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1 Introduction

In this section we will give some motivations to study Brownian motions and stochastic integrals.

1.1 Stochastic processes

The well-known Central Limit Theorem (CLT) gives the universal behavior of the sum of many small
independent variables: for i.i.d. r.v.’s X; with EX; =0, EXZ-2 =1, one has

Xi+Xo+---+ X,
N

Example 1.1 We can take X; as the results of independent, coin flips, so P(X; = +1) = 1/2.

=d N(O, 1).

Write the partial sum as S, = X1 + X2 + - - - + X;;. We can plot the trajectory n — S, as below:
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The plotted trajectory, which linearly interpolates between (n,Sy,), n € N, can be written as

5’ . Sn, t:nEN,
n+1—-1)S,+ (t—n)Sp+1, t€ (n,n+1).

Question What is the limit of t — S; as (continuous) trajectories?

The Donsker’s invariance principle, a.k.a. the Functional CLT, states that in an appropriate sense,
the limit is given by the Brownian motion, which is a “continuous stochastic process”.

Theorem 1.1 (Functional CLT)

(f/"% tzO) Ny (Bt, tzo),

where (By)i>o is the Brownian motion (BM).



Remark 1.2 We will define rigorously what is a “continuous stochastic process” below.

Remark 1.3 The convergence “=;” means convergence in distribution/law. As we are studying random functions
rather than random variables, we need to work on probability measures on functional spaces, which are infinite-
dimensional and quite different from finite-dimensional spaces like R%. We will return to this in [Section 1.2

Using the CLT, we can obtain the finite-dimensional distribution (f.d.d.) for Brownian motion.
For fixed t > 0,

L(By) = lim L(S["t]> = lim c( S ‘\/i) — N(0, V).

n—00 \/ﬁ n—o00 [nt]
In general, for 0 =t <ty < --- < ty,, it is believable that

Btla Btgftla e 7Btm - Btm_l
should have the same distribution as independent N(0,¢1), N'(0,t2 — 1), -+ ,N(0, ¢, — ty—1) T.V.’s.

Definition 1.1 A stochastic process (X¢)ier (I = Z,R, etc) on a probability space (2, F,P) is such
that for every fivedt € T,
we N Xi(w)

is a measurable map from (2, F) to (R, B(R)).
Remark 1.4 As a notation, we may simply write “X; is B(R)/F-measurable”.

Definition 1.2 For a stochastic process (Xi)ier, its finite-dimensional distribution (f.d.d.) is the
collection of all the laws
L(Xt,, Xtyy-o oy Xt )y t1yt2, .oty €T

It follows from |Definition 1.1| that all the sets
{(Xt17Xt27"'7Xtm) S A}, Ae B(Rm)

are measurable, and hence f.d.d. of a stochastic process is well-defined.

Homework (Transformation of BM)

1. Prove the equivalency of the following two conditions: for 0 =ty <t; < -+ < t,p,

L(By,, B, — By,,...,Bt,, — By,,_,) = N(0,diag{ti11 — t; Jo<i<m—1)

1.1
& (B, By, .., By,) is a centered Gaussian vector with covariance EBy, By, = t; A t;. (L1.1)

2. Suppose that (B;)i>o has f.d.d. Show that all the following processes have the same f.d.d.
a) (=Bt)izo-
b) (Bd)izo = (5 Baehizo- (Fix A >0)
¢) (B{”)iz0 1= (Biys — Ba)izo. (Fix s >0.)
d) (tBi/t)t>0 (with the convention 0 - By /o = 0).

Hint: You can find some basic properties of Gaussian vectors in Section 2.1. This exercise is basically about
covariance computation.



It is believable that a stochastic process is more or less determined by all its f.d.d. (which is done
by Komolgorov’s Extension Theorem, see for example [Shi96, Chap. I1.3, Theorem 4]). With the
definition of stochastic processes at hand, the next question is what makes a “continuous” stochastic
process. To discuss continuity we now take 7" to be an interval of R (1" = [a, ], [0,00), etc). Then, a
“continuous” process requires additionally that the map

t— Xt(W)

is continuous for P-a.e. w.
Remark 1.5 For a generic stochastic process (X;):er, the sets
C ={w:t+— X;(w) is continuous.}

and (for to € T)
Ci, = {w:t— Xi(w) is continuous at t = tg.}

are NOT measurable.
To see this, recall that we can characterize the continuity of a function by sequential convergence, namely,

lim f(t) = f(to) & Vin—=to, lim f(tn) = f(to)-

t—to

Although for any fixed sequence (), the set

oo

{w: lim X, = Xy)} = N
m=1N

= 1
ﬂ {(JJ : |th —Xt0| < *}
In=N m

(@

is in F (hence measurable), there are uncountably many such sequences (¢,) such that ¢, — tg.

Homework Let (X,,),>1 and X be r.v.’s on (Q,F,P). Show that

{w: lim X,(w) = Xeo@)} =) U [{w:1Xnw) = Xeo(w)| < %}

n—oo
m=1 N=1n=N

Conclude that the left hand side belongs to F.

Due to the potential measurability issue, the continuity of a stochastic process is somehow an
“independent” property to consider, so additional efforts are always needed for the justification. There
are generally two approaches: one is to use Komolgorov’s Continuity Test (its usage summarized in
[Theorem 1.2)), the other one is to directly build up probability measures on the desired functional
spaces ([Section 1.2)).

But assuming that this can be done, we are ready to rigorously define what a Brownian motion is.
One last thing to do is to specify how we distinguish between different stochastic processes.

Definition 1.3 Two stochastic processes X = (Xi¢)ier, Y = (Yi)ter, defined on (Q, F,P), are called
modifications of each other if
PX,=Y) =1, Vel

That is, X and Y have the same f.d.d.

Definition 1.4 Y is called a version of X, or indistinguishable from X, if for a.e. w,
Xe=Y, Vtel.

Clearly, when T is uncountable, the above two definitions are not equivalent.



Remark 1.6 It is tempting to write P(X; = Y;, V¢ € T) = 1. However, without additional assumptions on the
processes X and Y, it is not clear whether the set {X; = Y;, Vt € T} is measurable. If some statement holds

for “a.e. w”, what is means is that it is true on an event Q with P(Q2) = 1. It may still be true or not true for
some w in Q°, but the point is that at least such exceptional points are contained in a set of zero probability.
The issue could be resolved if additionally the probability space (2, F,P) is assumed to be complete, in which
case all subsets of zero-probability sets are measurable.

Homework Let X = (X;);>0 be a stochastic process on (€2, F,P) such that ¢ — X;(w) is continuous for almost
every w € Q. Let 7 be a continuous r.v. on (2, F,P) and ¥ = (¥});>0 be defined as

Y(w) — Xt(w)7 t%’l’(w),
‘ X,(w)+1, t=r1(w).

Show that Y is a stochastic process which is a modification of X, but t — Y;(w) is NOT continuous for almost
every w € ().

Definition 1.5 The (1d, standard) Brownian motion (By)i>o is a continuous stochastic process with
f.d.d. given by

*C(Bthtz — Btp ey Btm — Btm—l) = N(O, diag{tiﬂ — ti}ogigmfl), O=tg <ti1 < <ty (12)
In particular, P(By = 0) = 1.

The information of f.d.d. of Brownian motion indeed sheds some light on the continuity property.
In fact, the continuity condition can be dropped in the above definition, if we allow ourselves to
consider stochastic processes up to modifications. The next result is a consequence of the Kolmogorov’s
Continuity Test.

Theorem 1.2 If (X;)i>0 has the f.d.d. given m then (Xt)t>0 has a continuous modification.

Idea of the proof: = We can use the f.d.d. on Q4 to show that for a.e. w, t — Bi(w) is uniformly
continuous on Q, that is, Ve > 0, 36 = (e, w) such that

]th(w) — XtQ(w)| < 0, V‘tl — t2| <eg, t1,t9 € Q+.

Then we can extend the function ¢ — X;(w) on Q4 to a continuous function on R+ O

The existence of a stochastic process with any given consistent f.d.d. is guaranteed by Kolmogorov’s
Extension Theorem, although later in this note we will exploit the Gaussian f.d.d. more to give another
more explicit construction of Brownian motion . Then, using the above theorem we obtain
a continuous stochastic process. We will fill in the gaps later in this note.

1.2 Probability measures on metric spaces

Recall that X is a r.v. on a probability space (Q,F,P) if X : Q@ — R is B(R)/F-measurable. The
distribution of X is a measure on (R, B(R)), given by

LIX)(A)=PoX YA =P(X ecA), AcB(R).

The measure £(X) is determined by P(X < a), a € R, since B(R) = o((—00,4a], a € R).

We want to replace R by a general metric space (M, d), where M can be as large as the space of all
continuous functions. Any stochastic process from a probability measure on the space of continuous
functions will automatically be continuous. We start by some basic notions on probability measures
on metric spaces.

A metric space (M, d) is a set M equipped with a metric d : M x M — Ry which satisfies



o (symmetry) d(z,y) = d(y, z);
e (positivity) d(z,y) > 0, and the equality holds only when = = y.
e (triangle inequality) d(z,y) + d(y,2) > d(z, 2) .

Example 1.7 1. M =Z, d(z,y) = |z — y|.
2. M =R™, with £,-distance

m
1/p
[Zm—yiﬂ ;1 <p<oo,
i=1

1g1iaé>§n|xi — il p = o0.

dp(x,y) =

3. M =C[0,1], d(z,y) = sup |x(t) —y(t)|.
t€(0,1]

For a metric space, its Borel o-algebra B(M) is the o-algebra generated by all the open sets in M,
or equivalently, the smallest o-algebra containing all the open balls

B, (x0) ={x :d(x,z9) <r}, xz0€ M, r>0.

