t

is a martingale. The Itô’s Formula ( Theorem 6.2) applies since X
(j)
t are c.l.m.’s. We have

∂tf =
1

2
|ξ|2f, ∇xf = iξ · f, ∂jkf = −ξjξkf.
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Hence,

df(t,Xt) = (∂tf +
1

2
∆f)dt+ (iξ · f)dXt =

d∑
j=1

iξjdXj ,

where we used ⟨X(j), X(k)⟩t = δjkt so only ∆f remains in the Itô correction term. Therefore, Mt =
f(t,Xt) is a c.l.m. On the other hand,

|Mt| = |eiξXt+
1
2
|ξ|2t| ≤ e

1
2
|ξ|2t,

So Mt is a true martingale. This completes the proof. 2

Homework Let (W 1
t ) and (W 2

t ) be two independent Brownian motions starts at W i
0 = xi, x1 ̸= x2. Let

T = T (ω) = inf{t ≥ 0 : W 1
t = W 2

t } be their collision time. Define

Bi
t(ω) =

W i
t , t < T (ω),

W i
T +

1√
2
(W 1

t +W 2
t −W 1

T −W 2
T ), t ≥ T (ω),

i = 1, 2.

1. Explain why T (ω) is a stopping time.

2. Find bounded progressively measurable processes (Y i
t ), (Z

i
t), i = 1, 2, such that

Bi
t = xi +

∫ t

0

Y i
s dW 1

s +

∫ t

0

Zi
s dW

2
s , i = 1, 2.

3. Use Lévy’s characterization to show that (B1
t ) and (B2

t ) are Brownian motions (starting at x1,2).

4. Show that ⟨B1, B2⟩t = (t− T ) ∨ 0.

7.2 Martingales as stochastic integrals

Let B be the standard Brownian motion on (Ω,F∞, (Ft)t≥0,P). In this section, we assume that the
filtration is given by the augmentation of the natural filtration, namely,

Ft = σ
(
FB
t ∪N∞

)
, N∞ = {A : ∃N ∈ FB

∞, A ⊂ N, P(N) = 0}.

By discussion in Section 3.3, the augmented filtration satisfies the usual condition.

Theorem 7.2 Let B be the standard Brownian motion on (Ω,F∞, (Ft)t≥0,P) where (Ft)t≥0 is the
augmented filtration.

1. For any Z ∈ L2(Ω,F∞,P), there exists a unique h ∈ L2(B) s.t.

Z = EZ +

∫ ∞

0
hs dBs. (7.1)

2. For any L2-bounded martingale M (i.e., sup
t

EM2
t < ∞), there exists a unique h ∈ L2(B) and

constant C s.t.

Mt = C +

∫ t

0
hs dBs. (7.2)

3. For any continuous local martingale M , there exists a unique h ∈ L2
loc(B) and constant C such

that (7.2) holds.
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Remark 7.2 Recall that
L2(B) = L2([0,∞)× Ω,P, dt⊗ P).

In principle, so elements in the L2 space are defined up to a dt⊗ P-null set. As we assume the usual condition,
any modification on the dt⊗ P-null set will not affect the progressive measurability of the process.

Proof: We will first prove everything except the existence part of Item 1.
Uniqueness of Item 1. Suppose there are two representations in terms of hs, h̃s. We have

Z = EZ +

∫ ∞

0
hs dBs = EZ +

∫ ∞

0
h̃s dBs,

and hence

E

∫ ∞

0
(hs − h̃s) dBs.

By Itô’s isometry,

0 = E
[ ∫ ∞

0
(hs − h̃s) dBs

]2
= E

∫ ∞

0
|hs(ω)− h̃s(ω)|2 ds = 0.

Therefore, hs(ω) = h̃s(ω) for dt⊗ P-a.e. (s, ω) and there are the same element in L2(B).
From Item 1 to Item 2.

Since sup
t

EM2
t < ∞, Mt are u.i., and by Theorem 4.6, there exists M∞ such that Mn → M∞ in L1

and a.s. Note that (Mt)0≤t≤∞ is a martingale even we do not assume continuity of M , since

E[Mn | Ft] = Mt, n ≥ t ⇒ E[M∞ | Ft] = lim
n→∞

E[Mn | Ft] = Mt.

We also have M∞ ∈ L2(Ω,F∞,P), since by Fatou,

EM2
∞ = E lim

n→∞
M2

n ≤ lim inf
n→∞

EM2
n ≤ sup

t
EM2

t < ∞.

Applying Item 1 with Z = M∞, there exists h ∈ L2(B) such that

M∞ = EM∞ +

∫ ∞

0
hs dBs.

Note that
(∫ t

0
hs dBs

)
0≤t≤∞

is a martingale by the construction of stochastic integral, we have

Mt = E[M∞ | Ft] = EM∞ +

∫ t

0
hs dBs.

The uniqueness of the representation follows from the uniqueness of Item 1.
From Item 2 to Item 3.

Since F0 is trivial and M0 ∈ F0, M0 = C a.s. for some constant C. For simplicity we assume C = 0.
Let Tn = inf{t ≥ 0 : |Mt| ≥ n}. Then MTn is L2-bounded, and by Item 2, there exist h(n) ∈ L2(B),
such that

MTn
t =

∫ t

0
h(n)s dBs. (7.3)

Let m > n. Note that MTn
t has two representations. The first one is (7.3), the second one is

MTn
t = MTm

t∧Tn
=

∫ t∧Tn

0
h(m)
s dBs =

∫ t

0
1[0,Tn]h

(m)
s dBs,
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where the last equality follows from the property of stochastic integral regarding stopping times, see
Theorem 6.9. By the uniqueness of Item 2, we have

h(n)s (ω) = 1[0,Tm(ω)](s)h
(m)
s (ω), for dt⊗ P-a.e. (s, ω). (7.4)

Hence, we can define
hs(ω) = h(n)s (ω), if s ≤ Tn(ω) for some n.

Noting Tn ↑ ∞ a.s. and thanks to (7.4), it is easy to see that this gives a consistent definition of an
element in L2(B) up to dt⊗ P-null sets. This proves the existence of the desired representation. The
uniqueness follows from a similar localization argument. 2

Next we turn to the proof of existence of Item 1 in Theorem 7.2. Consider the set of random
variables

H = {Z ∈ L2(Ω,F∞,P) : the representation in (7.1) exists}.

We observe that H is a closed subspace of the linear space L2(Ω,F∞,P). The linearity is obvious.
For the closedness, let

Zn = EZn +

∫ ∞

0
h(n)s dBs

be a Cauchy sequence in L2(Ω,F∞,P). Then by Itô’s Isometry,

E

∫ ∞

0
|h(n)s − h(m)

s |2 ds = E|Zn − Zm|2,

and hence (h(n))n≥1 is Cauchy in L2(B). But the space L2(B) is complete ( Theorem 6.5), and hence

there exists h ∈ L2(B) as the L2(B)-limit of h(n). Then Z = lim
n→∞

EZn +

∫ ∞

0
hs dBs will be the

L2-limit of Zn and the closedness of H is proved.
Now, to proveH = L2(Ω,F∞,P), it suffices to show thatH contains a dense subset of L2(Ω,F∞,P).

The proof of the existence of Item 1 in Theorem 7.2 will be completed by the following two lemmas.

Lemma 7.3 For all λj ∈ R, 0 = t0 < t1 < . . . < tm, the real and imaginary parts of

e
i·
∑m−1

j=0 λj(Btj+1−Bj
)

is element in H.

Lemma 7.4 The random variables in the form

e
i·
∑m−1

j=0 λj(Btj+1−Bj
)
, λj ∈ R, 0 = t0 < t1 < · · · < tm (7.5)

are dense in L2
C(Ω,F∞,P).

Idea and intuition: Any r.v. measurable with respect to F∞ can be approximated by the form
f(Bt1 , . . . , Btm) where f is a sufficiently nice function. One the other hand, by the the theory of
Fourier transform, we can write

f(Bt1 , . . . , Btm) =

∫
e2πiξ·B f̂(ξ) dξ

for some function f̂(ω). As integrals can be approximated by Riemann sums, this suggests that the
left hand side can be approximated by linear combination of r.v.’s in the form of (7.5).
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In principle, one can also approximate a generic r.v. f(Bt1 , . . . , Btm) by polynomials inBt1 , . . . , Btm .
But growth of polynomials is difficult to control, while complex exponentials are always bounded, and
thus serve as perfect choices for basis functions. 2

The proof of Lemma 7.3 follows from a general statement below about exponential martingales,
which we will also use a lot when discussing the Girsanov Theorem in Section 8.

Proposition 7.5 Let L be a c.l.m. Then

Et(L) = eLt− 1
2
⟨L⟩t , (7.6)

is a c.l.m., and dEt(L) = EtdLt.

Proof: Let Xt = Lt −
1

2
⟨L⟩t. Then dXt = dLt −

1

2
d⟨L⟩t and

d⟨X⟩t = d⟨L⟩t

since ⟨L⟩t is a finite variational process and does not affect the quadratic variation (Proposition 5.7).
By Itô’s formula, we have

deXt = eXt dXt +
1

2
eXtd⟨X⟩t = eXt

(
dLt −

1

2
d⟨L⟩t +

1

2
d⟨L⟩t

)
= eXt dLt,

Hence Et = eXt is a c.l.m. and dEt = Et dLt. 2

Proof of Lemma 7.3 : Let

f(s) =
m−1∑
j=0

λj1(tj ,tj+1](s)

and Lt = i

∫ t

0
fs dBs. Then ⟨L⟩t = −

m−1∑
j=0

λ2
j (t ∧ tj+1 − t ∧ tj) By Proposition 7.5, we have

Etm(L) = e
i
m−1∑
j=0

λj(Btj+1−Btj )+
1
2

m−1∑
j=0

λ2
j (tj+1−tj)

= 1 +

∫ tm

0
Es(L)fs dBs.

Therefore,

e
i
m−1∑
j=0

λj(Btj+1−Btj )

= e
− 1

2

m−1∑
j=0

λ2
j (tj+1−tj)[

1 +

∫ tm

0
Es(L)fs dBs

]
∈ H.

2

A surprising consequence of Theorem 7.2 is that any martingale with respect to the augmented
filtration must be continuous. The intuition is that the augmented filtration is generated by a con-
tinuous process, namely, the Brownian motion. We have seen the process itself can enforce some
properties on the filtration, see for example Theorem 3.18, so it also makes sense that the filtration
will determine some properties of an adapted process. The precise statement is the following.

Proposition 7.6 All martingales adapted to the augmented filtration (Ft)t≥0 has a continuous modi-
fication.
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Proof: Let M = (Mt)t≥0 be the martingale. If Mt is L
2-bounded, then the statement follows from

Theorem 7.2.
If not, we can assume that Mt is u.i., otherwise we can just discuss the continuity of the martingale

Mt∧a for each a. By Theorem 4.6, uniform integrability implies that there exists M∞ such that
(Mt)0≤t≤∞ is a martingale. We can find M (n)

∞ bounded such that M (n)
∞ → M∞ in L1 (for example,

M (n)
∞ = (−n)∨M∞ ∧n). Then by Theorem 7.2, M

(n)
t = E[M (n)

∞ | Ft] are continuous martingale. Now
by Doob’s maximal inequality, we can choose a subsequence (which we still denote by M (n)) such that

P
(
sup
t≥0

|M (n)
t −M

(n+1)
t | ≥ 2−n

)
≤ 2−n.

Hence, by Borel–Cantelli, almost surely we have

∞∑
n=1

sup
t≥0

|M (n)
t −M

(n+1)
t | < ∞,

and hence
M̃t = lim

n→∞
M

(n)
t

exists and the limiting process M̃t is continuous as the convergence is uniform convergence for contin-
uous function. It remains to show that M̃t is a modification of Mt. In fact,

Mt = E[M∞ | Ft] = lim
n→∞

E[M (n)
∞ | Ft] = lim

n→∞
M

(n)
t , a.s.

2

7.3 Continuous martingale as time-change Brownian motion

In this section we assume that the filtration (Ft) satisfies the usual condition Definition 3.11.

Theorem 7.7 Let M be a c.l.m. such that ⟨M⟩∞ = ∞ a.s. Then, there exists a Brownian motion
(βs)s≥0 such that almost surely,

∀t ≥ 0,Mt = β⟨M⟩t .

Proof: Let N = {⟨M⟩∞ < ∞}. Then P(N ) = 0 and N ∈ Ft for all t ≥ 0 since (Ft) satisfies the
usual condition. Let

τr(ω) =

{
inf{t ≥ 0 : ⟨M⟩t ≥ r}, ω ∈ N c,

0, ω ∈ N .

Then N ∈ Ft implies that τr(ω) is a stopping time for every r ≥ 0. Moreover, by definition and the
continuity of ⟨M⟩, r 7→ τr is increasing and left-continuous, and its right limit at every point is given
by

τr+ = lim
s↓r

τs =

{
inf{t ≥ 0 : ⟨M⟩t > r}, ω ∈ N c,

0, ω ∈ N .

Now let
βr = Mτr . (7.7)

We will show that βr is a BM adapted to the filtration Gr = Fτr .
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Since r 7→ τr is left-continuous with right limits, and s 7→ Ms is continuous, their composition
r 7→ Mτr = βr is left-continuous with right limits. We will show at the end that βr is in fact right-
continuous, so that Lévy’s characterization Theorem 7.1 can be applied. Assuming the continuity of
βr, to show that βr is BM, it suffices to show that (βs)s≥0, (β

2
s − s)s≥0 are both c.l.m.’s.

Let n ≥ s ≥ r. For each n ≥ 1, M τn is a u.i. martingale since ⟨M τn⟩∞ = n < ∞ (Proposition 6.3).
Since M τn is u.i., we can apply Optional Sampling Theorem to the stopping times τr < τs and obtain

E[βs | Gr] = E
[
M τn

τs | Fτr

]
= M τn

τr = βr.

So (βs)s≥0 is a martingale.
To see that (β2

s − s)s≥0 is a martingale, we apply Optional Sampling Theorem to the uniformly

integrable martingale
[
M τn

s

]2 − s. We have

E[β2
s − s | Gr] = E

[[
M τn

τs

]2 − ⟨M⟩τs | Fτr

]
=

[
M τn

τr

]2 − ⟨M⟩τr = β2
r − r.

We have used the continuity of ⟨M⟩ to conclude that ⟨M⟩τu = u for all u ≥ 0.
Having proved that βs a BM, we need to show that almost surely,

∀t ≥ 0, Mt = β⟨M⟩t . (7.8)

In light of (7.7), if t = τr for some r, then (7.8) follows from (7.7) since

Mt = Mτr = βr = β⟨M⟩τr .

But in general, r 7→ τr is a increasing function that is left-continuous with right limit, the image of
τr may not be R. That is, it could happen that τr < t < τr+ for some r. In this case, ⟨M⟩t = r for
τr < t < τr+. To verify (7.8), it remains to show

Mt = Mτr , τr ≤ t ≤ τr+. (7.9)

Note that Mτr+ = lim
s↓r

βs, so (7.9) also implies the (right-)continuity of β. We will put this statement

in Lemma 7.8. 2

Lemma 7.8 Let M be a c.l.m. Then with probability one,

∀0 ≤ a < b, Mt = Ma, ∀t ∈ [a, b] ⇔ ⟨M⟩b = ⟨M⟩a.

Proof: Since both M and ⟨M⟩ are continuous process, it suffices show that for fixed a < b,

{Mt = Ma, ∀t ∈ [a, b]} = {⟨M⟩b = ⟨M⟩a}, a.s.. (7.10)

Then we can take intersection over all a, b ∈ Q and use continuity to get the desired result.
The “⇒” direction of (7.10) follows immediately from the construction of quadratic variation,

(5.7).
To show the “⇐” direction, letting Nt = Mt −Mt∧a and A = {⟨M⟩b = ⟨M⟩a}, it suffices to show

E1AN
2
t = 0, for all t ∈ [a, b]. Then Nt = 0, t ∈ [a, b] a.s. when ω ∈ A and (7.10) follows.

Let
Tε = inf{t ≥ 0 : ⟨N⟩t = ⟨M⟩t − ⟨M⟩t∧a ≥ ε}.

Then A ⊂ {Tε ≥ b} and hence for t ∈ [a, b],

E1AN
2
t = E1AN

2
t∧Tε

≤ EN2
t∧Tε

= E⟨N⟩t∧Tε ≤ ε.

Since the left hand side is independent of ε, and the above inequality holds for all ε > 0, we must have
E1AN

2
t = 0, as desired. 2
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Homework Let W = (W 1,W 2) be a standard two-dimensional Brownian motion starting from the origin. For
functions

u(x, y) = x2 − y2, v(x, y) = 2xy,

define
B1

t = u(W 1
t ,W

2
t ), B2

t = v(W 1
t ,W

2
t ).

1. Show that Bi
t, i = 1, 2, are continuous martingales with

⟨B1⟩t = ⟨B2⟩t, ⟨B1, B2⟩t = 0,

2. Show that there exists an random strictly increasing continuous function φ such that

(B1
t , B

2
t ) = (B̃1

φ(t), B̃
2
φ(t)),

such that B̃ = (B̃1, B̃2) is a standard two-dimensional Brownian motion.

3. For a two-dimensional continuous process X = (X1
t , X

2
t ), define

TX
± = inf{t ≥ 0 : (X1

t ± 10)2 + (X2
t )

2 ≤ 1}

to be the hitting times of the unit disks centered at (±10, 0) of X. Show that

P(TB
+ > TB

− ) = P(TW
+ > TW

− ).

8 Girsanov Theorem

8.1 Motivation

8.1.1 Gaussian measures on C[0,∞)

Let P and P̃ be two (probability) measures on (Ω,F). Recall the definition of absolute continuity : we
say that P̃ is absolutely continuous with respect to P, written P̃ ≪ P, if P(A) = 0 implies P̃(A) = 0.
If P̃ ≪ P and P ≪ P̃, we say that P and P̃ are equivalent, written P ∼ P̃.

We have the following result on the Radon–Nikodym derivative.

Theorem 8.1 If P̃ ≪ P, then there exists Z =
dP̃

dP
∈ L1(Ω,F ,P) such that

P̃(A) =

∫
A

dP̃

dP
(ω)P(dω) = EPZ1A. (8.1)

The converse is also true: if (8.1) holds for some r.v. Z ∈ L1(Ω,F ,P), then P̃ ≪ P.

One common example of absolutely continuous measures is the continuous r.v. Recall that X is a
continuous r.v. if there exists ρX ∈ L1(R) such that

PX(A) =

∫
A
ρX(x) dx.

That means the distribution of X, PX , is absolutely continuous with respect to the Lebesgue measure
on R. If ρX > 0 for a.e. x, then PX and the Lebesgue measure are equivalent.

Now let X and Y be two continuous random variables with positive densities ρX and ρY . We have

PY (A) =

∫
A
ρY (y) dy =

∫
A
ρX(x) ·

[ρY (x)
ρX(x)

]
dx.
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Then PY ≪ PX and
dPY

dPX
=

ρY (x)

ρX(x)
. In the case where X ∼ N (0, 1) and Y = X + v = N (µ, 1), we

have
dPY

dPX
(x) = e−(x−v)2/2+x2/2 = ev·x−

v2

2 .

In fact, we have a more general statement for Gaussian vectors.

Proposition 8.2 Let X ∈ Rd ∼ N (µ,Q) and Y = X + v where v ∈ Rd. Then PY and PX are
mutually absolutely continuous, if and only if v ∈ Im(Q) (so that Q−1v is defined). The Radon–
Nikodym derivative is

dPY

dPX
(x) = e−(x−µ)TQ−1v− 1

2
vTQ−1v. (8.2)

If Q is non-degenerate, then any translation in direction v will produce another absolutely contin-
uous measure on Rd. When Q is degenerate, then only vectors v ∈ Im(Q) will produce an absolutely
continuous measures. The space Im(Q) is known as the Cameron–Martin space for the Gaussian
measure PX .

The Brownian motion B = (Bt)t≥0 induces a measure P on C[0,∞). Consider a translation

B̃t = Bt + h(t), h(t) ∈ C[0,∞), h(0) = 0.

Then B̃ induces another measure P̃ on C[0,∞). The natural question is when the two measures P̃ and
P are mutually absolutely continuous, or equivalently, what is the Cameron–Martin space for Wiener
measure?

The answer is h ∈ H1
0 [0,∞) where

H1
0 [0,∞) = {ht =

∫ t

0
g(s) ds, g ∈ L2[0,∞)}. (8.3)

Let us discuss some intuition behind (8.3). First, consider ht = t. Then ht∧T ∈ H1
0 for any T > 0

but h ̸∈ H1
0 . Hence, P̃ and P are mutually absolutely continuous on C[0, T ] for any T > 0, but not on

C[0,∞). To illustrate the second point, consider

C[0,∞) ⊃ Ac = {f : lim
t→∞

f(t)

t
= c}.

By Strong Law of Large Numbers and the independent increment property of Brownian motion, it is
easy to see that a.s.,

lim
t→∞

Bt

t
= lim

n→∞

n∑
k=1

Bk −Bk−1

n
= 0, lim

t→∞

B̃t

t
= lim

t→∞

Bt + t

t
= 1.

Hence, P(A0) = 0, P̃(A0) = 1 and P(A1) = 0, P̃(A1) = 1. So P and P̃ are in fact singular with respect
to each other. On the other hand, if h ∈ H1

0 , then

lim
t→∞

h(t)

t
= lim

t→∞

∫ t
0 g(s) ds

t
= 0

since g ∈ L2[0,∞). So we cannot use the event A0 to as a counterexample for absolute continuity.
The second perspective is that sometimes one can intuitively think of the standard Brownian

motion as a Gaussian measure on C[0,∞) with “density”

e−
1
2

∫∞
0 |ḃ(s)|2 ds. (8.4)
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(8.4) makes no sense on its own, since first, the derivative ḃ is not defined for b ∈ C[0,∞), and second,
there is no equivalent thing as the Lebesgue measure on C[0,∞) to discuss the density. Nevertheless,
we can do some computation using (8.4): formally we have

dP̃

dP
=

e−
1
2

∫
(ḃ+ḣ)2

e−
1
2

∫
|ḃ|2

= e
∫
ḃḣ− 1

2

∫
|ḣ|2 .

One then sees that

∫
|ḣ|2 needs to be finite so that the density is a well-defined quantity.

Lastly, the (8.4) could be derived from the following consideration. Recall that a Gaussian measure
is such that ⟨v, b⟩ ∼ N (0, ⟨Qv, v⟩), where Q is positive symmetric. In the finite dimensional case, the

Gaussian density is given by C exp(−1

2
⟨Q−1b, b⟩). Here, a bounded variation process V =

∫
v defines

a linear functional on C[0,∞):

⟨v, b⟩ :=
∫ ∞

0
bsdVs = −

∫ ∞

0
Vs dbs ∼ N (0, |V |2L2).

So we have

⟨Qv, v⟩ =
∫ ∞

0
|V |2 ds = −

∫ ∞

0
v(

∫
V ) ds.

In other words, Q = (−∂xx)
−1. Hence, Q−1 = (−∂xx) and

⟨Q−1b, b⟩ = −
∫ ∞

0
∂xxb · b =

∫ ∞

0
|ḃ|2.

The above argument can be made rigorous with the general theory of Gaussian measures on Banach
spaces.

8.1.2 Brownian motions under change of measure

Let µ ∈ Rd. Let ρ and ρ̃ be the density functions for N (0, Id) and N (µ, Id):

ρ(u) = (2π)−d/2e−|x−µ|2/2, ρ̃(u) = (2π)−d/2e−|x|2/2.

Consider a random vector X = (X1, . . . , Xd) with distribution N (µ, Id), viewed as a measurable map
from (Ω,F) to Rd, which induces a probability measure P on (Ω,F), that is,

P ◦X−1(A) = P(X ∈ A) =

∫
1A(u)ρ(u) du, ∀A ∈ B(Rd).