Definition 1.6 Let (M,d) be a metric space. An M-value random element (r.e.) on (Q,F,P) is
a measurable map from (2, F) to (M,B(M)). The distribution of X is a probability measure on
(M,B(M)), given by

(PoX1)(A)=P(X cA), AcB(M). (1.3)

The measure in|(1.3)| is determined its value on all open balls By (xg).

Example 1.8 Let X be a C[0, 1]-valued random element. Then (X¢);c0,1] is a stochastic process.
In fact, for ¢t € [0, 1], we have the composition

w X(w) = Xi(w),

where the first map is B(M)/F-measurable by the definition of random elements, and the second map is
continuous since it is the evaluation map at given ¢ of continuous functions and hence B(R)/B(M)-measurable.
Therefore, the map w — X;(w) is B(R)/F-measurable.

Example 1.9 (Coordinate process) Let  be a measure on (C(R4), B(C(R4.))). Define
(9, F,P) = (C(Ry), BC(RL)), ), Xe(w) = w, ¢ 0.
Then (X;);>0 is a continuous stochastic process.
A function F : M — R is continuous if d(z,z9) — 0 implies |F(x) — F(xzg)| — 0.

Definition 1.7 Let X™ and X be C[0,1]-valued random elements defined on (QM™, F™ P™)) and
(Q, F,P). We say that X™ converge weakly (or converge in distribution/law) to X, denoted by
XM =, X if for all bounded and continuous F : Cl0,1] —» R,

lim EMF(X™) = EF(X).

n—oo
Remark 1.10 It is annoying to work with different probability spaces, but the good news is that the underlying
probability spaces are not relevant for the notion of weak convergence. Let p,, = PMo [X(”)]_1 and = PoX 1.
Then p,, p are all (probability) measures on (C[0, 1], B(C[0, 1])). By standard functional analysis terminologies,
the above definition says that wu, — p in the weak-* topology (since measures on metric spaces form the dual
space of bounded continuous functions). In probability it is conventional to call it weak convergence.



The Brownian motion gives rise to a measure on C[0,1], called the Wiener measure. It is a
probability measure on C[0, 1] whose coordinate process has specific f.d.d.’s. To construct the Wiener
measure directly:

e Functional CLT: need to understand (pre-)compact sets in C[0, 1], and use the information of
f.d.d. to verify tightness. A good read is [Bil99]).

e Gaussian measures on Banach spaces: more general, but still using the Gaussian information in
an essential way. Such construction is needed for the study of stochastic PDEs, where the state
space of the Gaussian processes is infinite-dimensional. This is a little beyond the scope of this
course, and we will not go into more details other than Interesting readers can
take a look at [PZ14, Chap. 2] or [Hai, Chap. 2-3].

With the Wiener measure at hand, we can now think of Brownian motion as random continuous
functions. We conclude by mentioning the Holder-continuity property of Brownian motion.

Definition 1.8 Let o € (0,1]. A continuous function f is called (locally) c-Holder if every x,
|f(z) = f(y)]

sup T o < 00.
Yy y#Ex ‘33 - y’

The a-Hélder continuous functions on [0,T] form a complete metric space C*[0,1] C C[0, 1] under the

/(@) - Fy)l
|z —y|®

norm:

|flce = sup|f ()| + sup
z TFY

Theorem 1.3 For o € (0,1/2), the Wiener measure PV is supported on a-Hélder continuous func-
tions, that is,
Vo € (0,1/2), PY(w e c0,1]) = 1.

Remark 1.11 One can show that for every o € (0, 1], the set of a-Hélder continuous function in C[0, 1] is in
B (C [0, 1]), using that fact that a continuous function can be determined by its values on rational points.

1.3 Stochastic integrals and SDEs

Denote by xz(t) the position of a particle at time t. The Langevin dynamics of the particle is described
by the equation

mi(t) = —(VU) (z(t)) — vi(t) + en(t).

The equation arises from Newton’s second law:

e mi(t) is the mass multiplied by the acceleration. It should be equal to the force, which is the
right hand side of the equation.

e U is the potential, and —(VU)(z(t)) gives the potential force.
e —~vi(t) represents the friction which is usually proportional to the velocity ().
e ¢n)(t) is the random forcing, with ¢ controlling its magnitude.

In an ideal physical model, n(t) is the so-called white noise. As a “stochastic process”, it should
have at least the following two properties.



e independence 7(t) should be independent over disjoint intervals, namely, if I; and I are two
disjoint intervals of R, then the two o-fields

o(n(t), teh), o(n(t), tel)
are independent.

e stationarity the one-dimensional distribution of 7(t) does not change:
L(n(t)) = L(n(t2)), V1 #to.

Brownian motion in fact got its name from the botanist Robert Brown who observed the motion of
pollen of plants through a microscope. For things like the pollen, the term mi(t) is negligible compared
to other terms since m is so small, the above equation can be approximated by the overdamped Langevin
dynamics:

i(t) = —(Vu) (z(t)) +n(t) (1.4)

For simplicity, we will set all constants (¢, v, etc) to 1 hereafter.
Free motion case. Let us set U = 0 in|(1.4)} This means that no external potential (such as the
gravity) is taking effect. We can simply integrate |(1.4)| to obtain (assuming x(0) = 0)

o(t) = /Ot n(s) ds.

The function ¢ — x(t) is just the trajectory of a randomly moving light-weighted particle. Based on
our assumption on the white noise 7(t), its antiderivative z(¢) will satisfy

e {1+ x(t) is continuous; this is really a physical constraint.

e 2(t) has independent increments: for all 0 = tg < t; < -+ < tp, {2(tit1) — (i) i<i<m are
independent.

e The increments are centered Gaussian: z(t) — z(s) ~ N(0,02_,). This is because any increment
can be written as i.i.d. sums of small r.v.’s:

N-1

i(t—s
x(t) —ZL'(S) - Zx(tl""l) _x(t2>7 t; :8+(]v)
1=0
Moreover, due to stationarity, it only makes sense to have Uf_ s to be linear: Utz_ s=K-(t—s)

for some constant K > 0.

Up to a constant, the only process that satisfies all these conditions is Brownian motion. This means
the write noise n(t) should be interpreted as the “derivative” of Brownian motion. However, there is
one fundamental issue of such interpretation:

Question The Brownian motion is only a-Hoélder continuous for o < 1/2. In fact it is nowhere
monotone and nowhere differentiable (we will see proofs of these statements later on). Then how

dB
should we define n(t) = d—tt ?



The U # 0 case. Let us consider a more general form

(t) = b(z(t)) + (), (1.5)

where b : R — R is a sufficiently nice function. We are now entering the realm of the stochastic
differential equation (SDE) . It has a lot of applications in other fields, for example stable diffusion in
text-to-image Al models. As we mentioned above, 7(t) is not a function. At best it could be defined
as a generalized function (viewed as a linear functional acting on Cg°(R)). Due to the special structure
of this issue could be circumvented by considering the equivalent integral equation

x(t) = z(0) + /0 b(z(s)) ds + B(t). (1.6)

Now the noise enters the equation as a Brownian motion B(t), which is a random continuous function.
All terms in make sense as long as z(t) is a continuous function. Then standard fixed-point or
Picard-iteration techniques can be applied here to construct a unique solution x(t).

First variation of the magnitude of the noise is time-dependent.
Let us consider

(1) = b(x(t)) + f(t)n(t),
where f(t) is a nice (say bounded and smooth) function. Inspired from the integral equation, it suffices
to define the so-called stochastic integral

/ f(s)n(s) ds = / £(s) dB(s) (L.7)
0 0

The notation on the right hand side is to mimic that of the Riemann—Stieltjes integral. We recall
its definition below.

Definition 1.9 Let g be a function of finite wariation (i.e., g = g* — g, where both g* and g~ are

increasing) and f be a continuous function. Then the Riemann—Stieltjes integral /fdg is defined as

N

b
| gt = tim 3 1) oltinn) - at), (19)
@ i=1

where A :a =ty < t; <--- <ty =bisapartition, & € (t;,ti+1) is arbitrary, and |A| = max |t;11—1;].
The limit does not depend on the sequence of partitions or (&) that are chosen.

Example 1.12 When ¢(t) = ¢, the Riemann—Stieltjes integral is just the Riemann integral.
A nice thing about the Riemann—Stieltjes integral is that integration by parts holds.

Proposition 1.4 Let f, g be functions of bounded variation. Then

b b
/ £(t)dg(t) = FD)g(®) — Fla)g(a) — / o(t) df (1),

Homework Use the Abel transformation (summation by parts)

n n
E Uk(Uk+1 - Uk) = Un+4+1Un+1 — ULV1 — E Uk+1(uk+1 - Uk)
k=1 k=1

to show that integration by parts holds for Riemann—Stieltjes integrals for functions f and g of bounded
variation.



Of course, Brownian motion does not have bounded variation; such property is almost requiring
differentiability. However, we can still use the idea of integration by parts to define simple stochastic

integrals in the form of [(1.7)| by

[ rsam. = sm- [ Boars)

It requires only that f has bounded variation.

In fact, the integration-by-part formula suggests a trade-off between the regularities of f and g.
A further generalization of Riemann—Stieltjes integral is the Young’s integral, which says that
makes sense for f € C%, g € C® with a+ 3 > 1. Intuitively, the Riemann-Sticltjes integral corresponds
roughly to the case « =0 and 8 = 1.