Now we define another measure P̃ which is absolutely continuous with respect to P by

P̃(Γ) =

∫
1Γ(ω)

ρ̃
(
X(ω)

)
ρ
(
X(ω)

)P(dω).
Then the measurable map X has a different measure under P̃. We have the following computation:
for A ∈ B(Rd),

P̃ ◦X−1(A) = P̃(X ∈ A) =

∫
1X(ω)∈A(ω)

ρ̃
(
X(ω)

)
ρ
(
X(ω)

)P(dω)
= E1A(X)

ρ̃(X)

ρ(X)

=

∫ [
1A(u)

ρ̃(u)

ρ(u)

]
· ρ(u) du =

∫
1A(u)ρ̃(u).
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That is, P̃ ◦ X−1 = N (0, Id). The message is that, under a suitable change of measure, we can
“normalize” every Gaussian random vector to be a standard Gaussian vector.

This is usually how the Girsanov Theorem is formulated.

Theorem 8.3 (Girsanov) Let T ∈ [0,∞]. Let X be a progressively measurable process and define

Zt(X) = exp
( ∫ t

0
Xs dBs −

1

2

∫ t

0
|Xs|2 ds

)
, 0 ≤ t < T.

Assume that
(
Zt(X)

)
0≤t<T

is a martingale so that

P̃(A) = E1AZt(X), ∀A ∈ Ft (8.5)

defines a new measure.

Then, B̃t = Bt −
∫ t

0
Xs ds is a Brownian motion on [0, T ) on (Ω,F , P̃).

8.2 Exponential martingale and Radon–Nikodym derivatives

In this section we will discuss the change of measure formula (8.5). We will see that Zt being a
martingale is essential for (8.5) to define a measure, and that Zt will play the role of the Radon–
Nikodym derivative of the new measure with respect the original measure.

Proposition 8.4 Let T ∈ (0,∞]

1. Let P and P̃ be two probability measures on a filtered probability space (Ω,FT , (Ft)0≤t≤T ).Let
Pt and P̃t be the restriction of P and P̃ on the smaller σ-field Ft ⊂ FT . Suppose that P̃ ≪ P.
Then P̃t ≪ Pt for all t, and

Zt =
dP̃t

dPt
= E

[dP̃
dP

| Ft

]
, 0 ≤ t ≤ T (8.6)

is a martingale.

2. Let (Zt)0≤t<T be a P-martingale. Then

P̃(A) = E1A(ω)Zt(ω), ∀A ∈ Ft, 0 ≤ t < T, (8.7)

defines a probability measure P̃.

Moreover, if (Zt)0≤t<T is u.i., that is, ZT = lim
t→T

Zt exists in L1 and a.s., then P̃ ≪ P and

ZT =
dP̃

dP
.

Proof:

1. Let A ∈ Ft. Then

Pt(A) = 0 ⇒ P(A) = 0 ⇒ P̃(A) = 0 ⇒ P̃t(A) = 0.

Hence, P̃ ≪ P implies that P̃t ≪ Pt.
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To show that Zt is a martingale, it suffices to show the second equality in (8.6). Let A ∈ Ft.
Then by the definition of Radon–Nikodym derivatives,

P̃t(A) = E1A
dP̃t

dPt
, P̃(A) = E1A

dP̃

dP
.

Therefore,

E1A
dP̃t

dPt
= E1A

dP̃

dP

for all A ∈ Ft. Hence the second equality in (8.6) holds by the definition of conditional expec-
tation.

2. We need to check that (8.7) gives a consistent definition of a probability measure, since if
A ∈ Fs ⊂ Ft, there are two definitions for P̃(A):

P̃(A) = E1AZt, P̃(A) = E1AZs.

But E1AZt = E1AZs just follows from Zt being martingale.

Suppose now that ZT exists. For any A ∈ Ft, {1AZr, r ≥ t} is u.i. since Zr are u.i. Then,

P̃(A) = lim
r→T

E1AZr = E1AZT .

Since P̃(A) = E1AZT holds for any A ∈ Ft, t ≥ 0, it holds for any A ∈ FT . Therefore, P̃ ≪ P
and ZT is the Radon–Nikodym derivative.

2

Remark 8.1 An analog in the case of product measures is the Kakutani’s dichotomy (see also [Dur07, Example
4.3.7, Theorem 4.3.8]). Let (Ω,F) = (RN,B(RN)), and consider two product measures

P = G1 ⊗G2 ⊗G3 ⊗ · · · , P̃ = F1 ⊗ F2 ⊗ F3 ⊗ · · ·

Assume that Pn ≪ Gn, and qn =
dFn

dGn
> 0, Gn-a.s. Then, Xn =

dPn

dP̃n

is a Fn-martingale. Note that by the

nature of the product measure, Xn are independent random variables. Since

{ lim
n→∞

Xn = 0} = {
∑
n

log qn > −∞}

belongs to the tail σ-algebra, the zero-one law guarantees that Xn → X P-a.s. for some X. We have either
P ⊥ P̃ if X = 0, or P̃ ≪ P if X > 0.

Interestingly, this is not too far from our Brownian motion case. Recall the Gaussian white noise construction
of Brownian motion

Bt(ω) =

∞∑
n=1

ξn(ω)⟨1[0,t], en⟩L2 ,

where {en} is an ONB and ξn are i.i.d. N (0, 1) r.v.’s. So Brownian motion also have some product measure
structure.

So far we have seen a martingale Zt plays the role of a Radon–Nikodym derivative of two probability
measures on a filtered probability space. The non-trial part of Theorem 8.3 is that Zt has a special
form of an exponential martingale, introduced in Proposition 7.5. Here, dLt = XtdBt. In fact, for any
positive c.l.m., we can express it as an exponential martingale.
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Proposition 8.5 If Zt is a positive c.l.m., then Zt = Et(L) where

Lt = logZ0 +

∫ t

0
Z−1
s dZs. (8.8)

Proof: Let L be defined by (8.8). Then

d logZt =
1

Zt
dZt −

1

2

1

Z2
t

d⟨Z⟩t = dLt −
1

2
⟨L⟩)t.

2

8.3 Girsanov Theorem: proof and applications

8.3.1 Girsanov Transform of c.l.m.’s

In this section, we assume Zt is a martingale and P̃ is defined by (8.7).

Lemma 8.6 An adapted process Xt is a P̃-martingale if and only if XtZt is a P-martingale.

Proof: We have

Xt is P̃-martingale ⇔ ẼXt1A = ẼXs1A, ∀A ∈ Fs, s < t

⇔ EXtZt1A = EXsZs1A, ∀A ∈ Fs, s < t

⇔ XtZt is P-martingale.

2

The next proposition describes how continuous semi-martingales behaves under the Girsanov trans-
form.

Proposition 8.7 Assume that Zt = Et(L) is a martingale.

1. If Mt is a P-c.l.m., then M̃t = Mt − ⟨M,L⟩t is a P̃-c.l.m.

2. Let M̃ = M − ⟨M,L⟩ and Ñ = N − ⟨N,L⟩. Then ⟨M̃, Ñ⟩ = ⟨M,N⟩, computed under P or P̃.

Proof:

1. After localization, we can assume that Zt,Mt are bounded martingales. By Lemma 8.6, it suffices
to show ZtM̃t = ZtMt −Zt⟨M,L⟩ is a martingale. By Itô’s formula, recalling that dZt = ZtdLt,
we have

d(ZtMt) = Zt dMt +Mt dZt + d⟨M,Z⟩t
= m.t. + Zt ⟨M,L⟩t,

and
d
[
Zt⟨M,L⟩t

]
= Zt d⟨M,L⟩t + ⟨M,L⟩t dZt.

Taking the difference, we see that dZtM̃t only has martingales terms, and hence ZtM̃t is a
martingale.
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2. Note that under P, M̃ and Ñ are continuous semi-martingale, and their martingale parts are
given by M and N , so ⟨M̃, Ñ⟩ = ⟨M,N⟩ under P.
Since P̃ ≪ P and ⟨M,N⟩ is defined as limit in P-probability and P-a.s. has finite variation, ⟨M,N⟩
is also a finite variation process under P̃. So M and N becomes continuous semi-martingales
under P̃, and their cross variation is defined.

To show that ⟨M̃, Ñ⟩ = ⟨M,N⟩ under P̃, we need to show that M̃Ñ − ⟨M,N⟩ is a P̃-c.l.m., i.e.,
by Lemma 8.6, Zt

(
M̃tÑt − ⟨M,N⟩t

)
is a P-c.l.m.

We have

d(ZtM̃tÑt) = M̃tÑt dZt + M̃tZt

(
dNt − d⟨L,N⟩t

)
+ ÑtZt

(
dMt − d⟨L,M⟩t

)
+ Zt d⟨M̃, Ñ⟩t + M̃t d⟨Ñ , Z⟩t + Ñt d⟨M̃, Z⟩t

= m.t. + Zt d⟨M,N⟩t

(since ⟨M̃, Ñ⟩ = ⟨M,N⟩, M̃t d⟨Ñ , Z⟩t = M̃t d⟨N,Z⟩t = M̃tZt d⟨N,L⟩t and likewise for the last
term), and

d
[
Zt⟨M,N⟩t

]
= Zt d⟨M,N⟩t + ⟨M,N⟩t dZt,

so Zt

(
M̃tÑt − ⟨M,N⟩t

)
is indeed a P-c.l.m.

2

Now we are ready to give the proof of Theorem 8.3.
Proof of Theorem 8.3: Let L = X ·B. Then Z = E(L) and by Proposition 8.7, B̃ = B − ⟨B,L⟩
is a P̃-c.l.m. Moreover, ⟨B̃, B̃⟩t = ⟨B,B⟩t = t under P̃. By Lévy’s characterization ( Theorem 7.1), B̃
is a Brownian motion under P̃. 2

8.3.2 Application: Brownian motion with drift

Let µ ∈ R. By Theorem 8.3, B̃t = Bt − µt is a Brownian motion under

Pµ(A) = E1A exp
(
µBt −

1

2
µ2t

)
, A ∈ Ft.

Let Tb = inf{t : Bt = b}. Recall that we have computed Ee−λTb = e−|b|
√
2a.

We want to compute Pµ(Tb < ∞). Note that under P̃, Bt = B̃t+µt is a standard Brownian motion
with a drift µt. We have

Pµ(Tb ≤ t) = E1{Tb≤t}Zt

= E1{Tb≤t}E[Zt | Ft∧Tb
] ({Tb ≤ t} ∈ Ft∧Tb

)

= E1{Tb≤t}Zt∧Tb
= E1{Tb≤t}ZTb

= E1{Tb≤t}e
µb− 1

2
µ2b.

Letting t → ∞, by Dominated Convergence Theorem and noting that P(Tb < ∞) = 1, we have

Pµ(Tb < ∞) = Eeµb−
1
2
µ2b = eµb−|µb| =

{
1, µb > 0,

e−2µb < 1, µb < 0.

The last result is very intuitive: for example, if µ > 0, then the Brownian motion has a positive drift,
which will dominate the typical behavior of Bt ∼

√
t, so it is less likely to hit a negative number b < 0.
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Proposition 8.8 (Wald’s identity) Let µ ∈ R and T be a P-a.s. finite stopping time. Then

EeµBT− 1
2
µ2T = 1 ⇔ Pµ(T < ∞) = 1.

Proof: The same argument with Tb replaced by T gives

Pµ(T ≤ t) = E1{T≤t}ZT = E1{T≤t}e
µBT− 1

2
µ2T .

Letting t ↑ ∞, the desired result follows from Monotone Convergence Theorem. 2

8.3.3 Application: Cameron–Martin space

Let h ∈ C[0,∞) with h(0) = 0. Consider B̃t = Bt−ht. Then B̃ is a Brownian motion on [0,∞) under
P̃ if and only if h ∈ H1

0 [0,∞), where

H1
0 [0,∞) = {h : weak derivative∂xh ∈ L2[0,∞) and h(0) = 0}.

And when h ∈ H1
0 [0,∞),

dP̃

dP
= e

∫∞
0 |ḣ(s)| dBs− 1

2

∫∞
0 |ḣ(s)|2 ds.

Note that the space H1
0 [0,∞) is much smaller than C[0,∞). It means that although the Wiener

measure is defined on C[0,∞), not all translations in C[0,∞) will generate a new measure that is abso-
lutely continuous with respect to the original measure. Such subspace consisting all such translation
for a Gaussian measure is called the Cameron–Martin space.

For infinite dimensional Gaussian measures, the Cameron–Martin space is strictly smaller due to
the fact there are “too many” directions. For a finite dimensional Gaussian measure, i.e., a Gaussian
vector X ∈ Rd ∼ N (µ,Q), the Cameron–Martin space is Rd, unless Q is degenerate, in which case
the Cameron–Martin space is the range of Q, or the domain of Q−1. This is also easy to see since
otherwise, one cannot write down the Radon–Nikodym derivative (8.2).

8.4 Novikov condition

A key assumption in the Girsanov Theorem Theorem 8.3 is that Zt is a martingale. In this section
we introduce a sufficient condition.

Proposition 8.9 If Zt is a positive c.l.m., then Zt is a super-martingale.

Proof: Let Tn ↑ ∞ be such that ZTn is a martingale. Since Z is positive, by Fatou’s Lemma, we
have for s < t,

Zs = lim
n→∞

ZTn
s = lim

n→∞
E
[
ZTn
t | Fs

]
≥ E

[
lim
n→∞

ZTn
t | Fs

]
= E

[
Zt | Fs

]
.

2

Lemma 8.10 The process Zt is a martingale if and only if EZt = 1.

Proof: By Proposition 8.9 Zt is a super-martingale. By Doob–Meyer Decomposition, Zt = Mt−At,
where At is an increasing process and Mt is a martingale. Then EZt = 1 ⇔ At ≡ 0. This proves the
lemma. 2
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Theorem 8.11 (Novikov’s condition) Let L be a c.l.m. and Zt = Et(L). If

Ee
1
2
⟨L⟩∞ < ∞, (8.9)

then Zt is uniformly integrable and hence a martingale.

Proof: We will represent L as the time-change of a standard Brownian motion ( Theorem 7.7).
Note that (8.9) implies that P-a.s. ⟨L⟩∞ < ∞, so we need to adapt Theorem 7.7 to such case. The
Brownian motion will be defined by

βs =

{
Lτs , s < ⟨L⟩∞, τs = inf{t ≥ 0 : ⟨L⟩t ≥ s},
L∞ +

(
β̃s − β̃⟨L⟩∞

)
, s ≥ ⟨L⟩∞,

where β̃ is a Brownian motion independent of L. Then T = ⟨L⟩∞ is a stopping time with respect to
the filtration

Gs = Fτs ,

since {T ≥ s} = {τs < ∞} ∈ Fτs .
The condition (8.9) can be rewritten as

Ee
1
2
T < ∞. (8.10)

In light of Lemma 8.10, it suffices to show that

1 = EeBT− 1
2
T . (8.11)

Clearly, by Proposition 8.8, (8.11) holds if and only if Pµ=1(T < ∞) = 1. But we know nothing about
T except (8.10), Proposition 8.8 is directly useful. The point here is to derive (8.11) from (8.10).

Let Sn ↑ ∞ be a sequence of stopping times such that

1 = EeBSn−
1
2
Sn (8.12)

By Optional Sampling Theorem applied to the uniformly integrable martingale eBSn∧t− 1
2
(Sn∧t), we

have

1 = EeBSn∧T− 1
2

(
Sn∧T

)
= E1{Sn<T}e

BSn−
1
2
Sn + E1{Sn≥T}e

BT− 1
2
T .

Letting Sn ↑ ∞, the second term converges to EeBT− 1
2
T by Monotone Convergence Theorem. Hence,

to establish (8.11), it remains to show

lim
n→∞

E1{Sn<T}e
BSn−

1
2
Sn = 0 (8.13)

Now we pick
Sn = inf{t : Bt = t− n}.

Then (8.13) is bounded by

lim inf
n→∞

E1{Sn<T}e
BSn−Sn · e

1
2
Sn ≤ lim inf

n→∞
e−nE1{Sn<T}e

1
2
T .

The last limit is 0 by (8.11) and Monotone Convergence Theorem. Also

Pµ=1(Sn < ∞) = Pµ(B̃t hits −n before ∞) = 1,

so (8.12) holds by Proposition 8.8. This completes the proof. 2

Remark 8.2 If only for some ε > 0 small, Ee(
1
2−ε)T < ∞, then for the argument above we need to consider

instead
Sε
n = inf{t : Bt = (1− ε)t− n}.

However, (8.12) no longer holds since B̃t = Bt − t will not hit −εt− n a.s. This explains why
1

2
is “sharp”.

71



D
RA
FT

9 Stochastic differential equations

9.1 Markov semi-groups and diffusions

A Markov process is an adapted process that satisfies the Markov property, see Definition 3.4. To
develop the semi-group theory, we take the state space of the Markov process to be a metric space
E. Usually E = Z,Rd or subsets of them. A Markov kernel is a family of probability measures
pt(x, ·) ∈ M(E), t ≥ 0, x ∈ E that satisfies the following two conditions

• pt(x, ·) =⇒ δx, t ↓ 0.

• (Kolmogorov–Chapman) For t, s ≥ 0 and any x ∈ E,

pt+s(x, ·) =
∫

pt(x, dy)ps(y, ·). (9.1)

Any Markov kernel defines a Markov process. Let µ ∈ M(E) be the initial condition. Then the
f.d.d. of the Markov process (Xt)t≥0 is given by

Pµ(Xt0 ∈ A0, Xt1 ∈ A1, Xt2 ∈ A2, · · · , Xtn−1 ∈ An−1, Xtn ∈ An) =

∫
µ(dx0)

·
∫

pt1(x0, dx1)

∫
pt2−t1(x1, dx2)

∫
· · ·

∫
ptn−1−tn−2(xn−2, dxn−1)ptn−tn−1(xn−1, An).

(9.2)

The f.d.d. (9.2) is consistent thanks to (9.1). Then Kolmogorov Extension Theorem guarantees the
existence of a stochastic process with (9.2) as its f.d.d. In case that Xt starts from a delta measure
µ = δx, it is conventional to write Px instead of Pδx .

Formally, given a Markov kernel, the integral operator

Ptf :=

∫
pt(x, dy)f(y) (9.3)

defines a semi-group, since (9.1) implies the semi-group relation

PtPs = Pt+s, t, s ≥ 0. (9.4)

Most often we impose some regularity assumptions on the Markov kernel so that (9.3) defines an
operator on the functional space of continuous functions. To be more precise, let

C0(E) = {f ∈ C(E) : lim
|x|→∞

|f(x)| = 0}.

Definition 9.1 The equation (9.3) defines a Feller semi-group (Pt)t≥0 if

• for all t ≥ 0, f ∈ C0(E) ⇒ Ptf ∈ C0(E);

• for all f ∈ C0(E), t 7→ Ptf is continuous in the topology of C0(E).

It is natural to discuss differentiability once continuity is known. Consider the operator

Lf := lim
t↓0

Ptf − P0f

t
= lim

t↓0

Ptf − f

t
, in C0(E). (9.5)

The operator L is called the generator of the semi-group (Pt)t≥0. The limit may not exist for any
f ∈ C0(E); the domain of L, denoted by D(L), consists of all the functions in C0(E) such that (9.5)
exists. A nice account of the theory can be found in [EK86]. We will not dive deep into the theory of
semi-group and generators, but just assume some facts that we will utilize frequently.
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Remark 9.1 • D(L) is dense in C0(E).

• When the Markov process is a diffusion, L is a second-order differential operator and

D(L) ⊃ C2
0 = {f ∈ C2(E) : |f(x)|, |(∂if)(x)|, |(∂ijf)(x)| → 0, |x| → ∞}.

• L and (Pt)t≥0 determine each other.

We will elaborate the last point. The key observation is from the semi-group property (9.4):

PsLf = lim
t↓0

Ps

(Ptf − f

t

)
= lim

t↓0

Ps+tf − Psf

t
⇒ dPt

dt
= PtL.

The ODE x′(t) = λx has a unique solution x = x0e
λt, so naturally we expect Pt = eλL in some sense.

When L is bounded. This occurs when (Xt)t≥0 is a finite-state continuous time Markov chain
and L becomes a N × N matrix which is always bounded. In this case, the matrix exponential can
be defined by the Taylor expansion

Pt := etL =
∞∑
n=0

tnLn

n!
,

and the infinite sum converges in the matrix norm. Clearly, term-by-term differentiation makes sense,
and we have

d

dt
(Ptf) =

∞∑
n=0

d

dt
(tn)

Lnf

n!
=

∞∑
n=1

tn−1Lnf

(n− 1)!
.

Hence
d

dt
(Ptf) = L(Ptf) = Pt(Lf). (9.6)

When L is unbounded. The relation (9.6) still holds for non-bounded L, even though the
exponential via the infinite sum is no longer available.

Proposition 9.1 If f ∈ D(L), then Ptf ∈ D(L) and (9.6) holds, as well as the integral form

Ptf − f =

∫ t

0
L(Psf) ds =

∫ t

0
Ps(Lf) ds. (9.7)

Remark 9.2 Note: Lf ∈ C0(E) and s 7→ Ps(Lf) is continuous in C0(E), so the last integral could be defined as
a Riemann integral for continuous functions.

Example 9.3 Let (Bt)t≥0 be the d-dimensional Brownian motion. Then pt(x, dy) = (2πt)−d/2e−
|x−y|2

2t dy. Using
elementary calculus, one can check directly pt defines a Feller semi-group.

Next we will show that LB = ∆. Indeed, let f ∈ C2
0(Rd), then by Itô’s formula,

f(Bt)− f(B0) =

∫ t

0

d∑
i=1

(∂if)(Bs)dB
(i)
s +

1

2

∫ t

0

d∑
i,j=1

(∂ijf)(Bs)d⟨B(i), B(j)⟩s.

Taking expectation, and noting that |∂if | is bounded so that the first term is a true martingale, and ⟨B(i), B(j)⟩ =
δijt, we have

Exf(Bt)− f(x) =

∫ t

0

Ex(
1

2
∆f)(Bs) ds ⇒ (Ptf)(x)− f(x) =

∫ t

0

Ps

(1
2
∆f

)
(x) ds.

Hence f ∈ D(LB) and by (9.7), LB =
1

2
∆.
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9.2 Diffusion and forward/backward Kolmogorov equations

Let us look at a generalization of the calculation at the end of last section. In one dimension, let b, σ
be bounded measurable process R → R and (Bt)t≥0 a standard Brownian motion. Suppose Xt is a
process that solves

Xt = x+

∫ t

0
σ(Xt) dBt +

∫ t

0
b(Xt) dt. (9.8)

Let f ∈ C2
0(R). By Itô’s formula, we have

f(Xt) = x+

∫ t

0
f ′(Xs)(σ(Xs) dBs + b(Xs) ds) +

∫ t

0

1

2
f ′′(Xs)σ

2(Xs) ds.

After taking expectation, the martingale term disappears, and we have

Ef(Xt) = f(x) +

∫ t

0
E(Lf)(Xs) ds, (9.9)

where

(Lf) = (Lb,σf)(x) =
1

2
σ2(x)(∂xxf)(x) + b(x)(∂xf)(x). (9.10)

If we define u(t, x) = Ef(Xt) (noting that Xt starts from x), then u(t, x) satisfies the forward Kol-
mogorov equation {

∂tu = Lu,
u(0, x) = f(x).

Here, L is a differential operator acting on the x variable, so (Lu)(t, x) = (Lu(t, ·))(x).
Now we assume that the distribution of Xt is absolutely continuous with respect to the Lebesgue

measure, and denote by ρ(t, y) its density. Then

Ef(Xt) =

∫
ρ(t, y)f(y) dy,

and∫ t

0
E(Lf)(Xs) ds =

∫ t

0

∫
ρ(s, y)(Lf)(y) dy =

∫ t

0

∫
(L∗ρ(s, ·))f(y) dy =

∫
f(y) dy

∫ t

0
(L∗ρ(s, ·)) ds.

Combining these with (9.9), we have for all f ∈ C2
0(R),∫

f(y) dy ·
[
ρ(t, y)−

∫ t

0
(L∗ρ(s, ·)) ds

]
= f(x).