Second variation of the magnitude of the noise is both time- and space-
dependent.
We are now consider the SDE

i(t) = b(z(t)) + o (t, z(t))n(t), (1.9)

where both b, o are smooth. Again, with the integral form of the SDE, it all boils down to defining
the stochastic integral

/0 o(s,z(s)) dBs. (1.10)

We already know that ¢ — B; is C* with a < 1/2. We also note that z(¢) cannot be more regular

than B(t), and hence no matter how smooth the function o is, the map ¢ — o (¢, z(t)) is at most ch
t

with f < 1/2. One such simple example is / B; dBs. Therefore, it is hopeless to define |(1.10)| even

as a Young’s integral, since a 4+ § < 1. Thisois as far as classical analysis can take us to. It tells us
that the stochastic integral cannot be defined for a fixed realization of (By). In fact, it could
only be defined (or constructed) as a new stochastic process with the help of some new probabilistic
tools.

To summarize, two central goals of this course are

t
/ Y, dB,
0

for very irreqular stochastic processes Y = (Y;)¢>0.

1. Define the stochastic integral

Again,we emphasize that if Y € c? B> 1 /2, then the stochastic integral can be defined for
every fixed realization of Brownian motion, but such treatment cannot cover even the simple
case where Y; = B; itself.

2. Develop a good solution theory for the SDE |(1.9)]

2 Construction and properties of Brownian motion

2.1 Gaussian r.v.’s and vectors

Gaussianity is crucial in the study of Brownian motion. In many ways, Brownian motion can be seen
as a generalization of Gaussian vectors. In this section, we review some basic facts about Gaussian
r.v.’s and vectors.

We begin with the definition of a (generalized) Gaussian r.v.



Definition 2.1 Let p € R and o > 0. A Gaussian r.v. X with N'(u,0?) distribution is characterized
by any of the following:

. g2
1) Its characteristic function is px (€) = EeX = =5 €,

2

1 z
2) LX)=L(n+0-Y), where Y ~ N(0,1) is the standard normal, a r.v. with density \/276_7'
T

_@=w?
e 22 ;ifo =0,

3) If o # 0 (non-degenerate case), then X is a continuous r.v. with density

then P(X =0) =

1
V2T
Proposition 2.1

1. If X is a Gaussian r.v. on (Q,F,P), then X € LP(Q,F,P), ¥p € (0,00). In particular, for
X ~ N(p,06%), EX =0 and Var(X) = o>

2. If Xi ~ N (s, 02»2) and X; are independent, then X1+ Xo+- - -+ X, ~ N (p1+- - -+ pin, U%-}-' . '—l—afl).
Proof: The proof is elementary.
1. Direct computation using the Gaussian density.

2. Use the ch.f. of Gaussian r.v.’s.

O
Gaussian r.v.’s have nice properties as elements in LQ(Q, F,P).
Proposition 2.2 If X,, ~ N (m,02,) and Xy = X in L*(Q, F,P), then X ~ N (u, %) with
= i s 0= Jing o )

Moreover, X,, — X in LP(Q, F,P) for any p > 0.

Proof: The L%convergence of X,, — X implies the existence of both limits in Hence, for
242

each £ € R, we have ¢x,, (§) — exp(iué — %), which is the ch.f. of N(,0?)-Gaussian. On the

other hand, the L2-convergence of X,, — X also implies that X,, — X in probability, and thus in
242

distribution. so ¢x,, (§) = ¢x(£). Therefore, px (&) = exp(ip& — i), and X indeed has N (u, %)

2
distribution, with u, o given by [(2.1)
For any ¢ > 0, it is easy to get a uniform upper bound by direct computation:

sup E| X, — X7 < C = C(sup fom, sup o).

By choosing ¢ > p, we see that | X,,, — X |? is uniformly integrable. Since |X,, — X| — 0 in probability,
this and uniform integrability imply (see [DurQ7, Sec. 4.5]) that E| X, — X|? — 0. O

Definition 2.2 A random vector X € R? is Gaussian if for all v € RY, (v, X) is a Gaussian .v.

Example 2.1 1. X = (Xy,...,Xq) where all X;’s are independent Gaussian random variables.

2. Let X € R? be Gaussian and Q be a d x d matrix. Then Y = QX is Gaussian, since (v, QX) = (QTv, X)
for any vector v.

10



3. Let (By)i>0 be Brownian motion. For any 0 < #; <ty < --- < ¢, both random vectors

(BtlaBtz _Btla"'vBtm _Btm,1)7 (Bt17Bt27"'JBt )

m

are Gaussian.

Definition 2.3 A stochastic process (Xi)ier is a Gaussian process if for any ti,ta,...,tym € T,
(Xt,s- -, Xt,,) is a Gaussian vector.

Example 2.2 The Brownian motion is a (centered) Gaussian process.

Theorem 2.3 Each of the following is an equivalent definition for a random vector X € R? to be
Gaussian.

1. There exists px € R? and a non-negative quadratic form Q : R x R* — R such that the ch.f. of
X 1is

2. There exists px € RY, an orthonormal basis (ONB) {b1,...,bq}, and ey > e9 > --- >, >0 =
Epy1 = -+ = €q Such that

T
XLY =px+Y em-bi m " N(O,1). (2.2)
=1

Proof: From [Definition 2.2(to [Item 1| Since (&, X) is Gaussian for every & € RY, we have

We can take puy = EX (coordinate-wise) so that E(¢, X) = (£, px), and take

Q(fa C) - COV((&? X>a <C7X>)

It is easy to check that Q(-, ) is bilinear, symmetric, and defines a non-negative quadratic form on RY.
From [Item 1| to |[Item 2| Since () is a non-negative quadratic form, it can be diagonalized in an
ONB {by,bs,...,bq} with eigenvalues €2 > 0:

d

Q6,0) =D (£)*(&,b:)(C bi).

i=1

(In matrix form, this is just Q = BTXB where B = {by,...,bs} and ¥ = diag{e?,...,e3}.) Without
loss of generality we can take €; > 0 and order them from the largest to the smallest.
Suppose on some probability space we have i.i.d. N'(0,1) Gaussian r.v.’s n; and let Y be defined

by For all v € R?,
,
(v,Y) = Z ei{v, by)m;
i=1

is a sum of independent Gaussian r.v.’s, and hence is Gaussian. This verifies that Y is a Gaussian
vector. Also, we have

E(v,Y) = (v,ux), Var((v,Y)) =) (v, b;)* = Q(v,v).
i=1

11



So X and Y have the same ch.f., and hence £(X) = L(Y") as desired.
From [Item 2| to |[Definition 2.2 It is already done above. O
A Gaussian vector is non-degenerate if the quadratic form @ is non-degenerate, i.e., all eigenvalues
are strictly positive. A non-degenerate Gaussian vector has a density, which is more familiar to most
people.

Proposition 2.4 A non-degenerate Gaussian vector X € R? has density

1 1 1 To-1
— —5@—px)" Q7 z—px)
xXr) = e 2 ,
"= B Jam)
where Q = (Qi5) = (Cov(X;, X;)) is the covariance matrix.

Remark 2.3 Since the distribution of a Gaussian vector is determined by its covariance matrix, the f.d.d. of a
centered Gaussian process X = (X;):er is completely determined by its covariance function

I'(s,t) .= Cov(Xs, Xy) = EX: Xy, s, teT.
For Brownian motion, I'(s,t) = s A t.

Homework Let X and Y be i.id. with EX = EY = 0 and EX? = EY? = 1. Suppose that the distribution of
(X,Y) is rotational invariant, i.e.,

L(X,)Y)=L(Xcosf+Ysinf,—Xsinf+Y cos), VOeR.

Show that £(X) = L(Y) = N(0,1).
Hint: rotational invariance implies that the ch.f. takes the form ¢xy(£,1) = F(£2 +n?).

A Banach space is an infinite-dimensional vector space. The generalization of Gaussian vectors to
the infinite dimension is Gaussian measures on Banach spaces.

Definition 2.4 (Gaussian measure on Banach spaces) Let E be a separable Banach space. We say
that an E-valued random element X has Gaussian distribution, if (A, X) is a Gaussian r.v. for any
linear functional A\ € E*.

Example 2.4 For Gaussian vectors in R, E = R? = E*, that is, any linear functional is the inner product with

a fixed vector v. This is exactly [Definition 2.2

Example 2.5 For Brownian motion, X = (B;)cjo,1), £ = C[0, 1], and E* is the space of all finite signed measures
on [0,1]. Then for A = \(dt) € E*, (A, X) is a centered Gaussian with variance

Var((\, X)) = E /O 1 /0 " B A(ds) BoA(dF) = /O 1 [EB.B.] Mds)A(d) /O 1 /O (s A 0) A(ds)A(d),

where in the last equality the exchange of integration and expectation needs justification.

For the construction of Brownian motion, the variance of (A, X), A € E*, will be given first, and then
some general theory will guarantee the existence of a corresponding (centered) Gaussian measure as long as the
variance functional induces a positive definite quadratic form, similar to Gaussian vectors.

Homework Let f(t) = A((¢, 1]).
1. Suppose that A(dt) = p(t) dt for some p € C[0,1]. Show that

/01 /01(8 At) Ads)\(dt) = /01 ()2 dt.

2. (Optional) Prove the same identity for an arbitrary signed measure A(dt).

Hint: if X(dt) is a signed measure, then f defined as above has bounded variation and A(dt) = d( — f(t)).
Use integration by parts for Riemann—Stieltjes integrals.

Hint: use integration by parts.

12



2.2 Gaussian white noise

The goal of this section is to construct a centered Gaussian process (Bt)te[ml] with covariance EB;Bs =t A s.
After the construction, the resulting process (called “pre-Brownian motion” in [LeG16]) may not be
a.s. continuous; we will discuss how to get continuity in and

The Kolmogorov’s Extension Theorem ([Shi96, Chap. II.3, Theorem 4]) already guarantees the
existence of a stochastic process with any prescribed consistent f.d.d. However, in the special case of
Brownian motion, it is advantageous to have a more explicit construction using the Gaussian white
noise.

1
Surprisingly, it is more convenient to first define a more general stochastic integral G(f) = / f(t)dBy,
0

and then define Brownian motion as a special stochastic integral

1
Bt:/ 1[0,t]<3) ds.
0

The following discussion shows that the natural class of functions to define G(f) is L*[0,1], and
for such f, G(f) is in fact a Gaussian r.v. This will also motivate the introduction of Gaussian white
noise, and the definition of It6 integrals later.

First: f piecewise constant
m—1

Suppose that [0, 1] is partitioned into 0 =ty < t; < -+ <ty =1 and f(s) = filit, 4i00)(8). Then

1
in light of the Riemann—Stieltjes integral, it only makes sense to define G(f) as

m—1
G(f):=Y_ fi: (Be,, — By). (2.3)
1=0

We did not specify f(1), but it does not enter the definition of |(2.3)| anyway, so it is safe to ignore
it. The r.v. in|(2.3)|is a sum of i.i.d. Gaussian r.v.’s, so it is also Gaussian. It has zero mean, and a
variance

m—1 1
Var (G() = 3 f2(tis1 — 1) = / ()Pt
i=0 0

Second: difference of G(f1) and G(f2) for piecewise constant f;.
Without loss of generality we can assume that f; and fy has the same partition of [0, 1], since otherwise
we can enlarge their partitions to a common partition by including all the endpoints. Then, a similar
computation yields that G(f1) — G(f2) is also a centered Gaussian, with variance

E|G(f1) — G(f2)I = |f1 = folZ20)-

Last: general f ¢ L?[0,1]
Every function f € L?[0,1] can be approximated by piecewise functions f,, in L?[0,1]. One way to see
is to first approximate any L2 [0, 1] function by continuous functions, then to approximate continuous
functions by piecewise constant functions. Suppose that f,, — f in LQ[O, 1] and f,, are all piecewise
constant. Note that

|G(fn) - G(fm)&?(fl,f,P) = E’G(fn) - G(fm)|2 = |fn - fm|%2[0’1]

Since f, — f, (fu) is a Cauchy sequence in L?[0,1], and hence (G( fn)) is a Cauchy sequence
in L*(Q, F,P). But L?(Q,F,P) is a complete metric space, which means every Cauchy sequence
has a limit; let us denote the limit of Gn(f) by G(f). Note that all G(f,) are Gaussian, so by
IProposition 2.2} the limit G(f) is also Gaussian.

13



Definition 2.5 (Gaussian white noise) Let (E,E) be a measurable space, p be a o-finite measure
on (E,E). Denote by H = L*(E, &, ). A Gaussian white noise (with intensity pi) is an isometry (i.e.,
preserving the inner product between two inner product spaces) from H to LQ(Q,]-', P) with values
being (centered) Gaussian r.v.’s. The isometry is given by

G: f G(f) ~ N(O, |fI%).

Theorem 2.5 If the Hilbert space H = LQ(E, E, u) is separable, then there exists a probability space
(Q, F,P) such that the Gaussian white noise G : H — L*(Q, F,P) exists.

Remark 2.6 A Hilbert space is an inner product space which is also complete. One can think of a Hilbert
space as an infinite-dimensional Euclidean space. All L?-spaces are Hilbert space by standard real analysis.
“Separable” means that there is a dense countable set, which is true when H = L?([0, 1]).

In proving the theorem, the ONLY thing we will use about a separable Hilbert space is the existence
of an ONB.

Proposition 2.6 If H is a separable Hilbert space, then there exist (ey)n>1 C H, such that
o (en,em)=1p—m.

o (basis) for every f € H, it can be written as

F= en ) fn,
n=1

where the infinite sum is converging in H.
Such collection (en)n>1 is called an orthonormal basis of H.

Proof of [Theorem 2.5;  Pick an ONB (e,,),>1 for H = L*(E, &, u). Let (2, F,P) be a probability
space on which there are i.i.d. N'(0,1) r.v.’s &,, n > 1. Let us define

N
GN(f) = Z£n<en7f>
n=1

Then Gn(f), N > 1, each being a sum of independent Gaussians, are all Gaussian. Also, for N < N/,

EIGN() =G (NP = DY Ien I

N<n<N'

Since f € H = L*(E,&, ) and |f|} = Z](en,fHQ < 00, {GN(f)}n>1 is Cauchy in L*(Q,F,P).
n=1

Therefore, the following limit in L*(Q, F,P)

G(f) = Jim GN(f) =) &nlen. f) (24)
n=1

exists. Since G(f) is the L% limit of Gaussians, it is also Gaussian; moreover, by [Proposition 2.1}, it
has distribution A(0, | f]3). 0
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Example 2.7 A Gaussian vector in R? is also associated with a Gaussian white noise expansion, with H =
R, |- |z), and

o =0TQu =" efl(v, byl

i=1

Compare with [[tem 2|in [Theorem 2.3|

Example 2.8 H = L*(R>o, B(R>0), dt). Then B, = G(1[) is a centered Gaussian process, with covariance

EB;B; = / 1[07,5] (7”‘)1[078] (r)dr =sAt.
0

That is, (B):>o has the same f.d.d. as Brownian motion.

The definition of Gaussian white noise only shows B; is Gaussian for a fixed t. To see that any f.d.d. is jointly
Gaussian, we need to do a little bit more work. This can be also derived from the definition of Gaussian white
noise. In fact, any isometry between Hilbert spaces must be linear, so for any ¢; < -+ < t,, and vy, ..., U,

v1 By, + -+ v By, = G( Zvil[o’tio
i=1

is indeed Gaussian. The covariance computation from variance is a consequence of applying the following
polarization identity to the inner product spaces L?(Q, F,P) and L*[0, 1]:

Remark 2.9 Use the GWN construction of BM, for f € L?[0,00),

E‘/0 F)dB| =ElG(y)] 7/0 F2(t) dt. (2.5)

This is the simplest form of the celebrated “It6’s Isometry”.

2.3 Continuity of Brownian motion via Kolmogorov’s Continuity Theorem

A powerful tool to get continuous modification of a stochastic process is the celebrated Komolgorov
Continuity Theorem. It extracts information of path regularity from the f.d.d.

Theorem 2.7 Let (Xt)te[o,T} be a stochastic process that satisfies
EIX: — X,* < K[t —s|'"P, Y0<s,t<T.

Then X has a modification X which is v-Hélder continuous for all v < B/c.

Example 2.10 Let (By);c[o,1) be a Gaussian process with EB;By =t A's. Then B, — B, ~ N(0,t — s), and hence
2-1

E|B, — B,|" < K, (t—s)™? for all n. > 1. Since n/ can be arbitrarily close to 1/2, (B;) has a modification
n

which is y-Holder for all v < 1/2.

We first reduce to the case of a fixed +.

Lemma 2.8 If X and Y are continuous stochastic processes on R, and Y is a modification of X,
then Y is a version of X.
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Proof: By the definition of modifications, P(X; = Y;) = 1 for all t € R. Since the set of rational
numbers Q is countable, we have P(X; =Y}, Vt € Q) = 1. That is, there is a set N with probability
P(N) = 0, such that for all w € N,

Xi(w) =Y (w), VteQ. (2.6)

Noting that t — X;(w) and ¢t — Y;(w) are always continuous. Hence, if for any w the condition |(2.6)]
holds, then it follows that

Xi(w) =Y (w), VteR. (2.7)
So[(2.7)| holds except on a null-set A; this means that Y is a version of X. O

Lemma 2.9 For it suffices to prove it for any fized v < a/p.

Proof: Suppose that there are modifications X™ of X which is v, = (a/3—1/n)-Hélder continuous.
Then by X™ 5 > 1, are all versions of each other. In particular, there exist null-sets A/ (n)

such that
Vwoe WMy, x®=x™ ¢ eo, 1.
Let N = U N Then N is also a null-set, and for all w € N, Xt(l) = Xt(n), Vn,t. Hence, X
n>2
is y,-Holder for all n > 1 on the set N. Since 7, is arbitrarily close to o/3, X M s ~v-Holder for
any v < /8 on N. The proof is complete. O

Proof of Without loss of generality set 7' = 1. Let v < §/a.

By Markov inequality,
(1/2n)1+5

92—yna

P(’Xk/Q” — Xp—1/2n] > 277”) <K — Ko—n(1+p-an)

By a union bound,

P( sup |Xk‘/2" — Xk_1/2n| > 2_’Yn) S K- 2—(5—06’)/)71.
1<k<2n

o0
Since Z 9~ (B-amn oo, by Borel-Cantelli, there exists ng = ng(w) such that for n > ny,
n=1

’Xk/Qn - X(kfl)/Z"‘ <277 W1 <k <2™ (28)

Claim: for a.e. w, X is uniformly y-Holder continuous on D = UD,, = U(Z/Qn N [0,1]), that is,
there exists M = M (w) > 0 such that

| Xs — Xy| < Mt —s|7, Vt,se€D.