As C2
0(R) is dense in C(R) and hence determines an element in M(R), the density ρ(t, y) satisfies the

backward Kolmogorov equation {
∂tρ = L∗ρ,

ρ(t, ·) ⇒ δx, t ↓ 0.

Here, the adjoint operator L∗ is the differential operator such that for all g, h ∈ C∞
0 (R),∫

g(x)(Lh)(x) dx =

∫
(L∗g)(x)h(x) dx.

When L is given by (9.10), we have

L∗g = ∂xx
(1
2
σ2(x)g(x)

)
− ∂x

(
b(x)g(x)

)
from integration by parts.
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Proposition 9.2 If for every µ ∈ M(R), there exists a unique solution ρ = ρ(·;µ) to the backward
Kolmogorov equation, that is, t 7→ ρ(t, ·) is continuous in M(E) in the weak topology and{

∂tρ = L∗ρ, t > 0,

ρ(t, ·) ⇒ µ,
(9.11)

then pt(x, dy) = p(t, dy; δx) defines a Markov kernel.

Proof: By definition of a solution, pt(x, ·) ⇒ δx. It remains to check (9.1).
For (9.1) let us fix t ≥ 0 and show its validity for all s ≥ 0. Note that (9.11) is a linear equation,

so that

ρ̃(s, ·) =
∫

pt(x, dz)ps(z, ·)

solves {
∂sρ̃ = L∗ρ̃,

ρ̃(s, ·) ⇒ pt(x, ·).

But pt+s(x, ·) solves the same equation since the the evolution PDE (9.11) is well-posed. Hence
pt+s = ρ̃(s, ·) and (9.1) is satisfied. 2

Now we are ready to define what is a diffusion.

Definition 9.2 A diffusion Xt ∈ Rd is a Markov process such that

• The sample path t 7→ Xt is continuous.

• The generator of Xt is

L =
1

2

d∑
i,j=1

aij(x)∂xixj +

d∑
i=1

bi(x)∂xi ,

where (aij) is positive definite.

By Proposition 9.2, such a Markov process exists if (9.11) is well-deposed. The continuity of the
path can also be derived from the information on f.d.d. if certain additional assumptions are imposed
on L. Let us compute two important quantities for a diffusion. The first is the drift (in the i-th
coordinate):

Ex[X
(i)
t − xi] = t · (Lf)(x) + o(t) = t · bi(x) + o(t), (9.12)

where f(y) = yi, the i-th coordinate of the argument y, and we just use Ptf − f = Lf · t+ o(t) from
the definition of the generator. Strictly speaking, f(y) = yi is not in C0(Rd), but we can approximate
f by some functions in C0(Rd) and our conclusion will not be affected.

In light of (9.12), it is tempting to guess that (X
(i)
t − xi)/t = bi(x) a.s. However, this is not true,

as the next quantity shows. For 1 ≤ i, j ≤ d, let f(y) = (yi − xi)(y
j − xj). Then we have

Ex(X(i) − xi)(X
(j) − xj) = t · (Lf)(x) + o(t) =

aij(x) + aji(x)

2
· t+ o(t). (9.13)

First, (9.13) implies that Xt cannot be a.s. differentiable, otherwise the right-hand side should be
O(t2) instead of O(t). Second, one can use (9.13), derived soly from the f.d.d. information, together
with the Kolmogorov Continuity Test to say something about the continuity of the process.

In this way, using some knowledge from parabolic PDEs (Proposition 9.2), we know pretty well
what is a diffusion process. But it is still meaningful to construct the diffusion as some “stochastic
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differential equation”, like (9.8) This used to be the main motivation behind the stochastic calculus.
We have derived the form of L from (9.8); but we have not yet define what is a solution to (9.8), let
alone how to solve it. That will be discussed in the next few sections.

Finally, let us derive the form of L and L∗ without using Itô’s formula. Imagine we are in one
dimension and there are some particles on moving on the real line doing “diffusion”. We can observe
ρ(t, x), the density of the particles at time t, at location x. Fixing a small region [x, x+∆x], the first
identity we can write down is the conservation of particles, namely,

∂

∂t
ρ(t, x)∆x = J(x+∆x)− J(x),

where J(y) is the flow of particles crossing {x = y}. The form of J will come from some physical laws.
It is reasonable to write

J(x) = a(x)∂xρ+ b(x)ρ(x).

The first term states that the flow should be proportional to the difference of density to the left and
to the right of {y = x}; this is the principle of diffusion. We add a term a(x) as a factor. The second
term gives some external factor which forces particle at x to move in speed b(x). Using this form of
J , one sees that ρ indeed solves a second-order parabolic equation.

9.3 Strong and weak solutions, notion of uniqueness

We start with a general stochastic differential equation:{
dXt = b(t,Xt) dt+ σ(t,Xt) dBt

X0 = ξ.
(9.14)

Here, Xt ∈ Rd and Bt is r-dimensional Brownian motion; accordingly, b(t,Xt) ∈ Rd×1 and σ(t,Xt) ∈
Rd×r; ξ is a random vector in Rd with given distribution µ. More explicitly, we could also write down
the equation coordinate-wise:

dX
(i)
t = bi(t,Xt) dt+

r∑
j=1

σij(t,Xt) dB
(j)
t , 1 ≤ i ≤ n.

The processes Xt, Bt will be adapted on a filtered probability space (Ω,F , (Ft)t≥0,P) that satisfies
the usual condition.

A strong solution Xt is a functional of the Brownian motion Bt. We will encode such dependence
via adaptedness to the Brownian filtration. More precisely, suppose that on a probability space
(Ω,F ,P) there lives a r-dimensional Brownian motion and an independent r.v. ξ with distribution
µ. Let Gt = σ(ξ) ∨ FB

t and N be the collection of all P-null sets of (Ω,G∞,P). We define the
augmented filtration Ft = σ(Gt ∪N ). This filtration satisfies the usual condition, and it just contains
the information of the Brownian motion and the initial condition.

Definition 9.3 The equation (9.14) has a strong solution if there is a process Xt satisfying (9.14) and
is adapted to Ft defined as above.

We say that strong uniqueness holds if X ′
t is another strong solution, then P(Xt = X ′

t,∀t ≥ 0) = 1.

Remark 9.4 As a solution, we implicitly assume that the stochastic integral could be defined in the broadest

sense given in Section 6.4, e.g.,

∫ T

0

σ2(t,Xt) dt < ∞ a.s. if we want to consider the solution up to some time

T ∈ [0,∞].
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A weak solution relaxes the condition thatXt is adapted to the filtration generated by the Brownian
motion.

Definition 9.4 The equation (9.14) has a weak solution (Xt, Bt) if (Xt, Bt) are a pair of adapted
process on some filtered probability space (Ω,F , (Ft)t≥0P) such that (9.14) holds, and Bt is a Brownian
motion under P.

We will introduce other notions of uniqueness and discuss the distinction between strong and weak
solution through the celebrated example by Tanaka.

Consider the SDE
dXt = sgn(Xt) dBt, X0 = 0 (9.15)

First let us construct a weak solution to (9.15). Let Xt be a Brownian motion on (Ω,F ,P). Define

Bt =

∫ t

0
sgn(Xt) dXt.

Note that | sgn(Xt)| ≤ 1, so the stochastic integral is well-defined and Bt is a martingale. Moreover,
⟨B⟩t = | sgn(Xt)|2 d⟨X⟩t = dt, so by Theorem 7.1, Bt is a Brownian motion. Hence (Bt, Xt) is a weak
solution to (9.15).

Definition 9.5 We say that (9.14) has weak uniqueness in law if for given initial condition µ, for
any weak solution (Xt, Bt), the law P(Xt ∈ ·) as a probability measure on C([0,∞),Rd) is unique.

By Theorem 7.1 again, if (Xt, Bt) is a weak solution to (9.15), then (Xt)t≥0 is a Brownian motion.
Hence the weak uniqueness in law holds for (9.15).

Another notion for uniqueness of weak solutions is the pathwise uniqueness.

Definition 9.6 We say that pathwise uniqueness holds for (9.14), if for (Xt, Bt), (X
′
t, Bt) two weak

solutions defined on the same probability space (Ω,F ,P), Xt and X ′
t are indistinguishable, i.e., P(Xt =

X ′
t,∀t ∈ [0,∞)) = 1.

From the (9.15), if (Xt, Bt) is a weak solution, then (−Xt, Bt) is also a weak solution since sgn(x) =
− sgn(−x). But it is impossible to have P(Xt = −Xt,∀t ≥ 0) = 1 since (Xt)t≥0 is known to be the
Brownian motion. Hence, pathwise uniqueness fails for (9.15).

Finally, let us also show that strong existence fails for (9.15). Suppose that a Brownian motion
(Bt) is given, and Xt is a strong solution. Then

dBt = sgn(Xt) · sgn(Xt) dBt = sgn(Xt)dXt,

and hence

Bt =

∫ t

0
sgn(Xt)dXt = |Xt| − LX

t (0),

where LX
t (0) is the local time of the Brownian motion X at 0. There is various way to define the local

time, an increasing process, through limit of certain expression of X, for example,

LX
t = lim

ε↓0

∫ t

0

ε

(
√
|Xs|2 + ε)3

ds,

which comes from approximating f(x) = |x| by fε(x) =
√
x2 + ε. One sees that LX

t could be defined

through |X| (which is intuitive since Xt = 0 is the same as |Xt| = 0). Therefore, FB
t ⊂ F |X|

t . On
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the other hand FX
t ⊂ FB

t by the definition of strong solution. But then we arrive at the inclusion

FX
t ⊂ F |X|

t , which cannot be true since X is a Brownian motion. This shows that (9.15) cannot admit
a strong solution. As we will see in (9.15), this is due to the discontinuity of the sign function.

As far as the construction of a diffusion as a solution of SDE, what we need is weak existence and
uniqueness. On the other hand, it is usually very easy to work on pathwise uniqueness since it starts
on a coupling. The surprising result by Yamada–Watanabe states that pathwise uniqueness plus weak
uniqueness lead to strong solvability of (9.14). We will develop the result in Section 10.1.

Theorem 9.3 (Yamada–Watanabe) If there exists a weak solution to (9.14) and pathwise uniqueness
holds, then weak uniqueness also holds.

Moreover, the above assumptions lead to the existence of strong solutions to (9.14).

9.4 Lipschitz case and generalizations

In this section we will prove strong existence and uniqueness of solution to (9.14) under the assumption
that the coefficients b, σ are Lipschitz in x: ∃K > 0 such that

|σ(t, x)− σ(t, y)|+ |b(t, x)− b(t, y)| ≤ K|x− y| (9.16)

|σ(t, x)|2 + |b(t, x)|2 ≤ K(1 + |x|2). (9.17)

Analogous to the solution theory of ordinary differential equation, the solutions are constructed via a
Picard iteration scheme. For simplicity the results we state are in one dimension. But the extension
to higher dimensions is immediate.

We first state the uniqueness.

Theorem 9.4 Suppose the coefficients b, σ are locally Lipschitz, i.e., for n ≥ 1 there exists Kn > 0
such that

|σ(t, x)− σ(t, y)|+ |b(t, x)− b(t, y)| ≤ K|x− y|, ∀|x|, |y| ≤ n. (9.18)

Then pathwise uniqueness holds for (9.14).

We will use the following version of Gronwall’s inequality.

Lemma 9.5 Let g ≥ 0 be a bounded, measurable function. Let a, b ≥ 0. If

g(t) ≤ a+ b

∫ t

0
g(s) ds

for all t ≥ 0, then g(t) ≤ aebt.

Proof: Let (Xt, Bt) and (X̃t, Bt) be two weak solutions to (9.14). Let

τn = inf{t ≥ 0 : |Xt| ∧ |X̃t| ≥ n}.

Then τn, n ≥ 1 are stopping times and τn ↑ ∞ a.s.
Fix T > 0. For every 0 ≤ t ≤ T ,

X̃t∧τn −Xt∧τn =

∫ t∧τn

0

[
b(s, X̃s)− b(s,Xs)

]
ds+

∫ t∧τn

0

[
σ(s, X̃s)− σ(s,Xs)

]
dBs.
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Squaring both sides and taking expectation, we have

E|Xt∧τn − X̃t∧τn |2 ≤ 2E
[ ∫ t∧τn

0

[
b(s, X̃s)− b(s,Xs)

]
ds
]2

+ 2E

∫ t∧τn

0

[
σ(s, X̃s)− σ(s,Xs)

]2
ds

≤ 2K2
nTE

∫ t∧τn

0
|X̃s −Xs|2 ds+ 2K2

nE

∫ t∧τn

0
|X̃s −Xs|2 ds

≤ 2K2
n(T + 1)

∫ t

0
E|X̃s∧τn −Xs∧τn |2 ds.

Here, the first line is due to (a + b)2 ≤ 2a2 + 2b2, the second line is by (9.18) and Cauchy–Schwartz
on the first term.

Now let g(t) = E|X̃t∧τn −Xt∧τn |2, a = 0 and b = 2K2
n(T +1). Then by Lemma 9.5, g(t) ≡ 0. Since

X̃t∧τn and Xt∧τn are continuous processes, Xt∧τn = X̃t∧τn for all t ≤ T . The desired result follows
from letting T ↑ ∞ and τn ↑ ∞. 2

For the existence of strong solutions, we will consider the following Picard iteration scheme:

X
(0)
t = ξ,

X
(k+1)
t = ξ +

∫ t

0
b(s,X(k)

s ) ds+

∫ t

0
σ(s,X(k)

s ) dBs.
(9.19)

The goal is to show X(k) converges to some strong solution X. We will use the following lemma.

Lemma 9.6 Let fn ≥ 0 be bounded, measurable and A,B,C ≥ 0. Suppose that

f0(t) ≤ C

fn+1(t) ≤ A+B

∫ t

0
fn(s) ds.

(9.20)

Thent

fn(t) ≤ A
[
1 + (Bt) + · · ·+ (Bt)n−1

(n− 1)!

]
+ C

(Bt)n

n!
.

In particular,
lim sup
n→∞

fn(t) ≤ AeBt

and fn(t) ≤ C(Bt)n/n! if A = 0.

Proof: Use induction. 2

First we assume the initial condition has bounded second moments:

E|ξ|2 < ∞. (9.21)

Lemma 9.7 Assume (9.21). Then for T > 0, there exists C > 0 such that

E|X(k)
t |2 ≤ C(1 + E|ξ|2)eCt, 0 ≤ t ≤ T.

Proof: Let τn = inf{t : |X(k)
t | ≥ n}. For 0 ≤ t ≤ T , we have

E|X(k+1)
t∧τn |2 ≤ 3

[
E|ξ|2 + E

(∫ t∧τn

0
b(s,X(k)

s ) ds
)2

+ E

∫ t∧τn

0
|σ(s,X(k)

s )|2 ds
]

≤ 3
[
E|ξ|2 + TE

∫ t∧τn

0
K2(1 + |X(k)

s |2) ds+ E

∫ t∧τn

0
K2(1 + |X(k)

s |2) ds
]

≤ C1(1 + E|ξ|2) + C2E

∫ t∧τn

0
|X(k)

s |2 ds.
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Letting τn ↑ ∞, by Monotone Convergence Theorem, we have

E|X(k+1)
t |2 ≤ C1(1 + E|ξ|2) + C2

∫ t

0
E|X(k)

s |2 ds.

The conclusion follows from Lemma 9.6. 2

Now let us show that X
(k)
t given in (9.19) converges. We have

X
(k+1)
t −X

(k)
t =

∫ t

0

[
b(s,X(k)

s )− b(s,X(k−1)
s )

]
ds+

∫ t

0

[
σ(s,X(k)

s )− σ(s,X(k−1)
s )

]
dBs.

Let

M
(k)
t =

∫ t

0

[
σ(s,X(k)

s )− σ(s,X(k−1)
s )

]
dBs.

By Lemma 9.7 and (9.17), M
(k)
t is a martingale. By Doob’s Maximal inequality Theorem 4.14,

E sup
0≤s≤t

|M (k)
s |2 ≤ 4E|M (k)

t |2 ≤ 4(1 +K2)

∫ t

0
E sup

0≤u≤s
|X(k)

u −X(k−1)
u |2 ds.

Combined with another simple estimate on the integral of b, we have

E sup
0≤s≤t

|X(k+1)
s −X(k)

s |2 ≤ C

∫ t

0
E sup

0≤u≤s
|X(k)

u −X(k−1)
u |2 ds

for some constant C > 0 depending on K,T . Then, by Lemma 9.6,

E sup
0≤s≤t

|X(k+1)
s −X(k)

s |2 ≤
(
E sup

0≤s≤t
|X(1)

t − ξ|2
)
· (Ct)k

k!
=: C̃

(Ct)k

k!
.

Hence by Markov inequality,

P
(

sup
0≤t≤T

|X(k+1)
t −X

(k)
t | ≥ 2−k

)
≤ C̃

(4CT )k

k!
.

The right-hand side is summable, so by Borel–Cantelli, there exists k0 = k0(ω) such that

sup
0≤t≤T

|X(k+1)
t −X

(k)
t | ≤ 1

2k

for k ≥ k0(ω). This implies

Xt = X
(0)
t +

∞∑
k=1

X
(k)
t −X

(k−1)
t

converges uniformly to a continuous process almost surely. We can then pass the limit k → ∞ to

(9.19) to see that X solves (9.14). Moreover, X
(k)
t is a functional of the Brownian motion, so is their

limit Xt.
Finally, let us remove the condition (9.21). For M > 0, let ΓM = {|ξ| ≤ M} and ξM = ξ1ΓM

.
Then ξM ∈ L2, and hence we know there exists a unique strong solution, XM , to (9.14) with initial
condition ξM .

Our goal is show that XM can be combined to obtain a strong solution to (9.14). We need to
show:
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• XM satisfies
XM1ΓM

= XM ′
1ΓM

, ∀M ′ > M, (9.22)

which implies there exists a process X such that

X1ΓM
= XM1ΓM

. (9.23)

• X solves (9.14).

Since XM is a solution to (9.14), we have

XM
t = ξM +

∫ t

0
b(s,XM

s ) ds+

∫ t

0
σ(s,XM

s ) dBs. (9.24)

We claim that

XM
t 1ΓM

= ξM1ΓM
+

∫ t

0
b(s,XM

s )1ΓM
ds+

∫ t

0
σ(s,XM

s )1ΓM
dBs. (9.25)

This seems trivial It is not as trivial as it seems, to put 1ΓM
inside the integral, since the last integral

is stochastic integral and not defined pathwise.
We will need some result similar to Theorem 6.9. Indeed, consider

TM (ω) =

{
0, ω ̸∈ ΓM ,

∞, ω ∈ ΓM ,

then TM is a stopping time. And for any H ∈ L2
loc,

1ΓM

∫ t

0
Hs dBs =

∫ t∧TM

0
Hs dBs =

∫ t

0
Hs1[0,TM ](s) dBs =

∫ t

0
Hs1ΓM

dBs. (9.26)

And (9.25) follows from using this and (9.24).
Similarly, we also have for M ′ > M ,

XM ′
t 1ΓM

= ξM1ΓM
+

∫ t

0
b(s,XM ′

s )1ΓM
ds+

∫ t

0
σ(s,XM ′

s )1ΓM
dBs (9.27)

(noting that ξM ′1ΓM
= ξM1ΓM

). Taking the difference of (9.25) and (9.27), it is routine to get for
some L = L(T ) > 0,

E sup
u∈[0,t]

|XM
u −XM ′

u |21ΓM
≤ L

∫ t

0
E sup

u∈[0,s]
|XM

u −XM ′
u |21ΓM

, ∀0 ≤ t ≤ T.

And Gronwall’s inequality implies that E sup
u∈[0,t]

|XM
u −XM ′

u |21ΓM
= 0 which leads to (9.22). So we can

find the process X satisfying (9.23).
To show that X is a solution, we notice that (9.23), (9.25) and (9.26) imply that

Xt1ΓM
= XM

t 1ΓM
= ξM1ΓM

+

∫ t

0
b(s,XM

s )1ΓM
ds+

∫ t

0
σ(s,XM

s )1ΓM
dBs

= ξ1ΓM
+

∫ t

0
b(s,Xs)1ΓM

ds+

∫ t

0
σ(s,Xs)1ΓM

dBs

= 1ΓM

[
ξ +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs

]
.

Since 1ΓM
↑ 1, this shows that X is indeed a solution to (9.14).
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9.5 Pathwise uniqueness for 1D SDE

In general, uniqueness and existence of solutions are established by very different techniques; that
is how Theorem 9.3 plays a role. In this section, we present some general results on the pathwise
uniqueness for 1D SDEs:

dXt = b(t,Xt) dt+ σ(t,Xt) dBt, b, σ : R+ × R → R. (9.28)

Proposition 9.8 Assume that b is locally bounded and

b(t, x) ≤ b(t, y), x > y. (9.29)

, and that σ ≡ 1. Then pathwise uniqueness holds for (9.28).

Proof: Let (X(j), B), j = 1, 2, be two weak solutions (defined on the same probability space). Let

∆t = X
(1)
t −X

(2)
t . Then

d∆t =
(
b(t,X

(1)
t )− b(t,X

(2)
t )

)
dt

and
d∆2

t = 2∆t · d∆t = 2∆t

(
b(t,X

(1)
t )− b(t,X

(2)
t )

)
dt.

Note that (9.29) implies (x− y)(b(t, x)− b(t, y)) ≤ 0 for all x, y. Hence,

∆2
t = 2

∫ t

0

(
X

(1)
t −X

(2)
t

)(
b(t,X

(1)
t )− b(t,X

(2)
t )

)
dt ≤ 0.

So ∆t ≡ 0 a.s. and we get the desired conclusion. 2

A more general statement than the pathwise uniqueness is comparison between different solutions.

Proposition 9.9 Suppose (X(j), B), j = 1, 2, are weak solutions to

dX
(j)
t = bj(t,X

(j)
t ) dt+ σ(t,X

(j)
t ) dBt, X

(j)
0 = ξj .

on the same probability space. Suppose that the coefficients and initial conditions of the SDEs satisfy
the following.

• ξ1 ≤ ξ2 almost surely.

• for all (t, x),
b1(t, x) ≤ b2(t, x). (9.30)

• b1 (or b2) satisfies the global Lipschitz condition

|b1(t, x)− b1(t, y)| ≤ K|x− y|, x, y ∈ R. (9.31)

• σ satisfies
|σ(t, x)− σ(t, y)| ≤ h(|x− y|), x, y ∈ R, (9.32)

where h : R+ → R+ is strictly increasing functions such that h(0) = 0 and∫ 1

0
h−2(u) du = ∞. (9.33)
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Then X
(1)
t ≤ X

(2)
t for all t ≥ 0, almost surely.

As a corollary, we also get pathwise uniqueness.

Corollary 9.10 Suppose that in (9.28), b is globally Lipschitz (i.e., (9.31)) and σ satisfies (9.32).
Then pathwise uniqueness holds.

Proof: By Proposition 9.9, for two weak solutions (X(j), B), j = 1, 2, almost surely X
(1)
t −X

(2)
t is

both non-negative and non-positive, and hence is constantly 0. This proves the claim. 2

Now let us return to the proof of Proposition 9.9. In general, results of pathwise uniqueness
and comparison starts from applying Itô calculus to φ(∆t), and then using Gronwall’s inequality to
deduce φ(∆t) = 0. For uniqueness, a common choice is φ(w) = w2. For comparison, a natural choice

is φ(w) = w+, the positive part, since (X
(1)
t −X

(2)
t )+ = 0 will imply X

(1)
t ≤ X

(2)
t . Formally, using Itô

calculus on φ(∆t), one has

d(∆t)+ = 1{∆t≥0}

[
(b1(t,X

(1)
t − b2(t,X

(2)
t ))) dt+ (σ(t,X

(1)
t )− σ(t,X

(2)
t )) dBt

]
, (9.34)

where the Itô correction term is zero since φ′′(w) = 0 except at w = 0. Taking expectation gives

E(∆t)+ ≤ K

∫ t

0
(∆s)+ ds, and then Gronwall’s inequality will finish the proof. The hole in this

argument is that φ is not C2 at w = 0, and Itô’s formula is very sensitive regarding this. To fix this,
one should approximate φ by a family of C2-functions φn, and hope that (9.34) holds for φn with
small errors terms, which can be got rid of in the n → ∞ limit.

To approximate φ(w) = w+ by C2-functions, we impose the following constraints:

• φn(x) = φ(x) when x ̸∈ (0, 1/n).

• |φ′
n(x)| ≤ 1 for all x, and φ′(x) is increasing from x = 0 to x = 1/n.

Anything such function is uniquely determined by its second derivative φ′′(x) =: η(x) that satisfying

η(x) = 0, x ̸∈ (0, 1/n), η(x) ≥ 0,

∫ 1/n

0
η(x) dx = 1. (9.35)

We have the freedom to choose any function η, and we will take advantage of this in the proof.
Proof of Proposition 9.9: After localization we can assume that

E

∫ t

0
σ2(s,X(j)

s ) ds < ∞

for all t ≥ 0.
Let φn ∈ C2 such that φn(0) = φ′

n(0) = 0 and φ′′ satisfies (9.35). Let ∆t = X
(1)
t −X

(2)
t . Applying

Itô’s formula to φn(∆t) and then taking expectation, we obtain

Eφn(∆t) = E

∫ t

0
φ′(∆s)

[
b1(s,X

(1)
s )−b2(s,X

(2)
s )

]
ds+

1

2
E

∫ t

0
φ′′
n(∆s)

[
σ(s,X(1)

s )−σ(s,X(2)
s )

]2
ds =: I1+I2.

For the integrand inside I1, we have

φ′(∆s)
[
b1(s,X

(1)
s )−b2(s,X

(2)
s )

]
≤ φ′(∆s)

[
b1(s,X

(1)
s )−b1(s,X

(2)
s )

]
+φ′(∆s)

[
b1(s,X

(2)
s )−b2(s,X

(2)
s )

]
≤ K(∆s)+.

The condition(9.31) to bound The first term is estimated using (9.31), noting that it is zero if ∆s ≤ 0,
and the second term is non-positive due to (9.30).
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For I2, we first have the following observation: if f(x) is a decreasing positive function on (0, δ]

such that

∫ δ

0
f(x) dx = ∞, then for every ε > 0, there exists an positive function g(x) such that

g(x) ≤ εf(x) and

∫ δ

0
g(x) dx = 1.

Now we choose φ′′(x) and hence φn as follows. For any εn ↓ 0, let φ′′(x) satisfy (9.35) and
φ′′(x) ≤ εnh

−2(x), which is possible by the observation above and the assumption (9.33). Then, by
(9.32),

I2 ≤
1

2
E

∫ t

0
φ′′(∆s)h

2(∆s) ds ≤
εnt

2
.

Combining all these, we have

Eφn(∆t) ≤ K

∫ t

0
E(∆s)+ ds+

εnt

2
.

Letting n → ∞, one has

E(∆t)+ ≤ K

∫ t

0
E(∆s)+,

and the desired conclusion will follow from Gronwall’s inequality. 2

Remark 9.5 A direct proof of the pathwise uniqueness could be done by applying Itô’s formula to φ̃n(∆t),
where φ̃n(w) approximate |w| in a similar way. In fact, one can just define φ̃n to be an even function such that
φ̃n(w) = φn(w) when w ≥ 0.

9.6 Some examples of SDEs

9.6.1 Linear equations

Here we consider a multi-dimensional SDE

dXt =
[
A(t)Xt + a(t)

]
dt+ σ(t) dBt, (9.36)

where A(t) ∈ Rd×d, a(t) ∈ Rd×1, σ(t) ∈ Rd×r and B is a r-dimensional Brownian motion. Assume
that all the coefficients are locally bounded.

To solve (9.36) we will borrow the idea of the method “variation of constant” in ODE theory.
Suppose that Φ(t) ∈ Rd×d solves the matrix equation (which is called a fundamental solution)

Φ̇(t) = A(t)Φ(t), Φ(0) = I.

In variation of constant, we expect X(t) = Φ(t)v(t) for some “varying” vector v(t). Effectively, we
need to deduce what equation v(t) = Φ−1(t)X(t) solves. We have

d(Φ−1(t)Xt) = Φ−1(t)dXt +
[
Φ−1(t)

]′
Xt dt. (9.37)

Noting that I ≡ Φ(t) · Φ−1(t), so by product rule

0 = Φ′(t) · Φ−1(t) + Φ(t) ·
[
Φ−1(t)

]′ ⇒
[
Φ−1(t)

]′
= Φ−1(t)Φ′(t)Φ−1(t).

Back to (9.37) we then have

d(Φ−1(t)Xt) = Φ−1(t)dXt +Φ−1(t)Φ′(t)Φ−1(t)Xt dt = Φ−1(t)
[
dXt +A(t)Xt dt

]
= Φ−1(t)

[
a(t) dt+ σ(t) dBt

]
.
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The right-hand side does not depend on X and can be integrated. We arrive at the explicit form of
the strong solution

Xt = X0 +Φ(t)

∫ t

0
Φ−1(s)

[
a(s) ds+ σ(s) dBs

]
. (9.38)

9.6.2 Ornstein-Uhlenbeck process

The OU process is the strong solution to the SDE

dXt = dBt − λXtdt, X0 = ξ, (9.39)

where λ > 0 is a constant. It is a special linear SDE so strong solution exists and is unique. The
expression (9.38) specialized to the OU process gives

Xt = e−λtX0 −
∫ t

0
e−λ(t−s)dBs. (9.40)

Intuitively, OU process is like the Brownian motion with a drift towards the origin. So, in contrast
with Brownian motion which is a Markov process without stationary distribution, the OU process has
a stationary distribution, which is Gaussian. In general, for a Markov process Xt ∈ R, a stationary
distribution is a probability measure on R such that if X0 ∼ µ, then Xt ∼ µ for all t ≥ 0.

There are several ways to understand the stationary distribution. First, imagine we are solving
the equation from −∞ instead of time 0, then (9.40) implies

Xt = lim
t0→−∞

e−λ(t−t0)Xt0 −
∫ t

t0

e−λ(t−s)dBs = −
∫ t

−∞
e−λ(t−s) dBs.

(We need to define what is Brownian motion Bt for t < 0; this is done by the so-called two-sided
Brownian motion by running an independent copy of Brownian motion backward from 0.) The key
point of the analysis is that the initial condition is “forgot” by the limiting procedure due to the
exponential decaying factor, and the stochastic integral, even defined on an infinite interval, still
makes sense. In fact, since the integrand is deterministic, one has

−
∫ t

−∞
e−λ(t−s) dBs ∼ N (0,

∫ t

−∞
e−2(λ−s) ds) = N (0,

1

2λ
).

And N (0, (2λ)−1) is the stationary distribution.
We will use the semi-group theory to check that N (0, (2λ)−1) is indeed stationary. Note that the

density of a Markov process evolves according to (9.11). It is easy to compute L and L∗ for the OU
process:

Lf =
1

2
∂xxf − λx∂xf, L∗g =

1

2
∂xxg + ∂x

(
λxg

)
=

1

2
∂xxg + λg + λx∂xg.

Then for ρ(x) = Ce−λx2
,

∂xρ = ρ · (−2λx), ∂xxρ = ρ ·
[
(−2λx)2 − 2λ

]
.

So

L∗ρ = ρ
[1
2
(4λ2x2 − 2λ) + λ+ λx(−2λx)

]
= 0.
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9.6.3 Brownian Bridge

Let T > 0. The following SDE is called Brownian bridge over [0, T ]:

dXt =
−Xt

T − t
dt+ dBt, t ∈ [0, T ) X0 = 0. (9.41)

Note that when t ↑ T , there is a singularity for the drift term b(t, x) =
−x

T − t
, but otherwise (9.41) is

a linear SDE. To define construct a solution to (9.41), we first obtain the existence of strong solution
over each interval [0, T − ε], ε > 0. By uniqueness of the strong solutions, all these solutions will be

consistent with each other, so that we obtain a solution over [0, T ). Indeed, b(t, x) = − x

T − t
is still

“locally finite”, where “local” means for every compact subset inside t ∈ [0, T ). The solution can be
expressed by

Xt = (T − t)

∫ t

0

dBs

T − s
, 0 ≤ s < T. (9.42)

There is another definition of Brownian bridge: let Wt be a Brownian motion, then

Xt = Wt − t/T ·WT , t ∈ [0, T ] (9.43)

is a Brownian bridge. Of course, the Brownian motions Wt in (9.43) and Bt in (9.41) are differently.
From (9.43) one can easily read the f.d.d. of Brownian bridge, but it is not clear that Bt is a Markov
process. Another point is that (9.43) implies that XT = 0, which is not clear from (9.41).

Let us prove that Xt defined in (9.43) satisfies lim
t↑T

Xt = 0. Indeed, let

Mt =

∫ t

0

dBs

T − s
.

Then

⟨M⟩t =
1

T − t
− 1

T
.

We can express M as a time-changed Brownian motion: Mt = β⟨M⟩t , so that

Xt =
β⟨M⟩t

⟨M⟩t + 1
T

.

But for any Brownian motion β, by Strong Law of Large Numbers one has

lim
s↑∞

βs
s

= 0.

So

lim
t↑T

Xt = lim
s→∞

βs

s+ 1
T

= 0.

10 Weak solution and martingale problem

10.1 Yamada-Watanabe Theorem

In this section we will prove Theorem 9.3.
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10.1.1 Weak uniqueness

For simplicity we will work in one dimension: d = r = 1. To start, let us assume that we have two

weak solutions (X(j),W (j)), defined on two probability spaces (Ω(j),F (j), νj), with filtrations (F (j)
t ).

To separate the initial condition, we introduce the processes Y
(j)
t = X

(j)
t −X

(j)
0 and write the weak

solutions as a triple (X
(j)
0 ,W (j), Y (j)). We think of the triple as a random element taking value in

Θ := R× C0[0,∞)× C0[0,∞),

where the subscript 0 means that the continuous process starts from 0. The space Θ is a Cartesian
product of three metric spaces, and hence is also a metric space. The measurable sets are just the all

the Borel sets, denoted by B(Θ). The initial condition X
(j)
0 will have distribution µ. We will write a

general element in Θ by θ = (x,w, y)
To apply pathwise uniqueness, we need to have two weak solutions defined on the same probability

space. Since weak solutions only care about the distribution, it is natural to consider the measures on
Θ induced by νj , namely,

Pj(A) = νj
(
(X

(j)
0 ,W (j), Y (j)) ∈ A

)
, A ∈ Θ, j = 1, 2.

Another crucial point in pathwise uniqueness is that the driving Brownian motion must be the same.
Although as weak solutions, Y (j) is generally NOT a functional of W (j), but the distribution of Y (j)

will depend on W (j); this is the idea of conditional probability. More precisely, we are trying to
decompose Pj into

Pj(A) =

∫
A
Qj(x,w; dy)P

W (dw)µ(dx), (10.1)

where PW (·) is the Wiener measure on C0[0,∞), i.e., the law of standard Brownian motion on C0[0,∞),
and for each (x,w), Qj(x,w; dy) is a probability measure on C0[0,∞), which is the conditional dis-

tribution of Y (j) given (X
(j)
0 ,W (j)) = (x,w). The decomposition (10.1) is rigorously defined via the

regular conditional probability.

Definition 10.1 Let (Ω,F ,P) be a probability space and G ⊂ F . A regular condition probability is a
functional Q(ω;A) : Ω×F → [0, 1] such that

1. ∀ω ∈ Ω, Q(ω; ·) is a probability measure on (Ω,F).

2. ∀A ∈ F , ω 7→ Q(ω;A) is a G-measurable.

3. ∀A ∈ F , Q(ω;A) = P[A | G](ω), P-a.e. ω ∈ Ω.

A sufficient condition for the existence of regular condition probability is that (Ω,F) is a Borel
space, i.e., there exists a one-to-one bijection φ : (Ω,F) → ([0, 1],B([0, 1])) such that φ and φ−1 are
both measurable. A Polish space, i.e., a complete separable metric space, equipped with its Borel
σ-algebra is a Borel space.

As a special case of the regular condition probability, we consider a probability measure P on a
product space Ω = Ω1 × Ω2 where Ωj are metric spaces equipped with their Borel σ-algebra Fj . The
coordinate map (X(ω), Y (ω)) := (ω1, ω2) may be regarded as a pair of random elements on (Ω,F ,P)
where F = F1 ⊗F2. We want to have such decomposition

P(dω1, dω2) = Q(ω1; dω2)P ◦X−1(dω1). (10.2)
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In the case where P is a probability measure on R2 with joint density ρ(x, y) > 0, it is very clear that

P ◦X−1(dx) = ρX(x) =

∫
R
ρ(x, y) dy,

and

Q(x; dy) = ρY |X(y | x) dy, ρY |X(y | x) = ρ(x, y)

ρX(x)
,

where Q(x; ·) is a probability measure and (x, y) 7→ ρY |X(y | x) is measurable.
Now let us apply the regular conditional probability to obtain (10.2) in the general setting. Let

G = σ(X). Assuming Ω is Polish, there exists a regular condition probability Q̃(ω;A). Since ω 7→
Q̃(ω;A) is G-measurable, we can write

Q̃(ω;A) = Q̃(X(ω);A) = Q̃(ω1;A).

For A = G× F where G ∈ G, we have

P(G× F ) =

∫
Q̃(ω1;G× F )P ◦X−1(dω1).

But Q̃ is a functional on Ω1 ×F . Compared to (10.2), we need a functional Q on Ω1 ×F2 such that

Q̃(ω1;G× F ) = 1G(ω1) ·Q(ω1;F ), G ∈ G, F ∈ F2, (10.3)

such that Q(ω1; ·) is a probability measure and ω1 7→ Q(ω1;F ) is G-measurable. Note that Q̃(ω1; ·) is
already a probability measure, so Q̃(ω1;G × ·) is a measure on F2. To be a probability measure, it
must have total mass 1 when ω1 ∈ G, i.e., we need

Q̃(ω1;G× Ω2) = 1G(ω1). (10.4)

For every G ∈ G, (10.4) holds for P ◦ X−1-a.e. ω1 due to Item 3 in Definition 10.1. We can then
define Q via (10.4). To get the measurability of ω1 7→ Q(ω1;F ), we need to be careful about the
exceptional zero-measure sets where (10.4) fails. These sets depends on G. In order to obtain a
common exceptional set, a sufficient condition is that G is countably determined. Note that the Borel
σ-algebra of a Polish space is always countably determined (due to separability).

Finally we can put everything together. Note that Θ is a Polish space, so that regular conditional
probability exists and that a common zero-measure exceptional set for (10.4) can be found (we use
separability twice in for different purposes.) For Pj , there existsQj(x,w;F ) : R×C0[0,∞)×B(C0[0,∞))
such that

• for every (x,w), Qj(x,w; ·) is a probability measure.

• for every F , (x,w) 7→ Qj(x,w;F ) is B(R× C0[0,∞))-measurable.

• for every G ∈ R× C0[0,∞) and F ∈ C0[0,∞),

Pj(G× F ) =

∫
G
Qj(x,w;F )µ(dx)PW (dw). (10.5)

Now we turn to the proof of weak uniqueness. Let Θ̃ = R ×
[
C0[0,∞)

]3
. Define the following

probability measure on (Θ̃,B(Θ̃)):

P(dx, dw, dy1, dy2) = Q1(x,w; dy1) ·Q2(x,w; dy2)µ(dx)P
W (dw).
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We can equip the probability space with a proper augmentation of the filtration Bt = B(R×
[
C0[0, t]

]3
).

On (Θ̃,B(Θ̃),P), by (10.5), we have

P((x,w, yj) ∈ A) =

∫
1{(x,w,yj)∈A}Qj(x,w;F )µ(dx)PW (dw) = Pj(A), A ∈ B(Θ̃).

(First prove this for A = G × F and then for general A by standard argument.) But (X(j), B(j)) =
(x + yj , w), j = 1, 2 are two weak solutions on (Θ̃,B(Θ̃),P). By pathwise uniqueness, X(1) = X(2)

under P, so
P1(A) = P((x,w, y1) ∈ A) = P((x,w, y2) ∈ A) = P2(A), A ∈ B(Θ̃).

This is the weak uniqueness.

10.1.2 Strong existence

Continuing the discussion of Section 10.1.1, let B = {(y1, y2) : y1(t) = y2(t)} ⊂ B
(
C0[0,∞)2

)
and

Q(x,w; dy1dy2) = Q1(x,w; dy1) ·Q2(x,w; dy2).

Then pathwise uniqueness implies that

1 = P((y1, y2) ∈ B) =

∫
Q(x,w;B)µ(dx)PW (dw).

Therefore, Q(x,w;B) = 1 for all (x,w) ∈ N c where N is some P-null set in B(R× C0[0,∞)).
We first note that since for every (x,w) ∈ N c, Q(x,w; ·) is a product measure of Q1 and Q2. So

Q(x,w;B) = 1 implies that there exists k(x,w) ∈ C0[0,∞) such that

Qj(x,w; {k(x,w)}) = 1, j = 1, 2.

In other words, pathwise uniqueness forces the solution process y(t) to be a functional of (x,w).
It remains to show that (x,w) 7→ k(x,w) is progressively measurable. Let us first show that it is

measurable. In fact, for any Γ ∈ B
(
C0[0,∞)

)
, since Q1(x,w; ·) a.s. assign full measure to a singleton,

{(x,w) : k(x,w) ∈ Γ} a.s.
= {Q1(x,w; Γ) = 1} ∈ B

(
R× C0[0,∞)

)
by measurability of the regular condition probability. This shows measurability of (x,w) 7→ k(x,w).

To obtain progressive measurability, we need to first establish that (x,w) 7→ Qj(x,w; ·) are pro-
gressively measurable. Then the same argument as above will lead to progressive measurability of
(x,w) 7→ k(x,w). We skip the details here.

Now it is clear that we have strong uniqueness. Let (Bt) be a Brownian motion on a probability
space (Ω,F ,P) and ξ be a r.v. independent of B with distribution µ. Then

Xt = ξ +
[
k(x,B)

]
(t)

is a strong solution to the problem.
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10.2 Martingales from SDEs

Let Xt be a weak solution to (9.14). For any f ∈ C1,2
(
[0,∞)× Rd

)
, by Itô’s formula,

df(Xt) =
d∑

i=1

(∂if)(Xt) ·
[
bi(t,Xt) dt+

r∑
k=1

σik(t,Xt) dB
(k)
t

]
+

1

2

d∑
i,j=1

(∂ijf)(Xt)
r∑

k=1

(σikσkj)(t,Xt) dt.

(10.6)
This leads to the definition of the generator

(Ltf)(x) =

d∑
i=1

bi(t, x)(∂if) +
1

2

r∑
i,j=1

aij(t, x)∂ijf,

where

A = (aij)
d
i,j=1 =: σσT =

( r∑
k=1

σikσkj

)d

i,j=1

is the diffusion matrix. We have the following observation.

Proposition 10.1 Let (X,W ) be a weak solution and f ∈ C1,2([0,∞)× Rd). Then

Mf
t := f(t,Xt)− f(0, X0)−

∫ t

0
(∂s + Ls)f(s,Xs) ds (10.7)

is a c.l.m.
Moreover, let f, g ∈ C1,2 and Mf ,Mg be defined by (10.7), then

⟨Mf ,Mg⟩t =
d∑

i,j=1

∫ t

0
aij(s,Xs)(∂if)(s,Xs)(∂jg)(s,Xs) ds.

Proof: Consider the process stopped at the stopping times

τn = inf{t ≥ 0 : |Xt| ≥ n or sup
i,k

∫ t

0
σ2
ik(s,Xs) ds ≥ n}.

As a weak solution one must have τn ↑ ∞ a.s. The proposition essentially follows from the computation
(10.6). 2

We will see that the martingales defined in (10.7) also characterize the process X. To start, we
investigate the case of Brownian motion.

Proposition 10.2 Let X be a adapted, continuous process. Then X is a Brownian motion if and
only if

f(Xt)− f(X0)−
∫ t

0

(1
2
∆f

)
(Xs) ds

is a c.l.m. for every f ∈ C2(Rd).

Proof: The “⇒” direction follows from Proposition 10.1. For the other direction, we consider two
special classes of C2-functions:

fi(x) = xi, fij(x) = xixj , i, j = 1, 2, ..., d.
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Note that ∆fi = 0 and ∆fij = 2δij . By the assumption, Xi are c.l.m.’s and XiXj − δijt are c.l.m.’s,
i.e., ⟨Xi, Xj⟩t. Hence, by Theorem 7.1, Xi are independent Brownian motions. This completes the
proof. 2

A local martingale solution is basically a probability measure on C[0,∞)d. Let (Ω,F0) = (C[0,∞)d,B
(
C[0,∞)d

)
)

and P be a probability measure on (Ω,F0). Consider the following procedure of augmentation. Let N
be the collection of all P-null sets. Let Bt = Bt

(
C[0,∞)d

)
be the natural filtration. Let Gt = σ(Bt∪N ).

Let
F = σ(F0 ∪N ), Ft = Gt+.

Then (Ω,F , (Ft)t≥0,P) is a probability space with a filtration satisfying the usual condition.

Definition 10.2 A solution to the local martingale problem (10.7) is a probabilistic distribution P on
(Ω,F0) such that for all f ∈ C2(Rd), if y =

(
y(t)

)
t≥0

has the law P, then

Mf
t = f

(
y(t)

)
− f

(
y(0)

)
−
∫ t

0

(
Lsf

)
(y(s)) ds,

is a (Ft)-c.l.m., where Ft are given by the above augmenting procedure.

It turns out that to verify a solution to the local martingale problem, we do not need to check
every f ∈ C2, but only all the polynomials in xi of degree one and two, which is already the case in
Proposition 10.2.

Theorem 10.3 If Mf is a c.l.m. for f being fi(x) = xi and fij(x) = xixj, then there exists a
Brownian motion (Bt)t≥0 on (Ω̃, F̃ , (F̃t), P̃), an extension of (Ω,F , (Ft),P), such that (Xt = y(t), Bt)
is a weak solution.

Consequently, Mf is a c.l.m. for every f ∈ C2.

Proof: Step 1. Let

M
(i)
t = X

(i)
t −X

(i)
0 −

∫ t

0
bi(s,Xs) ds.

We claim that

M
(i)
t M

(j)
t −

∫ t

0
aij(s,Xs) ds

is a c.l.m., which implies that

⟨M (i),M (j)⟩t =
∫ t

0
aij(s,Xs) ds. (10.8)

Indeed, from dM
(i)
t = dXt − bi(t,Xt) dt, M

(i) and X(i) differ by a finite variation process, and
hence

dX
(i)
t X

(j)
t = X

(i)
t dX

(j)
t +X

(j)
t dX

(i)
t + d⟨M (i),M (j)⟩t

= X
(i)
t dM

(j)
t +X

(j)
t dM

(i)
t + bj(t,Xt)X

(i)
t dt+ bi(t,Xt)X

(j) dt+ d⟨M (i),M (j)⟩t.

One the other hand, using the assumption on f = fij ,

dX
(i)
t X

(j)
t = m.t. + bi(t,Xt)dX

(j)
t + bj(t,Xt)dX

(i)
t + aij(t,Xt) dt.

Comparing these two displays proves the claim.
Step 2. By [KS98, Theorem 3.4.2], if M (i) are c.l.m.’s with cross variation (10.8), then there exists

an extended probability space (Ω̃, F̃ , (F̃t), P̃) on which there are a d-dimensional Brownian motion
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W̃ = (W̃ (1), . . . , W̃ (d)) and (F̃t)-adapted processes (ρij(t))t≥0, 1 ≤ i, j ≤ d such that P̃
( ∫ t

0
ρ2ij(s) ds <

∞
)
= 1 for all t > 0 and

M
(i)
t =

d∑
j=1

∫ t

0
ρij(s) dW̃

(j)
s . (10.9)

We illustrate the idea in the case d = 1. We can define

W̃
(1)
t =

∫ t

0

1√
a11(s)

dM (1)
s .