Assume that the claim is proved. Noting that D is dense in [0, 1], we can define

Xz, teD,
X=9 lim X, t¢D.
D>ty —t

By the uniform y-Hélder continuity, the limit is independent of (¢,,), and the resulting X is v-Holder
continuous with the same constant C'(w).
Now we turn to the proof of the claim.
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k k+1
Let t € [Q—n, 2—; ] ND,0<k<2"—1,n > ng. Then there exist a sequence k/2" = p, /2",

g1 /27 pn /2N =t such that

];%_ZZE‘:QTIH’ n<m<N.
By triangle inequality and
N-1 o0 9—n
| Xt = Xpjon| < Z [ Xpj2m = Xp iy jami] < Z 277" = 19" (2.9)
m=n m=n

In particular, this and triangle inequality imply that X; is bounded on t € D. Let My(w) = sup X;.
D
For every s < t in D, we can find the biggest n such that

k—1 k k+1
on S s < 27 S t< on s
and such n necessarily satisfies
1 1
il = |t —s| < 1 (2.10)

There are two cases.
Case 1: n < ng. Since |t —s| > 27" we have

X — X _ 20y
t—spr = (27mop

= Ml(w).

Case 2: n > ng. By triangle inequality, ((2.9)] and |(2.10)| we have

2—’Yn+1

[ Xs = Xe| < | X = Xyjon| + [ Xpyon = Xo| < op < 775

(2t — s])7 =: Ma|t — s[7.

Let M = max(M;(w), Ms). Then | Xy — X| < M|t — s|7 for all t,s € D. The claim is proved. O
Homework The Brown sheet (Bs¢)s teo,1] is a centered Gaussian process with covariance
EB; By v = (s AS)(EAL), s,t,8,t €[0,1].

It can be constructed via GWN with H = L?([0, 1], B([0,1]?),ds x dt) and B ; = G (L0,5x[0,4])-

1. Show that for each p > 1, there is some constant K, > 0,
EBs: — le,t/|2p < Kp(|s — s+t - t'|p), s, t, 8"t €10,1].

2. Let 0 < v < 1/2. Show that with probability one, there is a random constant ng = ng(w) such that for
all n > ng,

B _Bk/ [/

<27 0L kK<™ |k—K|+ (-0 <1

L.
Ty Q7T
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2.4 Lévy’s construction of Brownian motion

Using the proof of [Theorem 2.5 we can express Brownian motion explicitly in the form of [(2.4)| In
Theorem 2.5

fact, let {e,} be an ONB of L?([0, 1], dt) and &, ey N(0,1) on (Q, F,P). Then by

an ), Ljo,q(x)) (2.11)

is a Gaussian process with the f.d.d. of a Brownian motion; moreover, the infinite sum converges
in L?(Q, F,P). But we cannot derive continuity of ¢ — By(w) for fixed w.

Let us take a closer look at the infinite series Note that 3,(t) = (en(z),1jp(z)) is a
deterministic, continuous function. Hence, for every fixed N,

N
= Z gn(w)ﬁn (t)
n=1

is also continuous in t for every w. From classical analysis, for P-a.e. w, if the Cauchy criterion holds:

sup |BY — BN'|(w) =0, N,N'— oo, (2.12)
t€[0,1]

then (B (w))tefo,1] converges uniformly to some (random) continuous function (Bt (w)) The two

tef0,1]"
processes B and B must have the same f.d.d., since for fixed ¢, B is the a.s.-limit of Bi\] , while By is
the L2-limit of Bév : in other words, B will be a continuous modification of B.

The usual approach to verify the Cauchy criterion is to use Weierstrass M -test, which is an estimate
for absolute convergence:

sup [BYN — BN )< > J&al sup [Ba(t)]. (2.13)

t€[0,1] N<n<N’ te(0,1]

Since §n Won (0,1), it is easy to control the growth of &,: by Borel-Cantelli and the Gaussian tail
estimate P(JN(0,1)] > a) < e~%*/2_ with probability one, there is a random constant ng = no(w) s.t.
€] <Inn,  VYn > no(w).

Therefore, to apply the M-test, all we need is

Zlnn sup |Bn(t)] < oc. (2.14)

te[0,1]
Can be true? Let us look at a common choice for ONB on L?[0, 1] from Fourier series:
{en(x)} = {1,V2sin(2n - ), V2 cos(2mn - z)}.

For the corresponding (3, (t), one has
1
sup |Bn(t)| ~ n

te(0,1]

[ee]
Inn
Since g —— diverges, the M-test cannot apply.
n

n=1
There are two fixes. The first one to choose {e,(z)} more cleverly, so the Cauchy criterion
holds. See Lévy’s construction in the exercise below.
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Homework For n > 0 and 0 < k <2" — 1, let

n 2 1
2%, 2% <z 2’“,:1 ,
eni(@) =3 oz 2k+1 __E+1l B (1) = (enk L),
’ on+l  — on
0, otherwise,

2" —1
i.4.d

N
and &, "< N(0,1). Define AB' = 3 &, xBnk(t) and BY = AB}.

1. Show that {e, x} is orthonormal, i.c.,

1
/ envk(x)en/’k/ (SL’) dx = 1n:n’1k:k/'
0

2. Show that
ABP'| <272,
t:ﬁﬁ}l Pl < pciax | lnkl
Hint: note that for fized n, e, i has disjoint support for different k.

3. Use P(JN(0,1)] > a) < e~%"/2 and Borel Cantelli Lemma to show that with probability one, there is a
random constant ng = ng(w) such that

[npl <m, VO<k <2" —1, n >
4. Conclude that with probability 1, {B{¥ (w),t € [0,1]}n>1 is Cauchy in C[0, 1], that is,

lim  sup BN BN (w =0, a.e w.
s 1B~ B ()

Another convenient description of Lévy’s construction is the following. Let X} be i.i.d. A(0,1)
and Sy = X1+ -+ + Xj. Define

g_ Sk, t:k:EZ,
T (= k) Sk + (E+1—K)Sk, te (kk+1).

Then
N d SQN t
B 9N/2”

In this representation, it is easy to verify that BY has the same f.d.d. as Brownian motion at ¢ € Z / o,
By the Functional CLT, BY converges to Brownian motion in distribution.

Another fix is to utilize the fluctuation of i.i.d. Gaussian and improve the bound on the right hand
side of As a comparison, recall the Kolmogorov’s One-Series Theorem.

o0 o0
Theorem 2.10 Let X,, be independent with EX,, = 0 and Z EXTQL < o0o. Then Z X, converges a.s.

n=1 n=1
As a consequence of heorem 2. 10 we can put random +1 in front of 1/n and get a conditionally

converging sum E — since E — < oo. However, g — = o0 so absolute convergence bound

n
like m will fall

n=1
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In infinite dimension, the analogue is Z 6721 < oo in the L?*-sense:

n=1

0 1
Z/(; Bg(t)dt_/ Z €n, Ot dt / |10t LQ[Ol]dt /0 tdt < oo.
n=1

Some general theory about Gaussian measures is develop to guarantee that |(2.11)| always converges
almost surely, whatever the choice of the ONB {e,, }, which is a refinement of the construction in
orem 2.5 (see e.g. [PZ14] Part I, Theorem 2.12]).

3 Filtration and Markov property
3.1 Filtration and stopping times
Definition 3.1 Let (X;)i>0 be a stochastic process defined on (2, F,P).
1. A filtration (Fi)e>0 is a family of increasing sub—o-field of F, namely,

Fioy CF, CF, Y0O<t <ty

2. Xy is said to be adapted to (Fi)i>0, if Xt is measurable w.r.t. F; for all t > 0.
Example 3.1 (Natural filtration) Let (Xy);>0 be a stochastic process on (€2, F,P). The natural filtration is
FXi=0(X,:0<s<t).

Roughly speaking, .7-' is the information contained by the process X up to time t. By definition, X; is .7: -
measurable, so X is (]:t )-adapted.

Definition 3.2 On the space (Q, F, (Ft)t>0, P),
1. a r.v. T is called a stopping time if {T <t} € F;, Vt > 0;
2. a r.v. T is called an optional time if {T < t} € F, Vt > 0.

There is a small difference between optional times and stopping times, but under mild assumptions
they will be the same. We will see these assumptions by the end of this section. Nevertheless, the
next two propositions give some relations between them.

Proposition 3.1 If T is a stopping time, then T is also optional.

Proof: We have
> 1
(T <t}=|J{T<t- ~} co(F_1,n>1)CF.

n=1
So T is optional. O
o
Let Fiy := m F L1 = m Fs. The two intersections are equivalent since F; is a increasing in t.
n=1 " s>t

Proposition 3.2 If T is an optional time for (F;), then it is a stopping time for (Fiy).
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Proof: We have
[oe) 1 oo
{Tﬁt}: ﬂ{T<t+E}€ ﬂlft_i_yll—]:t_;_.

n=1

|

Example 3.2 The most common examples of stopping times and optional times are the hitting time of a set.
Let I' C R and (X;)¢>0 be a (F;)-adapted process. Then

Tr=inf{s >0: X, eT}.

Proposition 3.3

1. If T is open and X has right-continuous sample paths, then It is optional.

2. If T is closed and X has continuous sample paths, then It is stopping.
Proof:

1. For t > 0, we have

{Tr <t} ={3s<t: X,eT}={3g<tqeQ: X, eT}= |J {X,eT}er,
q€Q,q<t

where the first equality is due to the definition of infimum,and the second equality due to right-
continuity of paths and openness of .