Clearly, W̃ (1) is a c.l.m. and ⟨W̃ (1)⟩t = t, so by Theorem 7.1, W̃ (1) is Brownian motion and (10.9)
holds with ρ11(t) =

√
a11(t). One may need to extend the probability space to handle the singular

case where a11(t) = 0 for some t.
Step 3. Assuming (10.9), we need to show there exists r-dimensional Brownian motion W such

that ∫ t

0
ρ(s) dW̃s =

∫ t

0
σ(s,Xs) dWs,

so that

M
(i)
t =

d∑
j=1

∫ t

0
ρij(s) dW̃

(j)
s =

r∑
j=1

∫ t

0
σ(s,Xs) dWs. (10.10)

So that (X,W ) indeed is a weak solution.
Note that the only relation between the matrices ρ and σ is

ρρT = A = σσT , P-a.s.

The claim follows from a linear algebra construction: there exists a Borel-measurable map

R : Rd×d × Rd×r → Rr×d

(ρ, σ) 7→ R(ρ, σ)

such that if ρρT = σσT , then ρ = σR. We skip the construction here. With this at hand, we can
define

Wt =

∫ t

0
R
(
ρ(s), σ(s,Xs)

)
dW̃s

and (10.10) holds.
2

We will finish this section by two generalizations of the local martingale problem.
The first is that we can also consider the more general functional SDEs, namely, the coefficients

b, σ depend on the trajectories t 7→ y(t) but not just y(t). To fix the idea, let bi(t,y), σij(t,y) be
progressively measurable functions. Then for u ∈ C2, we can define L′

t by

(L′
tu)(y) =

1

2

d∑
i=1

r∑
k=1

aik(t,y)∂iku
(
y(t)

)
+

d∑
i=1

bi(t,y)∂iu
(
y(t)

)
,

and accordingly for f ∈ C1,2,

Mf
t = f(t, y(t))− f(0, y(0))−

∫ t

0
(∂sf + L′

sf)(s, ys) ds.
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The second is the martingale problem, in which instead of taking f ∈ C2(Rd), we test all functions
f ∈ C2

0(Rd), and the process Mf will be continuous martingales instead of c.l.m.’s. Note that we can
always approximate fi, fij by some fN

i , fN
ij ∈ C2

0(Rd) that coincide with them for |x| ≤ N . To justify
the limiting process N ↑ ∞ and obtain the equivalency between the martingale problem and the local
version, we need the local boundedness of σ, i.e.,

• in the functional SDE case,

|σ(t,y)| ≤ KT , ∀0 ≤ t ≤ T, y ∈ C[0,∞)d,

• or, in the non-functional case, σ(t, y) is locally bounded.

10.3 Existence for martingale problem solution

In this section we consider the case d = 1 and the time-homogeneous SDE

dXt = b(Xt) dt+ σ(Xt) dWt. (10.11)

We assume that b, σ are bounded and continuous functions. We also assume the initial distribution µ
has 2m-th moment for some m > 1.

Theorem 10.4 (Varadhan–Stroock) For the above SDE, there exists a solution to the martingale
problem, and hence a weak solution exists.

The starting point is to use Euler scheme to construct approximated solutions. In fact, we will
see a story parallel to what happens in the theory of ODEs: for ODEs, when the coefficients are
Lipschitz continuous, then one can use Picard iteration to show existence and uniqueness of solutions
to the ODE, while when the coefficients are merely continuous, one can use Euler scheme to construct
a family of piecewise linear approximate solutions and subtract a converging subsequence in the
topology of continuous functions. Here, for SDE, we will use Euler scheme to construct a family of
random functions and try to subtract convergence subsequence in the topology of weak convergence
of probabilistic measures on continuous functions.

Step 1: approximation (Euler scheme).
For each n, we discretize the time by t = 0, 1/2n, . . ., and consider the process

X
(n)
0 ∼ µ, X

(n)
t = X

(n)
j/2n + b(X

(n)
j/2n)(t− j/2n) + σ(X

(n)
j/2n)(Wt −Wj/2n), t ∈ (j/2n, (j + 1)/2n].

Then X
(n)
t solves the functional SDE

X
(n)
t = X

(n)
0 +

∫ t

0
b(n)(s,X(n)) ds+ σ(n)(s,X(n)) dWs, (10.12)

where
b(n)(t,y) = b

(
y(2−n[2nt])

)
, σ(n)(t,y) = σ

(
y(2−n[2nt])

)
.

Step 2: estimate.
We need the following lemma.

Lemma 10.5 Suppose that X solves the functional SDE

Xt = X0 +

∫ t

0
b(s,X) ds+ σ(s,X) dWs, X0 = ξ. (10.13)
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where for each T > 0, the coefficients b, σ satisfy

|b(t,y)|2 + |σ(t,y)|2 ≤ KT (1 + max
0≤s≤t

|y(s)|2), ∀0 < t ≤ T,

for some K > 0.
Then for any m ≥ 1, there exists C = C(T,K) such that

E max
0≤s≤t

|Xs|2m ≤ C
(
1 + E|ξ|2m

)
eCt, 0 ≤ t ≤ T, (10.14)

and
E|Xt −Xs|2m ≤ C(1 + E|ξ|2m)(t− s)m, 0 ≤ s < t ≤ T. (10.15)

We will need to use the martingale moment inequality by Burkholder–Davis–Gundy.

Theorem 10.6 (Burkholder–Davis–Gundy) For any m > 0, there are universal constants cm, Cm

such that for any c.l.m. M and any stopping time T ,

cmE⟨M⟩mT ≤ E(M∗
T )

2m ≤ CmE⟨M⟩mT , (10.16)

where M∗
t = sup

0≤s≤t
|Ms| is the maximal process of M .

For the proof, see [KS98, Theorem 3.3.28].
Sketch of the proof of Lemma 10.5: (10.14) follows from applying Gronwall’s inequality on the
left-hand side. To set up the conditions for Gronwall’s inequality, we first observe that

|Xt|2m ≤ C
(
|ξ|2m +

[ ∫ t

0
b(s,X) ds

]2m
+
[ ∫ t

0
σ(s,X) dWs

]2m)
.

Taking supremum over an interval [0, t], only the supremum of the c.l.m.

Mt =

∫ t

0
σ(s,X) dWs

needs special attention to close the inequality. Let M∗
t = sup

0≤s≤t
|Mt|. Theorem 10.6 ensures that

E(M∗
t )

2m ≤ CE⟨M⟩mt .

Combining this with

E⟨M⟩mt = E|
∫ t

0
|σ(s,X)|2 ds|m ≤ Etm · C(1 + max

0≤s≤t
|Xs|2)m,

the rest is routine.
(10.15) follows from applying a similar estimate on

|Xt −Xs|2m ≤ C
([ ∫ t

s
b(r,X) dr

]2m
+
[ ∫ t

s
σ(r,X) dWr

]2m)
.

and (10.14). 2

Since we assume that b, σ are bounded and continuous, b(n) and σ(n) will satisfy the condition of
Lemma 10.5. Noting µ has 2m-th moment for some m ≥ 1, by Lemma 10.5, for each T > 0, there
exists C = CT such that

E| max
0≤s≤t

Xt|2m ≤ C, E|Xt −Xs|2m ≤ C(t− s)m, 0 ≤ s < t ≤ T. (10.17)

Step 3: extract convergence subsequence.
Let P(n) be the law of X(n) on C[0,∞). We recall the Prohorov Theorem.
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Theorem 10.7 (Prohorov; see e.g. [Bil99]) Let E be a metric space and µn be a sequence of probability
measures on (E,B(E)). Then µn have a convergence subsequence in the topology of weak convergence
of probability measures if and only if µn is tight, that is, for every ε > 0, there exists a compact set
Kε ⊂ E such that µn(K

c
ε) ≤ ε for all n.

We also recall from real analysis that F ⊂ C[0,∞) is pre-compact if and only if all functions y ∈ F
are uniformly bounded and equi-continuous on every interval [0, t].

The tightness of P(n) will follow from the two conditions in (10.17): the first inequality implies
that X(n) are uniformly bounded with high probability, the second inequality and argument similar
to Theorem 2.7 implies equi-continuity holds with high probability. Hence, there exists P∗ as a
(subsequential) weak limit of P(n). This means that∫

Φ(y)P(n)(dy) →
∫

Φ(y) P∗(dy), n → ∞ (10.18)

for every bounded continuous functional Φ : C[0,∞) → R.
Step 4: P∗ solves the martingale problem.

First, let us verify that P∗ gives the desired initial condition. Let f ∈ Cb(R). Then

Φf (y) := f
(
y(0)

)
is a bounded continuous functional. Hence by (10.18),

E∗f(y(0)) = lim
n→∞

E(n)f(y(0)) =

∫
R
µ(dr) · f(r).

Since this holds for every f ∈ Cb(R), we have

P∗
(
y ∈ C[0,∞) : y(0) ∈ Γ

)
= µ(Γ), Γ ∈ B(R),

that is, P∗ has the correct initial contidition.
Second we need to check that P∗ solves the martingale problem, that is, for every f ∈ C2

0(R) and
0 ≤ s < t,

E∗
[
f
(
y(t)

)
− f

(
y(0)

)
−
∫ t

s
(Lf)

(
y(u)

)
du | Bs

]
= 0,

or equivalently, for every bounded continuous Bs-measurable functional g : C[0,∞) → R,

E∗
[
f
(
y(t)

)
− f

(
y(0)

)
−
∫ t

s
(Lf)

(
y(u)

)
du

]
g(y) = 0, (10.19)

Let

Fn(y) = f
(
y(t)

)
− f

(
y(0)

)
−
∫ t

s
(L(n)

u f)
(
y(u)

)
du, F (y) = f

(
y(t)

)
− f

(
y(0)

)
−
∫ t

s
(Lf)

(
y(u)

)
du.

By triangle inequality,

|E(n)Fn(y)g(y)− E∗F (y)g(y)| ≤ |E(n)Fn(y)g(y)− E(n)F (y)g(y)|+ |E(n)F (y)g(y)− E∗F (y)g(y)|.

The second term goes to 0 by weak convergence P(n) → P∗. To control the first term, it suffices to
show that Fn(y) → F (y) uniformly on compact sets in C[0,∞), which follows from the continuity
of b and σ. Combining all these we can establish (10.19) and hence P∗ indeed solves the martingale
problem.
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10.4 Uniqueness for martingale problem solution and strong Markov property

To simplify the discussion, we assume in this section that our coefficients b, σs b, σs b, σs b, σs b, σs b,
σs b, σs b, σ does not depend on t. In the most general setting, the uniqueness of martingale problem
solutions is usually guaranteed by the existence of corresponding PDE solutions.

To be more precise, consider the Cauchy problem{
∂tu = Lu, (0,∞)× Rd,

u(t = 0, ·) = f ∈ C∞
0 (Rd).

(10.20)

We say that the Cauchy problem admits a solution if there is a function uf ∈ C
(
[0,∞) × Rd

)
∩

C1,2
(
(0,∞)× Rd

)
solves (10.20), which is in addition bounded on [0, T ]× Rd for every T > 0.

The solution of (10.20) exists under very mild condition on b, σ. For example, a sufficient condition
is that the diffusion matrix A(x) = (aij(x)) is uniformly elliptic on compact sets, and b, σ are bounded
and Borel-measurable. In d = 1, 2, this condition also implies uniqueness of solutions. Since we assume
b, σ are merely measurable, it is weaker than the continuity condition we imposed in Section 10.3.

Proposition 10.8 Assume that (10.20) has a solution. Then the one-dimensional marginal of the
solution to the martingale problem is unique. Precisely, let Px and P̃x be two solutions to the martingale
problem with initial condition x ∈ Rd. Then for every t > 0 and Γ ∈ B(R),

P∗
(
y(t) ∈ Γ

)
= P̃∗

(
y(t) ∈ Γ

)
.

Proof: Fix any f ∈ C∞
0 (Rd) and T > 0. Let g(t, x) := uf (T − t, x). Then ∂tg + Lg = 0 and

g(T, ·) = f . Also g is bounded. This implies that g
(
t, y(t)

)
is a martingale under both Px and P̃x.

We have
Exf

(
y(T )

)
= Exg

(
T, y(T )

)
= Exg

(
0, y(0)

)
= g(0, x).

and similarly Ẽxf
(
y(T )

)
= g(0, x). Hence,

Exf
(
y(T )

)
= Ẽxf

(
y(T )

)
.

As this holds for every f ∈ C∞
0 (Rd), the marginal distribution of Px and P̃x is the same at time T .

This completes the proof. 2

Of course, it is not enough to have only one-dimensional marginals to agree. But before proving
a similar statement for f.d.d., we will take a detour to talk about the strong Markov property of the
martingale solution.

For s ≥ 0, we define the shift operator θs on C[0,∞)d to be

θsy =
(
y(s+ t)

)
t≥0

.

Note that θs is a bounded continuous functional, and (s,y) 7→ θs(y) is jointly measurable in s and y.
We will state a technical lemma, whose proof will be postponed to the end of this section.

Lemma 10.9 Let P be a solution to the time-homogeneous martingale problem, i.e., for every 0 ≤ s < t
and f ∈ C2

0(Rd)

E
[
f
(
y(t)

)
− f

(
y(s)

)
−
∫ t

s
(Lf)

(
y(u)

)
du | Bs

]
= 0. (10.21)

Let T be a bounded stopping time and write G = BT . Let Qω(F ) := Q(ω;F ) : Ω × B → [0, 1] be the
regular conditional probability for B given G.
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Then, there exists a P-null set N ⊂ G s.t.

Pω := Qω ◦ θ−1
T (10.22)

is a solution to (10.21) and satisfies

P
(
y ∈ C[0,∞)d : y(0) = x

)
= 1 (10.23)

with x = ω
(
T (ω)

)
, for all ω ̸∈ N .

Theorem 10.10 The setting is the same as Proposition 10.8. Then Px and P̃x has the same f.d.d.

Proof: For every 0 ≤ t1 < t2 < · · · < tn, We will show that Px and P̃x agree on σ(t1, . . . , tn). We
will show this by induction on n. The base case n = 1 is given by Proposition 10.8.

Assuming that Px and P̃x agree on σ(t1, · · · , tn−1) =: G. Then by Lemma 10.9, there exists a Px-
null set N ∈ G such that Py := Qy ◦θ−1

tn−1
is a solution to (10.21) and satisfies (10.23) with x = y(tn−1)

for all y ̸∈ N . There is also a P̃x-null set Ñ ∈ G and a similarly defined P̃y on y ̸∈ Ñ . Note that by
induction hypothesis, Px and P̃x agrees on G, so N , Ñ are null sets under both Px and P̃x.

For any A ∈ B(Rd(n−1)) and B ∈ B(Rd), we have

Px
((

y(t1), . . . , y(tn−1)
)
∈ A, y(tn) ∈ B

)
=

∫
A
Px ◦ π−1

n−1(dy1 · · · dytn−1) · Py(ω : ω(tn − tn−1) ∈ B)

=

∫
A
Px ◦ π−1

n−1(dy1 · · · dytn−1) · P̃y(ω : ω(tn − tn−1) ∈ B)

=

∫
A
P̃x ◦ π−1

n−1(dy1 · · · dytn−1) · P̃y(ω : ω(tn − tn−1) ∈ B)

= P̃x
((

y(t1), . . . , y(tn−1)
)
∈ A, y(tn) ∈ B

)
.

Here, the second equality is due to the fact that for y ∈ (N ∪ Ñ)c (i.e., Px-a.e. y), Py and P̃y are
martingale solutions satisfying (10.23) with x = y(tn−1), and hence by Proposition 10.8, they have
the same one-dimensional marginals. The third equality is the induction hypothesis. Therefore, Px

and P̃x agrees on σ(t1, · · · , tn), and this completes the induction step. 2

Now with uniqueness of solution to the martingale problem, we can use the notation Px to denote
the unique solution to (10.21) such that (10.23) holds.

The following strong Markov property holds.

Theorem 10.11 Let T be a bounded stopping time and x ∈ Rd. Then for every F ∈ B(C[0,∞)d),

Px
[
θ−1
T F | BT

]
(ω) = Py(F )

∣∣∣
y=ω(T )

, Px-a.e. ω.

Proof: With the notation in Lemma 10.9,

Px
[
θ−1
T F | BT

]
(ω) = Q(ω; θ−1

T F ) = Pω(F ) = Pω(T (ω))(F )

as desired. 2

Proof of Lemma 10.9:
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Since Qω(·) is a regular condition probability, for every Γ ∈ G, for P-a.e. ω it holds

Qω(Γ) = 1Γ(ω). (10.24)

Since G ⊂ B(C[0,∞)d) is countably determined, we can find a common exceptional set N such that
(10.24) holds for all ω ̸∈ Γ. For u ∈ Rd, let Γu = {y ∈ Ω : y

(
T (y)

)
= u} ∈ G. Then

Pω

(
y ∈ Ω : y(0) = ω

(
T (ω)

))
= Qω(ω; Γω(T (ω))) = 1Γω(T (ω))

(ω) = 1

for all ω ̸∈ N . This verifies (10.23) with x = ω
(
T (ω)

)
.

Next we will show that Pω solves (10.21). Let f ∈ C2
0 [0,∞)d and F ∈ Bs. Let

Z(y) := f
(
y(t)

)
− f

(
y(s)

)
−
∫ t

s
(Lf)

(
y(u)

)
du.

For ω ̸∈ N , we have the a.s. equalities∫
Ω
Z(y)1F (y)Pω(y)

=

∫
Ω
Z(θT (y)y)1F (y)(θT (y)y)Q(ω; dy) (definition of Pω)

= E
[
(Z ◦ θT ) · 1θ−1

T F | G
]
(ω) (definition of reg. cond. prob.)

= E
[
E[Z ◦ θT | BT+s] · 1θ−1

T F | G
]
(ω) (F ∈ Bs ⇒ θ−1

T F ∈ BT+s)

= E[0 · 1θ−1
T F | G](ω) (OST applied to Mf

t at s+ T, t+ T )

= 0.

The previous computation shows that there exist a null set N(s, t, f, F ) such that∫
F
Z(y)Pω(dy) = 0, ∀ω ̸∈ N(s, t, f, F ).

Since G is countably determined, and Z(y) is continuous in s and t, we can find a null set N(f) such

that Mf
t is a martingale under Pω for all ω ∈ N c.

Note that Theorem 10.3 and the discussion that follows implies that, if Mf
t is martingales for some

countable family of functions f (namely, those C2
0 -approximations of xi, xixj), then it is a martingales

for all f ∈ C2
0 . This shows that P is indeed a solution to the martingale problem. 2

11 Diffussion and PDEs

11.1 Representation of PDEs solutions

11.1.1 Elliptic equation

In this section we assume that b, σ are continuous and independent of t, so that Lt = L. We consider
the following Dirichlet problem{

−(Lu)(x) = g(x)− k(x)u(x), x ∈ D,

u|∂Df,
(11.1)

where D is a bounded open domain, k ≥ 0, g are continuous functions on D̄ and f is a continuous
function on ∂D. A (classical) solution to (11.1) is a function u ∈ C2(D) ∩ C(D̄) that satisfies (11.1).
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Theorem 11.1 Let u be a solution to (11.1). Let X be a solution to the SDE with generator L and

τD = inf{t ≥ 0 : Xt ̸ D}

be the exit time of D. If ExτD < ∞, then

u(x) = Ex
[
f(XτD)e

−
∫ τD
0 k(Xs) ds +

∫ τD

0
g(Xt)e

−
∫ t
0 k(Xs) ds dt

]
.

Proof: Let Ut = u(Xt), Et = e−
∫ t
0 k(Xs) ds. Then

dUt = m.t. + (Lu)(Xt) dt, dEt = Et · (−k(Xt)) dt.

Hence
d(UtEt) = m.t. + Et ·

[
Lu− ku

]
dt = m.t.− Etg(Xt) dt.

Therefore,

Yt = u(Xt)e
−

∫ t
0 k(Xs) ds +

∫ t

0
g(Xs)e

−
∫ s
0 k(Xθ) dθ ds

is a c.l.m.
We have

|Yt∧τD | ≤ sup
D̄

|u|+ |τD| · sup
D̄

|g|.

Since ExτD < ∞, (Yt∧τD)t≥0 is a uniformly integrable martingale under Px. By Optional Sampling
Theorem, we have

u(x) = Y0 = ExYτD = Ex
[
f(XτD)e

−
∫ τD
0 k(Xs) ds +

∫ τD

0
g(Xt)e

−
∫ t
0 k(Xs) ds dt

]
as desired. 2

Remark 11.1 If g ≡ 0, then we only need Px(τD < ∞) = 1.

One may ask when τD has finite expectation. A sufficient condition is that X diffuses in at least
one direction so that the exit time is not larger that that of a one-dimensional Brownian motion from
a bounded set. A precise statement is the following.

Lemma 11.2 Suppose that

L = sup
x∈D

|x1| < ∞, a = min
x∈D̄

a11(x) > 0, b = max
x∈D̄

|b1(x)| < ∞.

Then ExτD < ∞.

Proof: We consider a test function h(x) = µe−νx1 ∈ C∞(Rd) with µ,ν to be determined. Then under
the assumptions,

Lh = vb1(x)h(x) +
1

2
ν2a11(x)h(x) ≥ h(x)

[
− νL+

1

2
ν2a

]
≥ µe−νLν(νa/2− L).

We first choose ν > 2L/a so that the right hand side is positive, then choose L large enough so that
Lh ≥ 1. Then,

Mh
t = h(Xt)−

∫ t

0
(Lh)(Xs) ds

is a bounded martingale and

Exh(Xt∧τD)− h(x) = Ex

∫ t∧τD

0
(Lh)(Xs) ds ≥ Ex(t ∧ τD).

By sending t ↑ ∞, we see that ExτD ≤ 2 sup
D

|h| ≤ 2eνL < ∞. 2
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11.1.2 Parabolic equation; Feynman–Kac

In this section, we assume that b, σ are continuous and satisfy the lienar growth condition (in x). We
consider the Cauchy problem{

∂tu = Ltu− ku+ g, (t, x) ∈ (0,∞)× Rd

u|t=0 = f, x ∈ Rd,
(11.2)

where k ≥ 0, f, g are continuous functions on their domains. Moreover, g satisfy either

|g(t, x)| ≤ L(1 + |x|2λ) (11.3)

for some L > 0, λ ≥ 1 or
g ≥ 0. (11.4)

Theorem 11.3 If u ∈ C([0, T ]× Rd) ∩ C1,2((0, T ]× Rd) solves (11.2), and for some µ > 1, M > 0,

max
0≤t≤T

|u(t, x)| ≤ M(1 + |x|2µ).

Then

u(T, x) = Ex
[
f(XT )e

−
∫ T
0 k(T−s,Xs) ds +

∫ T

0
g(T − t,Xt)e

−
∫ t
0 k(T−s,Xs) ds dt

]
.

Proof: By a similar computation to the proof of Theorem 11.1, one can show that

Yt = u(T − t,Xt)e
−

∫ t
0 k(T−s,Xs) ds +

∫ t

0
g(T − s,Xs)e

−
∫ s
0 k(T−θ,Xθ) dθ ds

is a c.l.m. on t ∈ [0, T ) under Px, since (Yt∧τn) is a martingale for

τn = inf{t ≥ 0 : |Xt| ≥ n}.

(The martingale part involves integrals like

∫
∂iudX, but ∂iu(t, x) could be unbounded near t = 0. )

We need to show EY0 = EYT
First let us Assume (11.3). By the growth condition on u and g, we have

|Yt| ≤ C(1 + sup
0≤s≤T

|Xs|2µ) + CT · (1 + sup
0≤s≤T

|Xs|2λ), t ∈ [0, T ). (11.5)

By Lemma 10.5, the right-hand side is integrable, hence (Yt)0≤t<T is a u.i. martingale and EY0 = EYT .
Next let us assume (11.4). For every t < T and τn, by Optional Sampling Theorem we have

EY0 = EYt∧τn = Ex
[
u(T − t ∧ τn, Xt∧τn)e

−
∫ t∧τn
0 k(T−s,Xs) ds +

∫ t∧τn

0
g(T − t,Xt)e

−
∫ t
0 k(T−s,Xs) ds dt

]
.

We first let t ↑ T and then τn → ∞. The first expectation converges due to continuity of u,

|u(T − t ∧ τn, Xt∧τn)e
−

∫ t∧τn
0 k(T−s,Xs) ds| ≤ C(1 + sup

0≤s≤T
|Xs|2µ)

and Lemma 10.5. The second expectation converges due to g ≥ 0 and Monotone Convergence Theo-
rem. 2

Remark 11.2 Theorem 11.3 can be viewed as a special case of Theorem 11.1
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11.2 Harmonic functions

We say that a function u is harmonic in a domain D ⊂ Rd if u ∈ C2(D) and ∆u = 0 in D.
We will use

−
∫
A
f(x) dx =

1

|A|

∫
A
f(x) dx

to denote the average of f over a set A (w.r.t. to the Lebesgue measure). Harmonic functions enjoy
the celebrated mean-value property below.

Theorem 11.4 A function u is harmonic in D if and only if for all ball Br(x) ⊂ D,

u(x) = −
∫
∂Br(x)

u(y) dy = −
∫
Br(x)

u(y) dy. (11.6)

Proof: We only illustrate the “=⇒” direction as it has a simple probabilistic proof. The other
direction can only be proved analytically and can be found in any undergraduate PDE text.

Let B be a Brownian motion and let τ be its exit time of D. Then by Theorem 11.1,

Eu(x) = Exu(Bτ ) =

∫
u(y)µ(dy),

where µ(dy) = Px(Bτ ∈ dy) is the exit measure of B. Clearly, µ is a measure on ∂Br(x); also µ
must be rotationally invariant since both the set D and the process B are. The only such measure on
∂Br(x) is the uniform measure, and hence∫

u(y)µ(dy) = −
∫
∂Br(x)

u(y) dy.

The second equality of (11.6) follows from the first one since for some dimensional constant d,∫
Br(x)

u(y) dy =

∫ r

0
dr′ · cd(r′)d−1 · −

∫
∂Br′ (x)

u(y) dy = u(x) · |Br(x)|.

2

Now we consider the Dirichlet problem{
∆u(x) = 0, x ∈ D,

lim
D∋x→y

u(y) = f(y), y ∈ ∂Ω, (11.7)

where f is a continuous function on D and u ∈ C2(D). We do not assume that D is a bounded domain;
if it is, then u must also be in C(D̄) and we in the same situation as Section 11.1.1. Since we do not
assume the boundedness of the domain, u can also be unbounded over D.

Proposition 11.5 Assume u is bounded and Px(τD < ∞) = 1 for all x ∈ D. Then, any bounded
solution of (11.7) can be represented by

u(x) = Exf(BτD). (11.8)

Proof: Let

Dn = {x : dist(x, ∂D) ≥ 1

n
}, Bn = {x : |x| ≤ n}.
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Then for every n, |∂iu(Bt)| is bounded when t ≤ τDn ∧ τBn , and hence

u(Bt∧τDn∧τBn
)− u(x) =

d∑
i=1

∫ t∧τDn∧τBn

0
∂iu(Bs) dBs

is a martingale. Hence,
u(x) = Exu(Bt∧τDn∧τBn

)

for every t and n.
Since τDn < τD < ∞,

u(Bt∧τDn∧τBn
) → u(BτDn∧τBn

), t → ∞.

Since τBn → ∞ a.s., and τDn ↑ τD < ∞,

u(BτDn∧τBn
) → f(BτD), n → ∞

by the continuity of u at the boundary. Passing the limit under the expectation is justified by the
assumption that u is bounded and the Dominated Convergence Theorem. 2

Any function taking the form (11.8) is also harmonic under minimum assumption on f .

Proposition 11.6 If Ex|f(BτD)| < ∞ for every x ∈ D, then u given by (11.8) is harmonic in D.

Proof: By strong Markov property, for Br(x) ⊂ D, we have

u(x) = Exf(BτD) = Ex
(
Ey

[
f(BτD) | BτBr(x)

= y
])

= Exu(BτBr(x)
).

Therefore, u has the mean-value property in D and hence by Theorem 11.4, it is harmonic in D. 2

Let f : ∂D → R be a bounded, measurable function. Assume that f is continuous at a ∈ ∂D. The
natural question to when the following limit holds true:

lim
D∋x→a

Exf(BτD) = f(a). (11.9)

It turns out the validity of the limit only depends on the geometry of ∂D.

Definition 11.1 Let σD = inf{t > 0 : Bt ̸∈ D}. A point a ∈ ∂D is regular if Pa(σD = 0) = 1, and
irregular if Pa(σD = 0) = 0.

Remark 11.3 Note that {σD = 0} ∈ FB
0+. So by Blumenthal’s 0-1 law (Theorem 3.5), Pa(σD = 0) ∈ {0, 1}. So

any boundary point is either regular or irregular.

Let us discuss some examples of regular/irregular points.

Example 11.4 When d = 1, all boundary points are regular. This follows from the fact that Pa-a.s., (see
also (3.12))

sup
0≤t≤ε

(Bt − a) > 0 > inf
0≤t≤ε

(Bt − a), ∀ε > 0.

Example 11.5 When d ≥ 2, an isolated boundary point is irregular, as the following example shows.
Consider the punctured disk D = {x : 0 < |x| < 1} ⊂ Rd, d ≥ 2 and a = 0 ∈ ∂D. Since d-dimensional

Brownian motion, d ≥ 2, is point-transient, i.e., the probability of hitting every fixed point is 0, we see that

P0(σD = 0) ≤ P0(∃t > 0 : Bt = 0) = 0.
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Example 11.6 When d ≥ 3, irregular points can be found at cusp point, which is connected to Dc via a very
“thin” tunnel behaving like |r|α, α < 1. This is a small relaxation from the isolation condition, but does not
satisfy the well-known “exterior cone condition” (see ).

We will give the example of Lebesgue’s Thorn in dimension d = 3. The domain will be rotationally symmetric
around the x1-axis. Let

E = {|x1| < 1, x2
2 + x2

3 < 1}, Fn = F εn
n = {2−n ≤ x1 ≤ 2−n+1, x2

2 + x2
3 ≤ ε2n}

where εn are sufficiently small numbers to be determined. We set D = E \
( ∞⋃

n=1

Fn

)
and will show that when

εn is suitably chosen, then a = (0, 0, 0) is an irregular point. Here, a is connected to Dc through the “tunnel”
∞⋃

n=1

Fn, and by choosing εn small we enforce the cusp-like behavior.

We have

P0(σD = 0) ≤ P0(Bt ∈ Fn, for some n ≥ 1) ≤
∞∑

n=1

P0
(
∃t > 0, Bt ∈ Fn

)
. (11.10)

Note that by point-transient of Brownian motion in two dimension,

lim
ε↓0

P0(∃t > 0 : Bt ∈ F εn
n ) = P0

(
∃t > 0 : Bt ∈ F 0

n

)
= P0

(
∃t > 0, (B

(2)
t , B

(3)
t ) = (0, 0)

)
= 0.

Hence, by choosing εn small, we can have

P0
(
∃t > 0, Bt ∈ F εn

n

)
≤ 3−n.

Combining with (11.10) we have P0(σD = 0) < 1, and hence a = 0 is irregular (remark after Definition 11.1).

Theorem 11.7 Let d ≥ 2 and a ∈ ∂D. The following statements are equivalent:

1) (11.9) holds;

2) a is regular;

3) ∀ε > 0,
lim

D∋x→a
Px(τD > ε) = 0. (11.11)

Proof: Here we will only show Item 2 ⇒ Item 3 ⇒ Item 1. The implication Item 1 ⇒ Item 2 requires
an explicit construction of counter-example; we refer to [KS98, Theorem 4.2.12] for the complete proof.

Without loss of generality we assume a = 0.
Item 2 ⇒ Item 3. We have

lim
D∋x→0

Px
(
τD > ε

)
≤ lim sup

D∋x→0
Px

(
σD > ε

)
(τD ≤ σD by definition)

≤ lim sup
D∋x→0

Px
(
Bt ∈ D; 0 < t ≤ ε

)
≤ limsupD∋x→0P

x
(
Bt ≤ D; δ ≤ t ≤ ε

)
(choose any δ ≤ ε)

= lim sup
D∋x→0

∫
Px

(
Bδ ∈ dy

)
Py

(
τD > ε− δ

)
.

Note that although Py(τD > ε− δ) is merely measurable, since the transition probability Px
(
Bδ ∈ ·

)
is nice, the integral on the last line is in fact continuous in x, and hence we have

lim
D∋x→0

Px
(
τD > ε

)
≤ P0(Bt ∈ D; δ ≤ t ≤ ε).
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By taking δ ↓ 0, the right hand side converges to P0(σD ≥ ε) and is zero since 0 is regular. This proves
(11.11).

Item 3 ⇒ Item 1. Without loss of generality we can assume that f is bounded.
For any r > 0, we have

Ex|f(BτD)− f(0)| ≤ Ex|f(BτD)− f(0)|1{|BτD
|≤r} + ∥f∥∞Px(|BτD | > r)

As r ↓ 0, the first term goes to 0 by the continuity of f at x = 0. For the second term, we have

lim
D∋x→0

Px
(
|BτD | > r

)
≤ lim sup

D∋x→0
Px

(
τD < ε, |BτD | > r

)
+ lim sup

D∋x→0
Px(τD > ε) (choose any ε > 0)

≤ lim sup
D∋x→0

Px
(
sup
0≤t≤ε

|Bt −B0| ≥ r/2
)

(the second term is 0 by (11.11))

= Px=0( sup
0≤t≤ε

|Bt| ≥ r/2).

The probability in the last but one line does not depend on x since the law of Brownian motion is
translational invariant. Clearly, the last line goes to 0 as ε → 0. Combining all these we finish the
proof. 2

Let y ̸= 0 be a direction and θ ∈ (0, π/2]. We define the cone

Co(y, θ) = {x ∈ Rd : angle⟨x, y⟩ ≤ θ}.

Definition 11.2 A point a ∈ ∂D satisfies the exterior cone condition if a + Co(y, θ) ⊂ Rd \ D for
some y ̸= 0 and θ ∈ (0, π/2].

Theorem 11.8 If a satisfies the exterior cone condition, then a is regular.

Proof: Without loss of generality, set a = 0. We have

P0(σD ≤ t) ≥ P0(Bt ∈ Co(y, θ)).

But λBλ−2t
d
= Bt and Co(y, θ) is invariant under dilation, so

P0(Bt ∈ Co(y, θ)) = P0(B1 ∈ Co(y, θ)) > 0.

Hence 0 is regular. 2

11.3 Some computations about hitting time

In this section we will show some examples of using PDE to compute Px(τD < ∞) and ExτD for
Brownian motion.

The key observation is the following.

Proposition 11.9 Let D be a set and u(x) = Px(τD < ∞). Then h(x) is a harmonic function in D.

Proof: By strong Markov property, for Br(x) ⊂ D,

u(x) = Px(τD < ∞) = ExPy
(
τD < ∞ | BτBr(x)

= y
)
= Exu(BτBr(x)

).

Hence, h has the mean value property and by Theorem 11.4 it is harmonic in D. 2
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Let B be Brownian motion in d dimension. For D = Br(0) and |x| > r, let us compute u(x) =
Px(τD < ∞). By Proposition 11.9, u is a classical solution to the PDE{

∆u(x) = 0, |x| > r,

u(x) = 1, |x| = r.
(11.12)

However, as {x : |x| > r} is now an unbounded domain, the solution to (11.12) is no longer unique.
An obvious solution to (11.12) is u1(x) ≡ 1. Another solution is the so-called spherically symmetric
harmonic function, given by

u2(x) =



|x|
r
, d = 1,

log |x|
log r

, d = 2,

|x|2−d

r2−d
, d ≥ 3.

(11.13)

Clearly, u(x) = Px(τD < ∞) is a bounded solution since probability is bounded by 1. In fact one
can show that under the additional assumption of boundedness, for d = 1, 2 the solution to (11.12)
is unique, i.e., u(x) = u1(x) ≡ 1. This means that in dimensions 1 and 2, Brownian motion is
neighborhood-recurrent, i.e., it will hit any open ball almost surely.

However, when d ≥ 3 (11.13) also gives another bounded solution to (11.12), and in fact it is the
correct form of Px(τD < ∞). To prove this, we start with a modified problem. For r ≤ |x| ≤ R, let us
consider ũr,R(x) = ũ(x) = Px(τBr < τBR

). The function ũ is the solution to the Dirichlet problem
∆u(x) = 0, r < |x| < R,

u(x) = 0, |x| = R,

u(x) = 1, |x| = r.

(11.14)

This is a special case of (11.7) with
f(x) = 1|x|=r(x). (11.15)

Clearly all points in {x : |x| = r,R} are regular, and f in (11.15) is continuous at every point of the
boundary. Hence, the solution to (11.14) is unique, and is given by

u(x) = Exf(BτBr∧τBR
) = Ex1τBr<τBR

as desired.
Now using (11.13) we can easily write down solutions to (11.14) by performing a linear transform:

ũ(x) =



R− |x|
R− r

, d = 1,

log |x| − logR

log r − logR
, d = 2,

R2−d − |x|2−d

R2−d − r2−d
, d ≥ 3.

By uniqueness, now we know that it is the only solution to (11.14).
Now we can compute Px(τBr < ∞) by sending R ↑ ∞. Note that we use the fact that

lim
R↑∞

τBR
= ∞, a.s.

since paths of Brownian motion is continuous.
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We have

Px(τBr < ∞) = lim
R→∞

Px(τBr < τBR
) =

1, d = 1, 2,

|x|2−d

r2−d
, d ≥ 3.

Hence, for d ≥ 3, the Brownian motion is not neighborhood recurrent.
When d = 2, we can also let r → 0 first to obtain

Px(τ0 < τBR
) = lim

r↓0

log |x| − logR

log |r| − logR
= 0.

Then by sending R ↑ ∞ we obatin Px(τ0 < ∞) = 0. This means that two-dimensional Brownian
motion is point-transient.

In general, if X is a diffusion with generator L, then u(x) = Px(τD1 < τD2) is a L-harmonic
function (i.e., Lu = 0) with suitable boundary condition. However, such PDEs are usually difficult to
solve. A manageable case is when the PDE becomes an ODE in dimension one.

Let Xt = Bt + µt, µ > 0 be the Brownian motion with drift. Then L =
1

2
∂xx + µ∂x. We want to

compute Px(τ0 < ∞) using PDE/ODE method.
For R > 0, let uR(x) = Px(τ0 < τR), Then u = uR(x) solves

1

2
∂xxu(x) + µ∂xu(x) = 0, x ∈ (0, R),

u(0) = 0, u(R) = 0.

This is second-order linear ODE with constant coefficients. The two roots of the characteristic function
1

2
λ2 + µλ = 0 are λ = 0,−2µ, so any solution can be written as c1 + c2e

−2µx. With some effort we

can find

Px(τ0 < τR) = uR(x) =
e−2µx − e−2µR

1− e−2µR
.

By sending R → ∞, we see that Px(τ0 < ∞) = e−2µR.
For the next example, we will compute Exτ0 ∧ τR for 1d Brownian motion (without drift). The

idea to solve the ODE 
1

2
∂xxu(x) = −1, x ∈ (0, R),

u(0) = u(R) = 0.

By Theorem 11.1,

u(x) = Ex

∫ τ0∧τR

0
1 dt = Exτ0 ∧ τR.

One can verify that the solution to the ODE is u(x) = x(R− x), and hence Exτ0 ∧ τR = x(R− x).

11.4 A brief introduction to Doob’s h-transform

The goal of this section is to how to condition to zero-probability events to get new processes. Two
notable examples are:

1. the Bessel-3 process as “one-dimensional Brownian motion conditioned on never hitting zero”,

2. the Brownian bridge as “one-dimensional Brownian motion conditioned on hitting zero at time
T”.
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This is done via the Doob’s h-transform. Here we will not give a full account of whole theory but just
focus on the computation part.

Let Xt = ωt be a Markov process on a state space S. Recall the shift operator (θtω)s = ωs+t The
invariant σ-field is

I = {A : A = θ−1
t A, ∀t > 0} = { sets invariant under θt}.

Elements in I are also called invariant sets. Typical invariant sets are

{τΓ < ∞}, {τΓ1 < τΓ2}.

In general, an invariant set should only depend on the infinite future.
We also say a function h is harmonic if Pth ≡ h. If the Markov process is in continuous time and

has a generator L, then this implies Lh = 0, which justifies the term “harmonic”. We may also say
that h is L-harmonic if we are dealing with more than one generators.

The first observation is that harmonic functions are linked to invariant sets.

Proposition 11.10 Let A ∈ I. Then h(x) = Px(A) is harmonic.

Proof: We have

h(x) = Px(ω : ω ∈ A) = Px(ω : ω ∈ θ−1
t A) = Px(ω : θtω ∈ A) = Px(Xt ∈ A) = (Pth)(x).

2

Let A be an invariant set and h(x) = Px(A). Let S̃ = {x ∈ S : h(x) > 0}. We can define a new
measure P̃x ≪ Px by specifying the Rydon–Nikodym derivative

P̃x(dω) =
1A(ω)

h(x)
Px(dω). (11.16)

Theorem 11.11 (Doob’s h-transform) Let x ∈ S̃. The process X is again a Markov process under
P̃x. Moreover, the transition kernel for the new Markov process is

p̃t(x, dy) =
h(y)

h(x)
pt(x, dy). (11.17)

Proof:
Let us first verify that (11.17) indeed gives a Markov transition kernel on S̃. First, p̃t(x, ·) is a

probability measure on S̃, since

p̃t(x, S̃) =

∫
S̃

h(y)

h(x)
pt(x, dy) =

1

h(x)

∫
S
h(y) pt(x, dy) =

1

h(x)
Exh(Xt) = 1

as h is harmonic. Second, h satisfies the Komolgorov–Chapman equation: noting that ps(z, S) = 0 if
h(z) = 0

p̃t+s(x, dy) =

∫
S

h(y)

h(x)
pt(x, dz)ps(z, dy) =

∫
S̃

h(y)

h(x)
pt(x, dz)ps(z, dy)

=

∫
S̃

h(z)

h(x)
pt(x, dz)

h(z)

h(x)
ps(z, dy) =

∫
S̃
p̃t(x, dz)p̃t(z, dy).
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Next, we will show that (11.16) defines a Markov process with kernel (11.17). Note that restrict
to any Ft, the Markov property implies that

P̃x|Ft(dω) = Ex
[1A(ω)

h(x)
| Ft

]
Px|Ft(dω) =

h(Xt)

h(x)
Px|Ft(dω) (11.18)

For the Markov property of Xt under P̃
x, it suffices to check that for any bounded continuous function

f ,

Ẽx
[
f(Xt+s) | Ft

]
=

[ ∫
p̃s(y, dz)f(z)

]
|y=Xt .

Take Γ ∈ Ft. We have

Ẽx
(
Ẽx

[
f(Xt+s) | Ft

]
1Γ

)
= Ẽxf(Xt+s)1Γ

= Exh(Xt+s)

h(x)
f(Xt+s)1Γ

= Exh(Xt)

h(x)
· h(Xt+s)

h(Xt)
f(Xt+s)1Γ

= Exh(Xt)

h(x)
1Γ · Ey

[h(Xt+s)

h(y)
f(Xt+s) | y = Xt

]
= Exh(Xt)

h(x)
1Γ

(∫
p̃s(y, dz)f(z)

)
y=Xt

= Ẽx1Γ

(∫
p̃s(y, dz)f(z)

)
y=Xt

,

as desired. 2

If the original process X has a generator L, then by (11.17) the generator for the new process is
given by

(L̃f)(x) = 1

h(x)
(Lhf)(x).

If X is a diffusion and L =
1

2

∑
aij∂ij +

∑
bi∂i, then direct computation gives

(L̃f)(x) = 1

h(x)

[1
2

∑
aij∂ij(h(x)f(x)) +

∑
bi(x)∂i

(
h(x)f(x)

)]
=

1

h(x)

(
h(x) · (Lf)(x) + f(x) · (Lh)(x) + 1

2

∑
aij∂ih∂jf

)
=:

(
L+ b̃ · ∇

)
f,

where

b̃i(x) =
1

2h(x)

∑
j

aij(∂jh)(x).

That is, the effect of Doob’s h-transform is to add a drift to the diffusion.
What if Px(A) = 0? An intuitive idea is to consider Aε ↓ 0 with Px(Aε) > 0, and taking the ε ↓ 0

limit of the conditioned processes. What will happen is that as ε ↓ 0, there will be some function
harmonic function h(x) such that

lim
ε↓0

hε(x)

hε(y)
=

h(x)

h(y)
, ∀x, y.
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In light of (11.17) or (11.18), the Doob’s h-transform makes sense for any harmonic function h.
Let us return to the examples we mention at the beginning of this section.
One-dimensional conditioned on never hitting 0.

A candidate for Aε is Aε = {τ0 > τ1/ε}. One can easily find that

hε(x) = Px(τ0 > τ1/ε) = εx.

Therefore, we should choose h(x) = x and consequently,

L̃ =
1

2
∂xx +

1

x
∂x.

This is the generator for Bessel-3 process.
Brownian bridge.

A candidate for Aε is Aε = {BT ∈ (−ε, ε)}. Note that to use the invariant set setting, we need to
lift the Brownian motion to Xt = (t, Bt) on the state space (0,∞)×R, so that Aε is an invariant set.
One can check that now the corresponding h(t, x) is given by

h(t, x) =
1√

2π(T − t)
e
− x2

2(T−t) .

Hence

b̃(t, x) =
1

h(t, x)

(
− x

T − t

)
h = − x

T − t
.

Therefore, the generator for the conditioned process is Lt =
1

2
∂xx −

x

T − t
∂x, and we recover the SDE

(9.41) satisfied by the Brownian bridge.

12 Local time and Brownian excursion

12.1 Local time for continuous semi-martingale

One way to understand the the Itô’s formula (Theorem 6.1) is that continuous semi-martingales as a
class of processes are invariant under C2 transforms. One can ask if the C2 condition can be relaxed.
The first result is to generalize this to convex functions.

Proposition 12.1 If f is convex and X is a continuous semi-martingale, then f(Xt) is also a con-
tinuous semi-martingale and we have

f(Xt) = f(X0) +

∫ t

0
f ′
−(Xs) dXs +Af

t , (12.1)

where (Af
t )t≥0 is some increasing process.

Proof: We will try to approximate f by fn ∈ C2 and investigate what will be the limit of the Itô’s
formula applied to fn.

The approximation is a standard argument using mollifiers. Let h(x) ∈ C∞
0 (R) be a such that

h(x) ≥ 0, supph ⊂ [0, 1],

∫ 1

0
h(x) dx = 1.
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Such function exists, one example being h(x) = ce
− 1

x2(1−x)2 . The mollification

gn(x) = (hn ∗ g)(x) =
∫

hn(y)g(x− y) dy =

∫
hn(x− y)g(y) dy

enjoys many good properties:

1. if g is locally integrable, then gn ∈ C∞;

2. gn(x) → g(x) for a.e. x;

3. if g is continuous on [a, b], then gn → g uniformly on [a, b];

4. if f ∈ Lp
loc, 1 ≤ p < ∞, then gn → g in Lp

loc.

Write the decomposition of the continuous semi-martingale X as Xt = Mt+Vt where M is a c.l.m.
and Vt a finite-variation process. Consider the stopping time

τK = inf{t ≥ 0 : |Xt|+ ⟨M⟩t +
∫ t

0
|dVs| ≥ K}.

We first look at the stopped process XτK
t . We can assume that f, f ′

− are all bounded since we only
care about their values in a finite interval.

Let fn = hn ∗ f . Note that f is a convex function, so f is continuous and f ′
− is left-continuous.