2. For t > 0, we have

o

TN . 1
{Tr >t} = {{X}sepy T = 2} = [ J {dist({ X}, D) ==} = [) {dist(X,T) > E} € F;.
n=1 n=1¢e[0,{]NQ

The continuity of X implies that {X,} se[0,f] 1 a compact set, and hence if it does not intersect
a closed set I', it must have positive distance to I'; this gives the second equality.

Definition 3.3 A filtration (Ft)t>0 is right-continuous if Frp = F; for all t > 0.

For a right-continuous filtration, stopping times and optional times are the same. An effortless
way to get right-continuous filtration is just to replace F; by Fz1. Noting that since F; C Fry, if X3
is (F¢)-adapted, then it is also (F4)-adapted.

Proposition 3.4 Let G, = Fiy. Then (Gi)i>o0 15 right-continuous.
Proof: We have

G+ = mgﬁi = ﬂ]:(t+%)+ C ﬂ]:tJr% = Fi+ =Gt
n=1 n=1

n=1
Od

It is still a valid question to ask how much F; is different from F;y. If the filtration is generated
by a nice process like the Brownian motion, then the answer is that /; and F;4 only differ by null
sets. In the case t = 0, this can be formulated by the following zero-one law.
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Theorem 3.5 (Blumenthal’s 0-1 law) Let B = (By)>o be the standard Brownian motion and FP be
its natural filtration. Then ]-"(ﬂ is trivial, i.e., P(A) =0 or 1 for all A € f(ﬁ_

Remark 3.3 Since By = 0 for all w, F& = {@,Q}.
Proof: For any A € ]-'(ﬁ, 0 <t; <-- <ty and bounded continuous g : R™ — R, we have
Elag(Bty,- -+, Bt,) = lim Elag(Bt, — Byjn,- -+, Bt,, — Bin)
n—oo
=Ely nh—golo ElAg(Btl - Bl/nv T 7Btm - Bl/n)
= P(A) ’ Eg(Bt17 T ’Btm)7

where in the first and last equalities, we use the (right-)continuity of ¢ — By at t = 0 and the continuity
of g, and the Bounded Convergence Theorem, and in the second equality, we use the independence of
By, — By, with A € Fy,. Then, this implies that 7, is independent of o(By,t > 0).

On the other hand, F@ = {@,Q}, so (B, t > 0) = o(B,t > 0). Since F&, C o(B,t > 0), we see
that .7-"(§3+ is independent of itself. Any such o-algebra has to be trivial, and this completes the proof.
O

Using the zero-one law we can get some surprising results about the sample path of the Brownian
motion.

Proposition 3.6 With probability one,

Ve >0, sup B; >0 > mf B,. (3.1)
0<t<e Stse

Proof: Consider the event

A= m{ sup B > 0}.

Then since A is the intersection of decreasing events, we have

P(4) = lim P( sup By > 0) > liminf P(B,/, > 0) = 1/2.

On the other hand, A € Fg, so by [Theorem 3.5, P(A) = 1. Hence,

P( sup Bt>0):1, Vn > 1.
0<t<1/n

This implies that with probability one, sup B; > 0 for all € > 0. The other statement for the infimum
0<t<e
can be proven similarly. |

We can say something about the zero set of Brownian motion.

Proposition 3.7 With probability one, there exists a decreasing sequence ti(w) > ta(w) > -+ > 0
such that B, = 0, i.e., 0 is the limit point of the zero set of By.

Proof: We will construct the sequence (t;) inductively. By assume holds with
probability one.

Take ¢ = 1 in|(3.1)} Then there exists s1,s) € (0,1] such that Bs, > 0 > By Since t = By is
continuous, there exists t; between s; and s} such that By, = 0.

NOW suppose that t1,t9,...,t, have been constructed. Then in |(3.1)| taking ¢ = ¢, there exist
Snt1, Spi1 € (0,¢,] such that Bsn+1 >0> By . Hence there exists t n+1 between these two numbers
such that By, ,, = 0. Clearly t,,11 <, by this construction. O
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Remark 3.4 Suppose that our Brownian motion is constructed on (C[0, 1], B(C[0,1]),P). Then clearly7 the
continuous function f defined by f(¢) = 0 is not in the set A, so A # Q = C[0,1]. This means that FZ C .Eﬁ

B
Homework For M > 0, define Ay, = ﬂ { sup —%> M}
p>1 0<t<1/n Vit

1. Show that P(Ap) > P(N(0,1) > M).
2. Use the zero-one law to deduce that P(Aps) = 1.
3. For every M > 0, show that with probability one,

B
sup —t>M, Vn > 1.

o<t<i \/E
4. Show that with probability one,
sup — = +oo, Vn > 1.
o<t<t \/

3.2 Markov property

We begin with the definition of a Markov process. If the range of ¢ below is restricted to t =n € N,
then one obtains a discrete-time Markov process.

Definition 3.4 A stochastic process X = (X¢)i>0 is Markov if Vt, s > 0,
P(Xiis € A| FX)=P(Xi1s € A| Xy), VA€ B(R), (3.2)
or equivalent,

E|F(Xtts) | f,fx} = E[F(Xt+s) | Xt|, VF bounded and measurable. (3.3)

The intuitive meaning of Markov properties is that, conditioned on the past (]—"tX ) is the same as
conditioned at the present (X;), or in other words, knowing the present state X, the future X1 4,5 > 0
is independent of the past F;*.

Remark 3.5 With some more efforts, or are equivalent to their multidimensional versions: for any
t,81,...38m >0,

P(Xetsys s Xesy) € AL F) = P((Xpgsyy o Xeps,) € A Xe), VA€ B(R™) (3.4)
and

E[F(Xipsy, s Xivs,) | ]—"tX] - E[F(XHSN -, Xers ) | X], VF bounded and measurable.  (3.5)

Since we will deal with conditional expectation very often, it is useful to collect some basic facts
about conditional expection here.

Definition 3.5 Let X € L'(Q,F,P) and G C F be a sub-o-field. Then E[X | G] is the unique
G-measurable r.v. (up to modification on a zero-probability set) such that for all A € G,

E(E[X | g}lA) — EX1,.

Conditional expectation has the following properties. Their proofs can be found in any standard
graduate probability textbook, say [Dur07, [Shi96], etc.
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Proposition 3.8 The following identities are valid as long as the (conditional) expectations involved
make sense.

1. If X € G, then E[XY | G] = XE[Y | G].
2. If X is independent of G, then E[X | G| = EX (that is, an almost sure constant).

3. If G C Go, then E[E[X | Gi] | Go] = E[E[X | Go] | G1] = E[X | G4].
In particular, if E[X | Go] is G1-measurable, then E[X | G1] = E[X | Go].

Besides, all the well-known limit theorems (Fatou, Monotone/Dominated/Bounded Convergence
Theorems, etc) and inequalities (Jensen’s equality) also a version for conditional expectation.
A key lemma we will use a lot in the context of Markov processes is the following.

Lemma 3.9 If X € G and Y is independent of G, then for any bounded measurable function F : R? —

R, we have
E[F(X.Y) [ 6] = p(X),

where ¢ is a deterministic (Borel measurable) function given by
o(a) = EF(a,Y).
The above can also be written in short as

E[F(X,Y) | 6] = (E[F(z,Y) | G)) (3.6)

=X '

Remark 3.6 We stress that the substitution of x = X into-a deterministic function ¢ makes the right-hand side
of|(3.6)| o (X )-measurable and hence G-measurable.

Proof: Consider the class of functions
S = {F bounded measurable : R? — R such that [(3.6)] holds}.

Then S forms a monotone class, that is, if F}, € S and F, A F, then F' € S as well. Therefore, to show

that S contains all the bounded measurable functions, by standard measure-theoretical argument, it
suffices to show that F(z,y) = 14(x)1p(y) € S for all A, B € B(R).
Indeed, since 14(X) € G and 15(Y) is independent of G, we have

E[14(X)15(Y) | ¢] = 1a(X)E[15(Y) | G] = La(X)P(Y € B) = ¢(X)

where
o(@) = EL4(2)15(Y) = La(z)P(Y € B).

This proves the proposition. O

Example 3.7 The Brownian motion is a Markov process.
In fact, Byys — By is independent of (By,, -, By,,) for all t1,--- ¢, € [0,t], so Byys — By is independent
of F;X. Hence, for all F' bounded measurable, applying to G(z,y) = F(z +y), we have

E|F(Biys) | ‘FtX} = E|:G(Bt+s — By, By) | ]:tX} = |:EG(Bt+S - Bt7y)}

)
y=By

which is a function of B; and hence o(B;)-measurable. Then Markov property follows from [[tem 3|in [Proposi-|

ftion 3.8
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Example 3.8 Let f € L .[0,00) = {g : g1joq € L*[0,t], V¢t > 0}. Consider the stochastic integral define via the
Gaussian white noise:

X, = /Ot £(s)dB;s =: G(fl[oyt]).

Then (X;);>0 is a Markov process.

In fact, the previous analysis for Brownian motion only uses the fact “independent increment” property.
To see that such property also holds for X;, we have from the definition of Gaussian white noise isometry,
if [tl,tg] n [t3,t4] = &, then

E(Xt4 - XtB)(Xt2 - th) = EG(fl[t37t4])G(fl[thtz]) = / f2(5)1[t1,t2](S)l[ts,b;](s) ds = 0.
0

Since the increments are centered Gaussian, if their covariance is zero, then they are independent.

Homework Let (B).e[,1] be the Brownian motion and define X; = B;—tBy, t € [0, 1]. The process X = (X¢);e[o,1]
is called the “Brownian Bridge”.