We have fn → f uniformly and in Lp, p ≥ 1. Also, we have f ′
n = hn ∗ f ′

− (= hn ∗ f ′
+, but f ′

± differ
at countably many points, so the integration is the same), and since f ′

− is left-continuous and hn is
supported on [0, 1/n], we know that f ′

n → f ′
− at every point. Finally, fn is a convex function, since

fn is a convex integration of the convex functions f(· − y), y ∈ R, and convexity is preserved under
convex combination. As a result, f ′′

n ≥ 0.
Applying Itô’s formula to fn ∈ C2, we have

fn(Xt∧τK ) = fn(X0) +

∫ t∧τK

0
f ′
n(Xs) dMs +

∫ t∧τK

0
f ′
n(Xs) dVs +

1

2

∫ t∧τK

0
f ′′
n(Xs) d⟨X⟩s. (12.2)

The left-hand side and the first, third third term on the right-hand side is defined path-wise. Moreover,
almost surely, we have

fn(Xt∧τK ) → f(Xt∧τK ), fn(X0) → f(X0)

since fn(z) → f(z) for every z and∫ t∧τK

0
f ′
n(Xs) dVs →

∫ t∧τK

0
f ′
−(Xs) dVs

by f ′
n(Xs) → f ′

−(Xs) for every s and Bounded Convergence Theorem applied to the measure dVs. The
second term on the right-hand side is a square-integrable martingale defined in the L2-sense, and we
have by Itô’s isometry,

E|
∫ t∧τK

0
f ′
n(Xs) dMs −

∫ t∧τK

0
f ′
−(Xs) dMs|2 = E

∫ t∧τK

0
|f ′

n(Xs)− f ′
−(Xs)|2 d⟨M⟩s.

The right-hand side converges to 0 Inside the expectation, since |f ′
n(Xs)−f ′

s(Xs)| → 0 for every s and
is bounded, by Bounded Convergence Theorem applied on the measure d⟨M⟩s, we know that∫ t∧τK

0
|f ′

n(Xs)− f ′
−(Xs)|2 d⟨M⟩s → 0.
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This integral is bounded due to our localization. Then by Bounded Convergence Theorem again, we

know the second term in (12.2) converges in probability to

∫ t∧τK

0
f ′
−(Xs) dMs.

Therefore, there exists a process Af,K
t such that

1

2

∫ t∧τK

0
f ′′
n(Xs) d⟨M⟩s → Af,K

t

in probability for every t ≥ 0. Since the pre-limiting process is increasing in t, the limit Af,K
t is also

increasing in t.
The remaining procedure is to remove the localization. We omit the proof here. We will obtain

an increasing process Af
t such that Af,K

t = Af
t for t ≤ τK . This completes the proof. 2

Remark 12.1 We use f ′
n(x) → f ′

−(x) for every x. The above argument does not work if only assuming f ′
n → f ′

−
a.e. (in fact, we also have a.s. f ′

n(x) → f ′
+(x) since f

′
− = f ′

+ except at countably many points), since the random

measures A 7→
∫ t

0

1A(Xs) dVs and A 7→
∫ t

0

1A(Xs) d⟨M⟩s do not have to be absolutely continuous w.r.t. to the

Lebesgue measure.

Remark 12.2 One can get a similar statement if we consider the mollifier h̃(x) = h(x − 1), then h̃ will be

supported on [−1, 0] and f ′
n → f ′

+. Correspondingly we will get another increasing process Ãf
t such that

f(Xt) = f(X0) +

∫ t

0

f ′
+(Xs) dXs + Ãf

t .

In general Af ̸= Ãf . When f ∈ C2, then

Af
t = Ãf

t =
1

2

∫ t

0

f ′′(Xs) d⟨M⟩s.

Let sgn(x) = 1x>0 − 1x≤0 = (|x|)′−. The Tanaka’s formula gives the definition of local time.

Theorem 12.2 Let X be a continuous semi-martingale For every a ∈ R, there exists an increasing
process La(X) such that

|Xt − a| = |X0 − a|+
∫ t

0
sgn(Xs − a) dXs + La

t (X), (12.3)

(Xt − a)+ = (X0 − a)+ +

∫ t

0
1{Xs>a} dXs +

1

2
La
t (X), (12.4)

(Xt − a)− = (X0 − a)− −
∫ t

0
1{Xs≤a} dXs +

1

2
La
t (X).

Proof: Applying Proposition 12.1 to the convex function f(x) = |x − a|, we obtain an increasing

process Af
t , which we will call La

t (X) and (12.3) holds. Applying Proposition 12.1 to the convex
functions f(x) = (x− a)±, we obtain another two increasing process

(Xt − a)+ = (X0 − a)+ +

∫ t

0
1{Xs>a} dXs +A+

t (12.5)

(Xt − a)− = (X0 − a)− −
∫ t

0
1{Xs≤a} dXs +A−

t . (12.6)
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It remains to show that A±
t =

1

2
La
t (X).

In fact, taking the difference of (12.5), (12.6) and noting that x = x+ − x−, we obtain

(Xt − a) = X0 − a+

∫ t

0

(
1{Xs>a} + 1{Xs≤a}

)
dXs + (A+

t −A−
t ).

From this we have A+
t = A−

t . On the other hand, taking the sum of (12.5) and (12.6) and noting that
|x| = x+ − x−, we have

|Xt − a| = |X0 − a|+
∫ t

0
sgn(Xs − a) dXs + (A+

t +A−
t ).

Comparing with (12.3) we see that A+
t = A−

t =
1

2
La
t (X) as desired. 2

Definition 12.1 Let X be a continuous semi-martingale. For a ∈ R, La(X) = (La
t (X))t≥0 given by

(12.3) is called the local time of X.

12.2 Continuity of local time and other properties

The main result for this section is the Generalized Itô’s formula.

Theorem 12.3 Let X be a continuous semi-martingale and f be a convex function (or difference of
two convex function). Then

f(Xt) = f(X0) +

∫ t

0
f ′
−(Xs) dXs +

1

2

∫
R
La
t (X)f ′′(da), (12.7)

where f ′′(da) = df ′
−(a) is the signed measure generated by the finite-variation f ′

−.

First, we note that when f(x) = |x − a|, (x − a)+ and (x − a)−, Theorem 12.3 reduces to Theo-
rem 12.2. In fact, any convex function is more or less a convex integration of (x−a)+, so Theorem 12.3
just comes from a convex integration of Theorem 12.2.

Lemma 12.4 Let f be a convex function with lim
x→∞

f(x) = 0. Then

f(x) =

∫
(x− a)+f

′′(da), f ′(x) =

∫
1{x>a}f

′′(da).

Proof: The convexity of f and the assumption also imply that lim
x→−∞

f ′(x) = 0, so we have

f ′(x) =

∫ x

−∞
f ′′(da). (12.8)

For the first identity, by Fubini and (12.8) we have

f(x) =

∫
1{y<x}f

′(y)dy =

∫
1{y<x}dy ·

∫
1{a≤y}f

′′(da)

=

∫
f ′′(da)

∫
1{a≤y<x}dy =

∫
(x− a)+f

′′(da).

2
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Second, since f ′′(·) is only a signed measure, we need the f ′′(·)-measurability of a 7→ La
t (X) for

the last integral in (12.7) to make sense. In fact, we will show that a 7→ La
t (X) is cadlag, so that it

is f ′′(·)-measurable for any convex f , and for many scenarios it is even continuous. Such regularity is
not obvious from the definition of local time (12.3).

Let X be a continuous semi-martingale with decomposition X = M + V . Let

Y a
t (X) =

∫ t

0
1{Xs>a} dMs, Za

t (X) =

∫ t

0
1{Xs>a} dVs

We note that Y a = (Y a
t )t≥0 and Za = (Za

t )t≥0 are continuous processes. We can view a 7→ Y a

and a 7→ Za as a stochastic process taking values in C(R+), equipped with the locally uniform (LU)
topology:

xn → y in C(R+) ⇔ lim
n→∞

sup
0≤t≤T

|xn(t)− y(t)| = 0, ∀T > 0.

Equivalently, the LU topology is generated by open sets given by the metric

dLU(x,y) =
∞∑
n=1

|xn − y|L∞[0,n] ∧ 1

2n
.

Lemma 12.5 The mapping a 7→ Za is cadlag in C(R+).

Proof: For all s ≥ 0, we have the convergence

lim
a↓a0

1{Xs>a} = 1{Xs>a0}, lim
a↑a0

1{Xs>a} = 1{Xs≥a0}.

Using Bounded Convergence Theorem w.r.t. the measure dVs, we have

lim
a↓a0

∫ t

0
1{Xs>a} dVs =

∫ t

0
1{Xs>a0} dVs,

and

lim
a↑a0

∫ t

0
1{Xs>a} dVs =

∫ t

0
1{Xs≥a0} dVs =: Za−

t . (12.9)

2

Lemma 12.6 The process a 7→ Y a ∈ C(R+) has a continuous modification.

Proof: Let

Tn = inf{t : ⟨M⟩t +
∫ t

0
|dVs| ≥ n}

and consider the stopped process Y a
t∧Tn

. By standard localization argument, it suffices to show that
a 7→ (Y a

t∧Tn
)t≥0 has continuous modification for every n. Therefore, without loss of generality, we

assume that for some K > 0,

⟨M⟩t +
∫ t

0
|dVs| ≤ K, ∀t > 0.

Our main tool is Theorem 2.7. Although Theorem 2.7 is stated for a stochastic process on R,
the theorem also holds for stochastic processes taking value in any metric space, for example C(R+).
Taking into account the definition of local uniform topology, it suffices to show

E sup
0≤t≤T

|Y b
t − Y a

t |α ≤ C|b− a|1+β (12.10)
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for some α, β > 0; then Theorem 2.7 will ensure that a 7→ Y a has a continuous modification.
Let b > a. Since

Y b
t − Y a

t =

∫ t

0
1{a<Xs≤b} dMs

is a martingale, by Theorem 10.6 we have for any p > 0,

E sup
0≤t≤T

|Y b
t − Y a

t |p ≤
[
E

∫ T

0
1{a<Xs≤b} d⟨M⟩s

]p/2
.

We will try to bound the integral on the right-hand side. This integral is almost the Itô’s correction
term, but 1{a<Xs≤b} is not continuous so it is not the second derivative of a C2-function.

To fix this, let us introduce

φa,b(x) =


x− a1
a− a1

, x < a,

1, x ∈ [a, b],
b1 − x

b1 − b
, x > b,

a1 = a− |b− a|, b1 = b+ |b− a|.

Then f(x) =

∫ x

0

∫ y

0
φa,b(z) dz ∈ C2 and f ′′ = φa,b. Moreover,

|f ′(x)| ≤ |φa,b|L1 = 2|b− a|.

By Itô’s formula, we have

0 ≤
∫ T

0
1{a<Xt≤b} d⟨M⟩t ≤ f(XT )− f(X0)−

∫ T

0
f ′(Xt) dMt −

∫ T

0
f ′(Xt) dVt.

For q ≥ 1, we have

E|f(XT )− f(X0)|q ≤ sup |f ′|q · E|XT −X0|q ≤ C|b− a|qE
[
|MT −M0|+

∫ T

0
|dVt|

]q
≤ C|b− a|qE

[
⟨M⟩q/2T +

(∫ T

0
|dVs|

)q]
≤ CK |b− a|q,

E
∣∣∣ ∫ T

0
f ′(Xt) dMt

∣∣∣q ≤ CE
∣∣∣ ∫ T

0
|f ′(Xt)|2 d⟨M⟩t

∣∣∣q/2 ≤ CK |b− a|q,

and

E
∣∣∣ ∫ T

0
f ′(Xt) dVt

∣∣∣q ≤ CE
∣∣∣ ∫ T

0
|f ′(Xt)| |dVt|

∣∣∣q ≤ CK |b− a|q.

Combining all these, we see that

E sup
0≤t≤T

|Y b
t − Y a

t |p ≤
[
E

∫ T

0
1{a<Xs≤b} d⟨M⟩s

]p/2
≤ CK |b− a|p/2

if p ≥ 2. This completes the proof. 2

With all these preparations, we have the regularity for the local time La
t (X).
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Theorem 12.7 Let X be a continuous semi-martingale and La
t (X) be its local time. Then a 7→ La

has a cadlag modification in C(R+). Moreover,

La
t (X)− La−

t (X) = 2

∫ t

0
1{Xs=a} dVs,

where X = M + V is the decomposition for X.
In particular, if X is a c.l.m. so that V ≡ 0, then La

t (X) is jointly continuous in (a, x).

Proof: By Theorem 12.2, we have

La
t (X) = 2 ·

[
(Xt − a)+ − (X0 − a)+ −

∫ t

0
1{Xs>a} dXs

]
.

The two functions (Xt − a)+ and (X0 − a)+ are obviously continuous in (a, x). The conclusion then
follows from Lemmas 12.5 and 12.6. 2

Now we are ready to prove the Generalized Itô’s formula. Proof of Theorem 12.3: After
localization, we can assume that X is bounded, so without loss of generality we can assume that the
support of f ′′ is contained in [−K,K] for some K > 0. Moreover, (12.7) is invariant after adding
a linear function to f , so we can further assume that f(x) ≡ 0 for x < −K. Noting Lemma 12.4,
integrating (12.4) w.r.t. the measure f ′′(·) gives

f(Xt) = f(X0) +

∫
f ′′(a)da

∫ t

0
1{Xs>a} dXs +

1

2

∫
La
t (X)f ′′(da).

We only need to justify the following Fubini Theorem holds:∫
f ′′(a)da

∫ t

0
1{Xs>a} dXs =

∫ t

0
dXs

∫
f ′′(a)da · 1{Xs>a} =

∫ t

0
f ′
−(Xs) dXs.

Note that

∫
dXs =

∫
dVs+

∫
dMs. The integral w.r.t. dVs is a Riemann–Stieltjes integral, which

is defined pathwise and Fubini Theorem holds. On the other hand, the stochastic integral is NOT
defined pathwise and justifying the change of order of integration has to be more careful. This is also
knows as the stochastic Fubini Theorem and we give a proof here in our setting.

For simplicity let us assume that ⟨M⟩∞ ≤ K (which can be achieved by localization). Let

Φt =

∫
[−K,K]

f ′′(da)

∫ t

0
1{Xs>a} dMs =

∫
f ′′(da)Y a

t

Note that Φt is a martingale, since a 7→ Y a is cadlag and hence Φt can be approximated by Riemann
sums, each of which is a linear combination of Y ai

t and hence a martingale. So Φt is the limit of
martingales, and must also be a martingale. It is not hard to see that Φt is square-integrable, so
Φ ∈ H2.

Take any N ∈ H2. Then

E⟨Φ, N⟩∞ = E

∫
[−K,K]

f ′′(da) ·
∫ ∞

0
1{Xs>a} d⟨M,N⟩s

= E

∫ ∞

0
d⟨M,N⟩s ·

∫
[−K,K]

f ′′(da)1{Xs>a}

= E

∫ ∞

0
f ′
−(Xs) d⟨M,N⟩s

= E⟨
∫ ·

0
f ′
−(Xs) dMs, N⟩∞.
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Hence by Theorem 6.6,

Φt =

∫ t

0
f ′
−(Xs) dMs.

This completes the proof. 2

We can use Theorem 12.3 to characterize the local time as density of occupation time.

Theorem 12.8 Let X be a continuous semi-martingale and La
t (X) be its local time. Almost surely,

for any t ≥ 0 and φ ≥ 0 measurable, we have∫ t

0
φ(Xs) d⟨X⟩s =

∫
R
φ(a)La

t (X) da. (12.11)

In another word, the random measure

A 7→
∫ t

0
1A(Xs) d⟨X⟩s

almost surely has density La
t (X).

Proof: Since a signed measure is determined by the integral of countable many compactly supported
continuous functions against it, it suffices to show that (12.11) holds almost surely for a fixed compactly
supported continuous function.

Let f ∈ C2 such that f ′′ = φ. Then comparing the Itô’s formula and Generalized Itô’s formula
applied to f(Xt) gives the desired result. 2

Proposition 12.9 Let X be a continuous semi-martingale. Then almost surely, for all a and t ≥ 0,

La
t (X) = lim

ε↓0

1

2ε

∫ t

0
1{a≤Xs≤a+ε} d⟨X⟩s.

Proof: By Theorem 12.8 with φ = 1[a,a+ε], we have

lim
ε↓0

1

ε

∫ t

0
1{a≤Xs≤a+ε} d⟨X⟩s =

1

ε

∫ a+ε

a
Lb
t(X) db.

The desired conclusion follows from the right continuity of b 7→ Lb
t(X). 2

Corollary 12.10 Almost surely, for all a and t > 0,

1

2
(La

t (X) + La−
t (X)) = lim

ε↓0

1

2ε

∫ t

0
1{a−ε≤Xs≤a+ε} d⟨X⟩s.

We call L̃a
a(X) =

1

2
(La

t (X)+La−
t (X)) the symmetric local time. We also have the generalized Itô’s

formula for symmetric local time:

f(Xt) = f(X0) +

∫ t

0
f ′(Xs) dXs +

1

2
L̃a
t (X)f ′′(da),

where f ′(x) :=
1

2
[f ′

+(x) + f ′
−(x)].
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12.3 Brownian excursions

We recall the Lebesgue decomposition for an increasing function f : R → R: f can be uniquely written
as the sum of three functions

f = f jump + fabs + f sing,

such that

• f jump increases only by jumps, that is, df jump =

∞∑
i=1

aiδbi ;

• fabs is absolutely continuous and increasing, so it has a derivative g(x) a.s. and dfabs = g(x) dx;

• f sing is continuous, increasing, and it is differentiable almost everywhere but the derivative equals
to 0, that is, df sing is a mutually singular with respect to the Lebesgue measure.

Note that an example for f sing is the Cantor’s function:

φ(x) =
∞∑
n=1

2xn
3n

, x =
∞∑
n=1

xn
2n

, x ∈ [0, 1], xn ∈ {0, 1}.

We recall the notation for level sets of a process X:

ZX
a (ω) = {t ≥ 0 : Xt(ω) = a}.

Also, for a measure µ on R, we denote by suppµ the support of µ, defined

suppµ = {x ∈ R : µ(x− ε, x+ ε) > 0, ∀ε > 0}.

It is easy to check that suppµ is always a closed set.

Proposition 12.11 Let X be a continuous semi-martingale and let La
t (X) be its local time at level a.

Then for a.e. ω, dsL
a
s(X) is supported on ZX

a (ω).

Proof: Let Yt = |Xt − a|. Then by Theorem 12.2, Yt is a continuous semi-martingale and

dYt = sgn(Xt − a) dXt + dLa
t (X).

Applying Itô’s formula to Y 2
t , we have

Y 2
t = Y 2

0 +

∫ t

0
2Yt dYt+

∫ t

0
d⟨X⟩s = Y 2

0 +

∫ t

0
2(Xt−a) dXt+

∫ t

0
2|Xt−a| dLa

t (X)+

∫ t

0
d⟨X⟩s. (12.12)

Here, we used sgn(x) · |x| = x.
On the other hand, Y 2

t = (Xt − a)2. Comparing the Itô’s formula for this expression with (12.12),
we obtain ∫ t

0
|Xs − a| dLa

s(X) = 0.

Then, for every ε > 0, dLa
s(X)

(
{s ≥ 0 : |Xs − a| > ε}

)
= 0. So if Xs ̸= a, then s ̸∈ suppµ. This

completes the proof. 2

In what follows we focus on the case where X is the Brownian motion. Recalling Proposition 3.22,
we first have the following.
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Corollary 12.12 For every a, with probability one, Leb(ZB
a (ω)) = 0.

Since the Brownian motion has continuous sample path, its zero set Z := ZB
0 (ω) is a close set,

and hence Zc is an open subset of R. As any open set in R, Zc can be written as a disjoint union

Zc =

∞⋃
n=1

(an, bn),

where on each (an, bn), the Brownian motion B is either strictly positive or negative. We call these
intervals (an, bn) excursion intervals of the Brownian motion, and for each n, (Bt)t∈[an,bn] an excursion
of the Brownian motion. Consider the renormalized excursion

ẽsn =
1√

bn − an

(
Ban+s(bn−an) −Ban

)
, s ∈ [0, 1].

In fact,

• (ẽn)n≥1 are i.i.d. processes.

• ẽ solves the SDE

ẽ0 = 0, dẽt =
1

ẽt
− ẽt

1− t
dt+ dWt.

The SDE can be derived from the Doob-h transform of the Brownian motion with

h(x, t) =
x

(1− t)3/2
e
− x2

2(1−t) ,

interpreted as “conditioned on hitting 0 at time 1”, and h(x, t) is the hitting time density.

One of the goals of studying Brownian excursion is to reconstruct Brownian motions path from
excursions. Intuitive, this is achieved in two steps:

1. Determine the zero set Z, and write Zc =
∞⋃
n=1

(an, bn).

2. Sample i.i.d. excursion processes ẽn and on each interval (an, bn), define

Bt =
√

bn − an · ẽn
( t− an
bn − an

)
, t ∈ (an, bn).

We will focus on the first step, and we will see that Z already determines the local time of
Brownian motion at 0. This is remarkable since previously we see that the local time of a continuous
semi-martingale X is determined by the behavior of X near a, see Proposition 12.9.

12.3.1 Lévy’s Theorem and Skorokhod equation

We use the notion X∗
t = sup

0≤s≤t
|Xt| to denote the maximal process of X.

Theorem 12.13 (Paul Lévy)(
B∗

t , B
∗
t −Bt, t ≥ 0

) d
= (L0

t (B), |Bt|, t ≥ 0).
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We will prove the theorem by studying the Skorokhod equation. Let y ∈ C[0,∞) with y(0) = 0. A
pair of functions

(
z(t), a(t)

)
t≥0

is a solution to the Skorokhod equation if they solve

z(t) = −y(t) + a(t), t ≥ 0, (12.13)

and satisfy

• z(t) ≥ 0, ∀t ≥ 0;

• a(t) is continuous, increasing, lim
t→0

a(t) = 0, and

supp das ⊂ {s ≥ 0 : z(s) = 0}.

Lemma 12.14 There exists a unique pair of solution (z, a) that solve (12.13). Moreover, the function a
can be represented as

a(t) = sup
s≤t

y(s). (12.14)

Proof: Uniqueness.
Suppose there are two pairs of functions (z, a) and (z̃, ã) that solves (12.13). Then, z − z̃ = a− ã has
bounded variation. We have

0 ≤ 1

2
(z − z̃)2(t) =

∫ t

0
(z − z̃)(s) d(a− ã)(s)

=
[ ∫ t

0
z da+

∫ t

0
z̃dã

]
−
∫ t

0
z̃da−

∫ t

0
z dã ≤ 0.

Here, the two integrals in the bracket are zero since supp das. The other two integrals are non-negative
since z, z̃ ≥ 0 and a, ã are increasing. Hence z̃ − z ≡ 0 and this proves uniqueness.

Uniqueness.
It suffices to verify (12.14) and z(t) = a(t) − y(t) indeed give the solution. Clearly, by the definition
of supremum, z ≥ 0 and a is increasing. Also, a is continuous and lim

t↓0
a(t) = 0 since y is continuous

and y(0) = 0.
The most difficult part is to verify (12.14). Let z(t) = a(t) − y(t) > 0. Then by continuity of y,

there exists t1 < t such that a(t) = y(t1) > y(t). By continuity of y, there exists ε < t− t1 such that

y(t1) > y(s), s ∈ (t− ε, t+ ε),

and hence a(s) = y(t1), ∀s ∈ (t− ε, t+ ε), that is, t ∈ (supp das)
c. This proves (12.14). 2

Proof of Theorem 12.13: By Theorem 12.2, we have

|Bt| = L0
t (B) +

∫ t

0
sgn(Bs) dBs =: L0

t (B)− βt,

and by Theorem 7.1, βt is a Brownian motion. By Proposition 12.11,

(y, z, a) = (β, |B|, L0(B))

solves (12.13). By Lemma 12.14, β∗
t = L0

t (B) and the theorem is proved. 2

Now let us define two new clocks for the Brownian motion β:

Sb = inf{t ≥ 0 : β∗
t > b} = inf{t ≥ 0 : βt > b} = inf{t ≥ 0 : L0

t (B) > b},
Tb = inf{t ≥ 0 : β∗

t = b} = inf{t ≥ 0 : βt = b} = inf{t ≥ 0 : L0
t (B) = b}.