1. Show that (X;);>0 is a centered Gaussian process with covariance
EX;Xs=s(1—-¢), V0<s<t<l1.
2. Lett > s> 81 > 8y >---> 5, > 0. Show that

1—t
E(Xt— 1—XS)XS. —0, 1<i<n.
S

1—-1¢
Deduce that X, — 1—Xs is independent of (X, ,...;Xs, ).
-5

1—-1t

3. Let t > s. Show that X; — I—XS is independent,of .7-'3X.
—s
4. Show that (X¢)¢cjo,1) is Markov.

Next we will introduce the strong Markov property. While the usual Markov property states that
future and past are conditionally independent if knowing the present, the strong Markov property
allows the “present” to occur at a random stopping time. But first we need to understand how to
condition on the information before a stopping time. Recall that a stopping time is a r.v. T € [0, 0]
such that {T" < t} € F, V¥t > 0. In what follows, unless otherwise stated, F; = F;X and F =
O'(ft, t> 0)

Definition 3.6 The stopping o-algebra is
Fr={Ae€ Foo: ¥Vt >0, AN{T <t} € F}.
Intuitively, Fr contains the information before a stopping time 7.
Example 3.9 Let @ > 0 and consider T = a (a constant r.v.). Then T is a stopping time since

Q, a<t
{Tgt}{ N )
g, a>t

Moreover, Fr = F,.

We can compare the stopping o-algebras for different stopping time, or extract information from
the stopping o-algebra.

Proposition 3.10 If S < T are two stopping times, then Fg C Fr.
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Remark 3.10 Since S < T, “information before S” is less than “information before 17 .

Proof: If A C Fg, then for every ¢t > 0,
AN{T <t} = (Am{:;gt}) N{T <t} e F.
So A C Fp. This completes the proof. O

Proposition 3.11 If T is a stopping time and S > T is random time such that S is Fr-measurable,
then S is also a stopping time.

Proof: For each t > 0, since {S <t} € Fr,
{S<t}={S<t}n{T <t} € F.
This completes the proof. O
Remark 3.11 The stopping time S will take the form S = f(T) for some measurable function f with f(z) > .
We also need to impose more measurability constraint on our process X = (X;)>o.

Definition 3.7 Let X = (X;)t>0 be a stochastic process on (2, F,P). We say that X is measurable
if the map

(t,w) — X (w) : ({o, %0) x Q, B([0,00)) @ f) = (R, B(R))
is measurable.

Proposition 3.12 Let X = (X¢)1>0 be measurable and T' be a (finite) r.v., then Xr(w) := Xp()(w)
15 a ..

Proof: The map w — Xp(y) (w) is the composition of the following two measurable maps:
we (W) = (T(w),o), )= Xp).

The first map is measurable since T is a r.v., and the second map is measurable since X is measurable.
This proves the proposition. O

For adapted process, we introduce the notion of progressive measurability.

Definition 3.8 Let X = (X;)i>0 be an adapted process on (Q,F,(Ft)t>0,P). We say that X is
progressively measurable if for every fized t > 0, the map

(t,w) = Xp(w) : ([O,t] x Q,B([0,4]) ® ]—“t> = (R, B(R))
1s measurable.

Proposition 3.13 Let X = (X¢)i>0 be an adapted process on (2, F, (Ft)t>0, P) which is progressively
measurable and let T be a (finite) stopping time. Then Xt := Xp((w) is a Fp-measurable r.v.

Proof: Let A € B(R). We have
{Xp e AAn{T <t} ={Xpn € A} N{T < t}.

It suffices to check that { X7, € A} € Fi.
In fact, the map w +— Xp()a¢(w) can be written as the composition of the two maps:

we (PW) = (T(w) A tw), (W)= Xp(W).

The first map is measurable from (2, F;) to ([0,¢] x €, B([0,t]) x F;) by the definition of stopping
times, while the second is measurable since X is progressively measurable. Hence, their composition
is also measurable. This proves the proposition. O
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Proposition 3.14 If X is (F;)-adapted and has right-continuous path, then X is also progressively
measurable w.r.t. (Fy).

Proof: Fixt>0. Forn>1and 0 <k < 2" — 1, define

kt (k+ 1)t].

X (W) = Xy @), s € (550

and X(()n) (w) = Xo(w). Then for each n, since X is (F;)-adapted, it is easy to check that (s, w) — X ™ (w)

is B([0,t]) x Fi-measurable. Since for every w, the sample path s — X(w) is right-continuous, we

have nli_)n;oXs(")(w) = X;s(w) for any (s,w) € [0,t] x . Therefore, the limit map (s,w) — Xs(w) is

also B([0,t]) x Fi-measurable. This proves the proposition. O
We are ready to state the strong Markov property.

Definition 3.9 A progressively measurable Markov process X = (X¢)i>0 has the strong Markov prop-
erty if for each a.s. finite stopping time S,

P(XT+t cA ‘ .FT> = P(XT+t ‘ XT) (37)

Remark 3.12 The strong Markov property can be stated including stopping time 7' with P(T" = c0) > 0. In
that case X744 makes no sense when {7 = oo}, so only needs to hold on the set {T' < co}. For simplicity,
we always assume 7' < oo a.s. in the sequel.

The Brownian motion has the strong Markov property. We know more about the conditioned
process after the any stopping time.

Theorem 3.15 Let T be a stopping time and define Bt(T) = Bri+— Br. Then (BET))QO is a standard
Brownian motion independent of Fr.
In particular, Brownian motion has the strong Markov property.

We now use the theorem to check that (B;):>0 is strongly Markov. The proof of will
be postpone to the end of this section.
Derivation of the strong Markov property for (B;);>o from [Theorem 3.15} Since B is
progressively measurable, Br is Fr-measurable. By and the assumption that (Bt(T))tzo is
independent of Fr, for any bounded measurable function F,

E(F(BT+t) | ]—“T> - E<F(BT + BTy fT> - E(F(Bt(T) n a:)) lo—p, € 0(Br).

So by [[tem 3| of [Proposition 3.8] the strong Markov property holds. O

An important consequence of the strong Markov property is the reflection principle. Consider the

maximal process By = sup B; and the hitting time 7, = inf{t > 0: B; = a} for a > 0.
0<s<t

Theorem 3.16 (Reflection Principle) For a > b,
P(Bf >a, B, <b)=P(B; > 2a—b).
Proof: Clearly, {B; > a} = {T, <t} € Fr, and we have

{Bf >a, By<b}={T, <t, B"%) <b—a}.
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By Theorem [Theorem 3.15 (BgT“)) s>0 is independent of F7. Since Tj, € Fr and Brownian motion is

symmetric, we see that in distribution,

(Tm (BgT“))szo) i (Taa (_BéTa))SEO)'
Therefore,

P(T, <t, B <b—a)=P(T, <t, B <b—a)=P(T, <t,B"Y) >a—b).

But on the event on the right-hand side, By = Br, + Bt(TGT)a > 2a — b > a, and by continuity, By > a

implies that T, <t. So we have
P(T. < t,B"5) >a—b) =P(B") >a—b)=P(X; > 2a—1b),

where we use strong Markov property in the last equality. This proves the theorem. O

As a corollary, we have the distribution of the hitting time.

Proposition 3.17 For a > 0,
P(T, <t)=P(B} >a) =2P(B; > a).
Proof: Using for b = a, we have
P(Bf >a)=P(B; >a, Bi<a)+P(B; >a,B; >a)=P(B;>2a—a)+P(B;>a) =2P(B; > a).

|

Proof of [Theorem 3.15:  Denote by W = (W,);>0 be a Brownian motion independent of B =
(Bt)t>0. By the definition of conditional probability, it suffices to show that for all0 <¢; <tp < --- <
tm , all A € Fr and all bounded continuous function F' on R™, we have

EF(Bt(?)’Bt(zT)’ e ’Bz‘FZ:))lA = [EF(WH’Wtw o W, )| P(A). (3.8)

Suppose T takes countably many values. Let T' € {s;,s2,---}. Then the LHS of [(3.8)| is
equal to

EF(B(T) B(T) 7B§:))1A1{T:sn}

t1 Tty

]2

i
L

M

EF(Banrtl — Bs,, Byt — Bsn) lAﬁ{T:sn}

S
Il
—

e

{E [F(Bsnﬂ1 —Bg,, , Bs, 4, — Bsn)lAﬁ{T:sn} | ]:-Sn:|:|

S
Il
—

o

E[lAﬂ{T:sn}E[F(Bsn-i-h — By, Boytt,, — Bs,) | ]:an

S
Il
—

o

(ElAﬂ{T:sn}> EF(Wiy,--, Wa,,)

1

T S

—~ |l
N

A) - BEWyy, -, W)
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There are two crucial steps: in the third equality we use that AN{T = s, } € Fs,, which holds since T
is a stopping time; in the fourth equality we use the simple Markov property for B.
General case. We approximate T be a sequence discrete stopping times:

k .
Tw) = LSy @), (3.9)

2k 7 ok
n=0

Indeed, T}, is stopping since for t € [no27", (ng + 1)27%),

(Ti(w) <t} = {T < 22} € Fuy C F,
2 2k

or by [Proposition 3.11} Also, since [T, — T < 27 and T}, > T, we have Ty(w) | T(w) for every w.
Then by the right continuity of ¢ — By, Bt(Tk) — BET)
Now the left-hand side of [(3.8)|is equal to

as k — oo.

lim ElAF(Bt1+Tk — BTk, e 7Btm+Tk — BTk)
k—ro0

= lim ¥ ELin(repmo+ nine-in F (B, BiY)
= Jim > E[E[Langr—uenon (B, BUY) | 7|
oon:O
= lim E[Langrc s 0 E[F (B, B | 7]
*}OOTL:O
oo
= Ig&; (ElAﬂ{Tk:(n—H)Qk}) CBEE(Wey, -, Wa,,)

=P(AEF(Wy,,--- ,Wy,).