It is not hard to see that (Sb)b≥0, (Tb)b≥0 are the right-continuous and left-continuous inverse of the
increasing function t 7→ β∗

t = L0
t (B).
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Proposition 12.15 Almost surely, the process b 7→ Sb grows only by jumps.

Proof: Since almost surely, Leb(ZB
0 (ω)) = 0 and T, S are the left/right-continuous inverse of

t 7→ L0
t (B), we have

Sb =
∑
b′≤b

(Sb′ − Tb′).

This proves the claim. 2

The process Sb is known to be a stable process. In the last part of this section, we will collect some
fact about infinite divisible laws, stable process and subordinates.

Definition 12.2 A probability measure µ is infinite divisible if for all n, ∃µn such that µ = µ∗n
n , that

is, if X1, . . . , Xn are i.i.d. with distribution µn, then X1 + · · ·+Xn ∼ µ.

Examples for infinite divisible distributions are Poisson, Gaussian, and Cauchy distribution, which
can be verified easily from their characteristic functions.

Definition 12.3 A stochastic process X is a Lévy process if X has stationary, independent increment.
If X is Lévy, then for every t, Xt −X0 is infinite divisible.

Theorem 12.16 (Lévy–Khintchine) A r.v. X has infinite divisible distribution if and only if its
characteristic function has the representation

EeiuX = exp
(
iβu− σ2u

2
+

∫
(eiux − 1− iux

1 + x2
) ν(dx)

)
, (12.15)

where β ∈ R, σ ≥ 0 and ν is a measure on R such that

∫
|x|

1 + x2
ν(dx) < ∞.

If X comes from a Lévy process, then the three parts in the characteristic function corresponds to
the linear part (iβu), Brownian motion (σ2u/2) and the pure jump process.

Definition 12.4 A r.v. Y is stable if for every k, there exists ak, bk such that for Yi
d
= Y ,

Y1 + · · ·+ Yk
d
= akY + bk.

If Y is stable, then necessarily ak = k1/α for some α ∈ (0, 2]. The number α is called the stable index.
A Lévy process with stable increment is called a stable process.

Proposition 12.17 If X is stable, then in (12.15), σ = 0 and

ν =
(
m11{x<0} +m21{x2>0}

)
|x|−1−α

where α is the stable index of X.

In fact, Sb is a stable process with index 1/2. We have

Snb = inf{t ≥ 0 : βt > nb} d
= S

(1)
b + · · ·+ S

(n)
b ,

where
S
(k)
b = inf{t ≥ S(k−1)b : βt > kb} − S(k−1)b

d
= Sb.

On the other hand, by the diffusion scaling of Brownian motion,

Snb = inf{t ≥ 0 : βt > nb} d
= n2 inf{t ≥ 0 : βt > b}.

Definition 12.5 A stable process X is called a subordinates if Xt is non-decreasing.

Although it is possible to study Sb using the tools from stable law, in this note we will study it
using Poisson point process, with the knowledge that b 7→ Sb only have jumps. This will be done in
the next section.
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12.3.2 Poisson point process and excursion

Since Sb grows only by jumps, it is completely characterized by the information of all jumps. Each
jump can be represented by a point (b, j(b)) ∈ (0,∞)2. The first coordinate is the location of the jump,
and the second coordinate j(b) = Sb−Tb is the size of the jump. It is still consistent to write j(b) = 0
if Sb is continuous at b.

All the jumps constitutes a simple point process on R2
+. A standard way to study such point

process is to regard it as a random counting measure

ν =
∑

j(b)̸=0

δ(b,j(b)).

The minimum measurability assumption on the random measure ν is that we can count how many
points there are in a given set. This leads to the following definition.

Definition 12.6 Let (H,H) be a measurable space. A (simple) point process is a random counting
measure ν on (H,H) such that for all C ∈ H, ν(C) ∈ {0, 1, · · · } ∪ {∞} is a r.v.

Note that we are thinking of H = (0,∞)2.

Definition 12.7 A random counting measure ν is a Poisson point process (PPP) on (H,H) if

1. for every C ∈ H, either ν(C) = ∞ almost surely when Eν(C) = ∞, or ν(C) ∼ Poi
(
λ(C)

)
where λ(C) := Eν(C) < ∞;

2. for any disjoint C1, C2, · · · , Cn, ν(C1), ν(C2), · · · , ν(Cn) are independent Poisson random vari-
ables.

The measure λ(C) := Eν(C) is called the intensity measure of the PPP.
The distribution of ν is completely determined by its f.d.d.

L
(
ν(C1), ν(C2), · · · , ν(Cn)

)
, C1, C2, · · · , Cn ∈ H.

Example 12.3 (Poisson process) Let λ > 0. A Poisson process with intensity λ is defined by

Nt = max{k : ξ1 + ξ2 + · · ·+ ξk ≤ t},

where ξi are i.i.d. Exp(λ) r.v.’s. The process Nt is counting how many independent exponential clocks have
rang in the interval [0, t]. The times when these clocks ring form a PPP on [0,∞) with intensity measure λ dt.
We can write Nt = ν([0, t]).

Example 12.4 (Compound poisson) Let ηi be i.i.d. r.v.’s and Nt be a Poisson process with intensity λ. We define

Zt(ω) =

Nt∑
n=1

η(k).

We can represent Zt as

Zt =
∑

0≤s≤t, (s,ℓ)∈supp ν

ℓ =

∫
[0,t]×R+

ℓν(dsdℓ),

where ν is a PPP on [0,∞) × R+ constructed as follows: for each s = ξ1 + · · · + ξk, place a point at (s, ηk),
where ηk are i.i.d. random variables. In fact, ν is a PPP with intensity λdt ⊗ π, where π is the common
distribution of ηi.
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It is standard to compute the Laplace transform of the compound Poisson r.v. Zt. We have

Ee−αZt = Ee−α
∑Nt

n=1 ηn

= E
(
Ee−αη

)Nt

=: EaNt

=

∞∑
k=0

ak(λt)k

k!
e−λt

= e−λt(1−a) = exp
(
− λt

∫
(1− eαℓ)π(dℓ)

)
.

In general, we can consider any integrable function f(s, ℓ) instead of ℓ1{s≤t} and obtain

Ee−α
∫
f(s,ℓ)ν(dsdℓ) = exp

(
−

∫
(1− e−αf(s,ℓ))λ(dsdℓ)

)
, (12.16)

where λ is intensity measure of ν.

Now we return to our study of Sb. Consider the random measure

νω =
∑

j(b)>0

δ(b,j(b)). (12.17)

For Γ ∈ B(0,∞), we also define

NΓ
t =

∑
b<t

1Γ

(
j(b)

)
= ν

(
[0, t]× Γ

)
.

Proposition 12.18 For any Γ, NΓ
t has stationary and independent increments.

Proof: Note that NΓ
t −NΓ

s depends only on
(
βr
)
r≥St

. The statement follows from the fact that St

is a stopping time and the strong Markov property for the Brownian motion β. 2

Our goal is to show that ν is a PPP. We can identify the intensity measure (in variable ℓ) as

ρ(Γ) :=
1

t
ENΓ

t .

The definition of ρ is independent of t by Proposition 12.18. Also, ρ is a measure on B(0,∞).

Theorem 12.19 The random measure νω is a PPP on (0,∞)2 with intensity dt⊗ ρ.

We need a lemma.

Lemma 12.20 Let Φ : (ω, t, ℓ) → R+ be predictable. Then

E

∫
Φ(ω, t, ℓ)ν(dtdℓ) =

∫ ∞

0
dt · E

∫
Φ(ω, t, ℓ)ρ(dℓ).

Here, the predictable σ-field is the smallest σ-algebra such that all left-continuous in t map φ(ω, t)
are measurable; Φ is predictable if (ω, t) 7→ Φ(ω, t, ℓ) is measurable w.r.t. the predictable σ-algebra.
Below we will use such a property: if φ(ω, t) is predictable and Mt is a right-continuous martingale,
then ∫ t

0
φ(ω, t) dMt

is well-defined and is also a martingale.
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Proof: It suffices to check for Φ taking the form Φ(ω, t, ℓ) = φ(ω, t)1Γ(ℓ) where φ is predictable and
Γ ∈ B(0,∞). Then NΓ

t − tρ(Γ) is a right-continuous martingale, and hence

0 = E

∫ ∞

0
φ(ω, t)(dNΓ

t − ρ(Γ)dt) ⇒ E

∫
Φ(ω, t, ℓ)ν(dtdℓ) = ρ(Γ)

∫ ∞

0
dtEφ(ω, t).

2

Proof of Theorem 12.19: We will show (c.f. (12.16)) for every f(t, ℓ) ≥ 0 with∫ ∞

0
dt

∫
f(t, ℓ) dℓ < ∞,

we have

E exp
(
−

∫
f(s, ℓ)1[0,t](s)νω(dsdℓ)

)
= exp

(
−
∫ t

0
ds

∫
(1− ef(s,ℓ))ρ(dℓ)

)
. (12.18)

This will implies νω has the same f.d.d. distribution as a PPP with intensity measure dt⊗ ρ.
Let

Xt =

∫
f(s, ℓ)1[0,t]νω(dsdℓ) =

∑
s≤t, (s,ℓ)∈supp νω

f(s, ℓ).

The

H(t) := Ee−Xt − 1 =
∑
s≤t,

Ee−Xs − e−Xs−

= E
∑

s≤t, (s,ℓ)∈supp νω

e−Xs−
(
e−f(s,ℓ) − 1

)
= E

∫ t

0
ds e−Xs−

∫
(e−f(s,ℓ) − 1)ρ(dℓ).

In the last equality, we use Lemma 12.20, and the predictability of the functional in the last but one
line follows from the strong Markov property of β.

Write G(t) =

∫
(e−f(t,ℓ) − 1)ρ(dℓ). We have

H(t) = 1 +

∫ t

0
H(s−)G(s) ds, (12.19)

and G ∈ L1(R) by our assumption on f . Since |H(s)| ≤ 1, the integrand in (12.19) is also L1 and
hence H(t) is continuous, and H(s−) = H(s). Then the integral equation has a unique solution
H(t) = exp(G(t)), and this completes the proof. 2

We know very precise information about the distribution of Sb.

P(Sb ∈ dt) =
b√
2πt3

e−
b2

2t , Ee−Sb = e−
√
2b.

From either of them, we can compute ρ(dℓ) =
dℓ√
2πℓ3

, ℓ > 0.

Now we will give another description of the local time using only the set Z = ZB
0 (ω). Let

N δ,ε
b = ν

(
[0, b]× [ε,∞)

)
∼ Poi(

2

π

b√
ε
)

= # of jumps of size ℓ ≥ ε for (Sa)0≤a≤b.
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Proposition 12.21 Almost surely, for all b ≥ 0,

lim
ε↓0

πε

2
N ε

b = b.

Proof: It suffices to prove it for a fixed b ≥ 0. Then it simultaneously holds for all b ∈ Q, and the
conclusion follows from the monotonicity of b 7→ N ε

b .

Let Qt = ν([0, b] × [t−2,∞)). Then Qt is a Poisson process with parameter EQ1 =

√
2

π
b. Let

ξ1, ξ2, . . . be the exponential r.v.’s that build (Qt). For Qt = n, we have

n

ξ1 + ξ2 + · · ·+ ξn + ξn+1
≤ Qt

t
≤ n

ξ1 + ξ2 + · · ·+ ξn
.

By strong law of large numbers, we have almost surely,

lim
t→∞

Qt

t
=

1

Eξ
=

√
2

π
b.

Hence,

lim
δ↓0

N δ
b√
1/δ

=

√
2

π
b.

This completes the proof. 2

As corollary, we obtain a description of the local time using only the zero set:

LB
t (0) = β∗(t) = lim

ε↓0

πε

2
ν
(
(0, β∗

t ]× [ε,∞)
)

= lim
ε↓0

πε

2
·#{ jumps ≥ ε made by (Sb)b≤β∗

t
}

= lim
ε↓0

πε

2
·#{ excursion interval ≥ ε made by (Bs)s≤Sβ∗t

}

= lim
ε↓0

πε

2
·#{ excursion interval ≥ ε made by B before time t}.

12.4 Ray–Knight Theorem

In this section we state the Ray–Knight Theorems, which give information of the joint distribution of
local time at different levels.

The square Bessel process, denoted by BESQδ(x), is the unique strong solution to the SDE

Zt = x+

∫ t

0

√
Zs dWs + δt.

Note that the pathwise uniqueness holds for this SDE since

∫ 1

0

( 1√
x

)2
dx = ∞. If δ ∈ Z+,

then Zt =
(
B

(1)
t

)2
+ · · ·+ (B

(δ)
t )2 is a solution. If δ = 0, we do not have such representation, but

it is easy to see that Zt ≡ 0 is always a solution. So pathwise uniqueness implies that 0 is an absorbing
state, i.e., if Zt0 = 0 for some t0, then Zt = 0 for all t ≥ t0.

Theorem 12.22 (First Ray–Knight Theorem) Let B be Brownian motion and Ts = inf{t : Bt = 1}.
Let Za = L1−a

T1
(B). Then (Za, 0 ≤ a ≤ 1) is BESQ2(0).
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Intuitively, after the Brownian motion hits 1, the local time La should increase as a decreases from
1. This monotonicity is captured by the BESQ2(0) process, which is a sub-martingale starting from
0.

Theorem 12.23 (Second Ray–Knight Theorem) Let τx = inf{t : L0
t (B) ≥ x}. Then (La

τx(B), a ≥ 0)
is BESQ0(x).

The second Ray–Knight Theorem views the local time using the a “different clock”, i.e., the local
time at 0.

13 Stratonovich integral

Let us consider the SDE

Xt = ξ +

∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dWs.

For simplicity, in this section we assume that b is bounded Lipschitz, and σ ∈ C2
b (σ, σ′, σ′′ bounded

continuous).
Note that if s 7→ Ws has finite variation, the we can define the last integral as a Riemann–Stieltjes

integral and the integral equation can make sense. But we know that Brownian motion does not have
finite variation, and that is the reason why we need to develop the theory of stochastic integral with
the help of martingale theory. However, this is not the only approach; in problems such as singular
SPDEs and Gaussian free field, Liouville quantum gravity, etc, it is common to smooth a rough object
like the Brownian motion and study the limit when the smoothing is removed.

In our context, it is natural ask the following question. If WN → W locally uniformly and WN

has finite variation, and XN solves the integral equation

XN
t = ξ +

∫ t

0
b(XN

s ) ds+

∫ t

0
σ(XN

s )dWN
s ,

what can be said about the limit lim
N→∞

XN?

The answer is that XN → X̃ where X̃ solves

X̃t = ξ +

∫ t

0
b(X̃s) ds+

∫ t

0
σ(X̃s) ◦ dWs. (13.1)

The ◦ symbol denotes the Stratonovich integral, which is defined as follows: if Y , Z are two continuous
semi-martingale, then ∫ t

0
Ys ◦ dZs =

∫ t

0
Ys dZs +

1

2
⟨Y,Z⟩t, (13.2)

where the first integral is the Itô integral. We will rigorously establish this approximation result in
one dimension in Section 13.1.

A notable feature for the Stratonovich integral is that normal chain rule holds, i.e., without Itô’s
correction term:

f(Xt) =

∫ t

0

∑
i

(∂if)(Xt) ◦ dX(i)
t , X

(i)
t continuous semi-martingale, f ∈ C3. (13.3)

The C3 condition is unnatural since the chain rule only involves the first derivative. The assumption
cannot be removed here if we rely on (13.2), since we need to apply Itô’s formula to ∂if(X) to obtain
their cross variation.
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In Section 13.2 we will see another definition of the Stratonovich integrals, with which we can
establish the chain rule under the assumption f ∈ C1. The alternative approach also explains why 1/2
comes out from smooth approximation but not other factors 1/3, 2/3, etc.

13.1 One-dimension result

Let Vt be a function with bounded variation. Consider the integral equation

Xt = x+

∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dVs. (13.4)

Proposition 13.1 There exists a unique solution to (13.4), and is given by a continuous functional

Φ : R× C(R) → C(R), (x, (Vt)t≥0) 7→ (Xt)t≥0.

For the uniqueness, one just looks at the difference of two solutions |X1
t −X2

t | and finds a way to
apply the Gronwall’s inequality. Let us illustrate how to solve the integral equation and construct the
functional Φ.

To motivate, let us look at the simplest case where σ(Xt) ≡ c. To solve the equation

dXt = b(Xt) dt+ cdVt,

a simple idea is to define the substitution Xt = Yt + cVt, and then solves

dYt = b(Yt + cVt) dt

which is a normal ODE. The gain here is for the Y -ODE, the dependence on Vt is no longer through
the Riemann–Stieltjes integral dVt, but Vt becomes a part of the ODE coefficient.

In the general case, let u(x, y) solves

∂xu(x, y) = σ
(
u(x, y)

)
, u(0, y) = y,

and let Yt solves

dYt = f(Vt, Yt), Y0 = x, f(x, y) =
1

∂yu(x, y)
b
(
u(x, y)

)
.

The solution to (13.4) is then given by Xt = u(Vt, Yt). It is not hard to check the continuous depen-
dency of Xt on x, V .

To see that Xt is indeed a solution, we have

dXt = ∂xu(Vt, Yt) dVt + (∂yu)(Vt, Yt) dYt

= σ
(
u(Vt, Yt)

)
dVt + b

(
u(Vt, Yt)

)
dt

as desired.
Now what is Xt = Φ(x,Wt) where Wt is a Brownian motion? We have

dXt = ∂xu(Wt, Yt) dWt +
1

2
∂xxu(Wt, Yt) dt+ ∂yu(Wt, Yt)f(Wt, Yt) dt

= σ(Xt) dWt + b(Xt) dt+
1

2
∂xxu(Wt, Yt) dt.

Note that ∂xxu = (∂xu) · ∂xσ and

σ(Xt) =

∫
σ′(Xt) dXt +

1

2

∫
σ′′(Xt) d⟨X⟩t,
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so
d⟨σ(X·),W ⟩t = σ′(Xt)σ(Xt) dt.

Therefore, Xt = Φ(x,Wt) solves (13.1).
In higher dimension, the integral equation (13.4) no longer has such nice presentation as Proposi-

tion 13.1. The approximation result only holds for linear interpolation.

13.2 Alternative construction of Stratonovich integrals

The goal of this section is to give an alternative construction of the Stratonovich integral so that the
chain rule (13.3) holds for f ∈ C1.

Fix T > 0. For N ≥ 1 and a process Z, we define the linear interpolation process

ZN
t =

{
Zt, t = 2−N · kT,
linear interpolation betweenZ2−NkT , Z2−N (k+1)T , t ∈ (2−NkT, 2−N (k + 1)T ).

Note that ZN will have bounded variation, and for continuous semi-martingales X,Y , we have∫ t

0
Y N
s dXN

s =
∑
i

Yti+1 + Yti
2

(Xti+1 −Xti)

=
∑
i

Yti(Xti+1 −Xti) +
∑
i

Yti+1 − Yti
2

(Xti+1 −Xti)

→
∫ t

0
Ys dXs +

1

2
⟨X,Y ⟩t,

where ti = i · 2−NT .
This motivates the following definition. Let X be a continuous semi-martingale. We say that

Yt(ω) : [0, T ]× Ω → R

is Stratonovich integrable w.r.t. X if and only if the limit

lim
N→∞

2N−1∑
m=0

Yti+1 + Yti
2

(Xti+1 −Xti) =:

∫ T

0
Yt ◦ dXt

exists in probability. Note that here Yt(ω) does not have to be a semi-martingale.
To perform calculation we still need to use the Itô’s theory. Let X̌T

t = X
(
(T − t)+

)
and assume

that X̌T is a continuous semi-martingale w.r.t. some filtration F̌T
t . If Y = (Yt(ω)) ∈ C[0, T ] a.s.

and Yt(ω) ∈ Ft ∩ F̌T
T−t, then Y is Stratonovich integrable on [0, T ] w.r.t. X and∫ T

0
Yt ◦ dXt =

1

2

∫ T

0
Y (t) dXt −

1

2

∫ T

0
Y (T − t) dX̌T

t .

Here, Y ∈ C[0, T ] so Yt is both (Ft)-progressively measurable and YT−t is F̌T
t -progressively measurable,

and hence both Itô integrals make sense.
Now let Wt, t ∈ [0, T ] be Brownian motion. Clearly, W̌t = W

(
(T − t)+

)
is semi-martingale, with

⟨W̌ ⟩t = t ∧ T, finite variation part Vt = −
∫ t

0

W̌ T
s

T − s
ds.

Here, the finite variation part is non-zero since the terminal condition W̌T = W0 = 0 is enforced.
Then, g(Wt) is Stratonovich integrable on [0, T ] w.r.t. W for every g ∈ C(R). Moreover, we have the
following approximation result for Stratonovich integrals.
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Proposition 13.2 If gn, g ∈ Cb(R) such that gn → g locally uniformly, then∫ T

0
gn(Wt) ◦ dWt →

∫ T

0
g(Wt) ◦ dWt

in probability.

Proof: Let W ∗ = sup
0≤t≤T

|Wt| = sup
0≤t≤T

|W̌ T
t |. We have

E|
∫ T

0
gn(Wt) dWt −

∫ t

0
g(Wt)dWt| ≤

[
E

∫ T

0
|gn(Wt)− g(Wt)|2 dt

]1/2
≤

[
E1W ∗≤M

∫ T

0
|gn(Wt)− g(Wt)|2 dt+ E1W ∗≥M

∫ T

0
|gn(Wt)− g(Wt)|2 dt

]1/2
.

By standard argument we can show that the expectation on the left-hand side converges to 0 as n → ∞.

It is similar for the other integral, but now dW̌t = dM̌t −
W̌t

T − t
dt. 2

Finally, we are ready to prove (13.3) for X being a multi-dimensional Brownian motion, that is,

f(WT )− f(W0) =
d∑

i=1

∫ T

0
(∂if)(Wt) ◦ dW (i)

t , f ∈ C1. (13.5)

Let fn ∈ C2
b such that f ′

n → f ′ locally uniformly. We have

d∑
i=1

∫ T

0
(∂ifn)(Wt) ◦ dW (i)

t =
1

2

d∑
i=1

∫ T

0
(∂ifn)(Wt) dW

(i)
t − 1

2

d∑
i=1

∫ T

0
(∂ifn)(W̌t) dW̌

(i)
t

=
1

2

[
fn(WT )− fn(W0)−

∑
i,j

1

2

∫ T

0
∂ijfn(Wt) dt

]
− 1

2

[
fn(W̌T )− fn(W̌0)−

∑
i,j

1

2

∫ T

0
∂ijfn(W̌t) dt

]
= fn(WT )− fn(W0).

Note that the two Itô correction terms cancel since W̌ is just the time-reverse of W . This also explains
why 1/2 appears in front of ⟨X,Y ⟩t in the definition of Stratonovich integral: this is the only factor
so that the Itô correction terms in the forward and backward integrals can cancel. Letting fn → f ,
the chain rule (13.5) follows from Proposition 13.2.

14 Notations

14.1 Abbreviations

i.i.d. independent, identically distributed
r.v. random variable
f.d.d. finite-dimensional distribution
ch.f. characteristic function
u.i. uniformly integrable
c.l.m. continuous local martingale
m.t. martingale term(s)
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14.2 Sets

Z set of integers
N set of natural numbers {0, 1, 2, . . .}
Q set of rational numbers
R set of real numbers
R+ (resp. R−) set of non-negative (resp. non-positive) real numbers

14.3 Relations

⇒d or ⇒ convergence in distribution/law
d
= equal in law

14.4 Functional spaces

C[a, b] continuous function defined on the interval [a, b]
Cα[a, b] α-Hölder continuous function defined on the interval [a, b]
M(E) probability measures on a metric space E

14.5 Operations

a ∧ b min(a, b)
a ∨ b max(a, b)
⟨a, b⟩ inner product in a Euclidean space/Hilbert space

(or) a linear functional a in the dual space X ∗

acting on an element b in a Banach space X
A∆B = (A \B)∪
(B \A)

the difference set.

14.6 Miscellaneous

L(X) distribution/law of a random variable/element X

N (µ, σ2) normal distribution
Exp(λ) exponential distribution
Poi(λ) Poisson distribution
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