In the third equality we use A € Fr C Fr, (Proposition 3.10), and in the fourth equality we use the
strong Markov property for Tj. O

Remark 3.13 The proof only relies on the simple Markov property (which guarantees strong Markov property for
discrete stopping times) and the right-continuity of sample path (which is used for approximation argument).

Homework Let B = (B;);>0 and B = (B;);>0 be two independent, (F;)-adapted Brownian motion on (2, F, (F;)+>0, P).
Let T be an a.s. finite stopping time. Define
Bi(w), t < T(w),

Wilw) = {BT(UJ) + (Bt(W) - BT(w) (w))v t>T(w).

1. Show that (W})>0 is a continuous, (F;)-adapted stochastic process.

2. Prove that W = (W});>0 is a standard Brownian motion by showing that W and B have the same finite
dimensional distribution, namely, for all 0 <t} <ty < --- < t,, and all Borel sets A1, Ao, ..., Ay,

P(th EAl,"',Wt EAm):P(Btl EAl,---7Bt EAm)

m m

Homework Let B = (By)¢>0 be the standard Brownian motion. For a > 0, let T, = inf{t > 0: B, = a} be the
first hitting time of a. For A > 0, define the Laplace transform of T,: e~ ¥*®) = Ee~*Te_ It is not hard to show
that ¢ is a continuous function and we will assume that.
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1. Use the strong Markov property to show that T,,Toq — Ty, T34 — Toq, - . . are i.i.d. random variables.

2. Show that
oA\, na) =np(A,a), n>1,

and use continuity to conclude that p(A,a) = ¢(A,1)a, a > 0.

3. Use the fact that (ABy-24):>0 is also a standard Brownian motion for every A > 0 to show that Tj
and A\2T, have the same distribution.

4. Show that p(A\? a) = ¢(1, \a) and conclude that there is a constant ¢ > 0 such that

Ee Mo — p—cVAa

3.3 Augmentation and usual condition

On a probability space (2, F,P), A is a P-null/negligible set if there exists N € F such that A C N
and P(N) = 0. We recall the definition of a complete o-field.

Definition 3.10 We say that G is complete under the probability measure P if N1 C No where Ny € G
and P(N3) =0, then N1 € G.

Definition 3.11 Let (F:)i>0 be a filtration on a probability space (2, F,P). we say that a filtration
(Fi) satisfies the “usual condition” if

1. Ft = Fiy, i.e., it is right-continuous,
2. F; contains all the P-null sets, i.e., if AC N € F and P(N) =0, then A € F;.

We have seen that if a filtration is right-continuous, then optional times and stopping times are the
same. In general, it is just simpler to work with complete probability space. We can always complete
a o-field by adding all the subsets of null sets.' The completion of G under the probability measure P
is

G={G:3F C G and P-null set N € G s.t. FAG C N}
= {G : 3F1,F2 € Q,F1 C FQ, P(Fl) = P(FQ) s.t. 1 C G C F2}

The completed measure on G is defined by P(G) = P(F).
With a (F;)-adapted process X, define the following collections of P-null sets

N;={N:3FCc FX:P(F)=0, NCF}
Noo={N:3Fc FL:P(F)=0, N C F}.

There are two ways to complete a filtration.

e Completion B
Fi=0(FXUN) ={G:3F € FX st. FAG € N;}.

e Augmentation

Fi=0(FXUNx) ={G:3F € FX st. FAG € Nx}. (3.10)
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As we seen in [Section 3.1, F; may not be right continuous: using the set A in the proof of
[Proposition 3.6, we see

{2,0} = Fy = Fo C Fotr C Fot-

Indeed, from the zero-one law even though Fo is trivial, it still contains information
strictly after time ¢ = 0. This tells us just doing completion by adding null sets up to time ¢ cannot
lead to right-continuous filtration. However, if we do the augmentation, then the resulting filtration
will be right-continuous, and thus satisfies the “usual condition”.

Theorem 3.18 Let X be the standard Brownian motion. Then the augmented filtration (]}t)tzo 18
right-continuous.

Proof: The first step is to show that for every bounded fg—measurable r.v.Y and t > 0,
E[Y | }“ﬁ} - E[Y | Bt] (3.11)
To prove it suffices to consider Y taking the form
Y =f(Bty, ,Bt,), 0<t1<...<tmo1<t<tpy<- <ty

where f is a bounded continuous function. For ¢ = 0, this is the main step in the proof of
For ¢ > 0, the proof is similar; in order to get fg instead of ]:tB , one needs to use the right-continuity
of t s By: for A€ FZ,

E1af(By, -+, Be,) = Ef(f]l Elaf(Byy - Bty 1y Btyter - 2 Biyye)-

Suppose that is proved. Let F € Ff C FZ. Then by |(3.11), E[1r | F£] has a o(By)-
measurable version Z. On the other hand, E[1r | 1] = 1F a.s. Hence, for A = {Z = 1} € FF, we
have FAA € N. This implies F' € F,. Since F is arbitrary, fﬁ C T

Next, let F' C fH = ﬂ ]?H_%. Then by definition, there exist G, € F2 | such that FAG,, € Nu.

t+1
n>1
We have
FAG, € Ny
& 1lp+1g,=0 mod2as., Vn>1,
& 1p +limsuplg, =0 mod 2 as.
n—oo
&  FA(limsup Gy) € Ny,
n—oo

where

limsqun—ﬂ UG EﬂfBlc

oo k=1m=k

Since fﬁ - ft and .%t is complete, we have ' C ft. This shows .7-'t+ C .7::t and hence the right-
continuity of (F)e>0. O

Remark 3.14 We only use the simply Markov property and the right-continuity of the Brownian motion.
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3.4 Sample path properties of Brownian motion

In this section we mention some interesting sample path properties of Brownian motion.
Proposition 3.19 (Nowhere monotone) With probability one, there is no interval [a,b] such that
BtlSBtQSBt:;) Va§t1<t2<t3§ba

or
Btlthngtga va§t1<t2<t3§b)

Proof: For any ¢q; < g2, by |Proposition 3.6, with probability one,

sup Bs > Blh > inf Bs. (312)
q1<5<q2 Q1<5<q2

Hence, with probability one, Brownian motion is non-monotone in any given interval. By a union
bound, Brownian motion is non-monotone simultaneously in all intervals [q1, ¢2], g1, ¢2 € Q. Since any
monotone interval [a, b], if existing, will contain a monotone sub-interval with rational endpoints, the
desired conclusion follows. O

Proposition 3.20 (Nowhere differentiable) With probability one, for every t > 0, either

B, —B
D" B; = limsup Ztbh 00,
h—0+ h
or B B
e R
Proof: See [KS98| pp. 110, Chap. 2, Theorem 9.18]. O

Proposition 3.21 With probability one, all local mazima of t — By is strict.

Proof: For t] <ty <tz < ty, let

Aty o tg ts = {w: sup Bs— sup B, #0}.
s€[t3,ta] s€[t1,t2]

Then on m At .14, all local maxima are strict. It suffices to show that P(As, ;) = 1 for all ¢;.
t;€Q

Indeed, we have

sup By — sup Bs= (By, —B,)+ inf (B, —Bs)+ sup (Bs — By,)
SE[t3,t4] SE[t1 2] s€[t1,t2] SE[ts,ta)

which are sum of three independent, continuous random variables. Hence P(A, . +,) = 1. O

Proposition 3.22 With probability one, the zero set
N(w)={t>0: B, =0}

is a perfect set (a closed, measure-zero set with no isolated point, like the Cantor set).
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Proof: We have

{w : N(w) has an isolated point} = U {w : there is exactly one s € (a,b) such that Bs(w) = 0}.
a,beQ

For ¢t > 0, let By = inf{s > t : Bs = 0}. Then S, are stopping times. By |[Proposition 3.7, 5y = 0. By
the strong Markov properties, By, — Bg(y) is a standard Brownian motion, so 8g;) = B¢ almost
surely. Hence,

{w : there is exactly one s € (a,b) such that Bs(w) = 0} C {w: Bu(w) < b and Bg, (,)(w) > b}

has zero probability. This completes the proof. O

4 Martingales

4.1 Basic martingale theory

Definition 4.1 An adapted stochastic process (My)i>o on a probability space (2, F, (Ft)t>0, P) is called
a martingale if M; € Ll(Q,}", P) for allt > 0, and for all s,t > 0,

E[Mt+s | ft} = M,

If t only takes discrete values (like Z), then we call (M) a discrete martingale.
Remark 4.1 If the filtration is not specified, we take the natural filtration F; = F;~.

Example 4.2 Let X; be independent random variables with EX; = 0. Then the partial sum S, = X; +---+ X,
forms a martingale, since by independence,

E[Sner | Xp,-- 7Xn:| =Xi+ o+ Xn + E[Xpq1 4+ 4+ X = S
Proposition 4.1 Let (X;)t>0 be a stochastic process with mean zero independent increments. Then
1. (Xt)e>0 is a martingale.

2. If X; € L* for all t > 0, then (X7 — EX?)i>0 is a martingale.

AXy

3. If for some A € R, Ee™t < 0o for all t > 0, then ( ¢

—_— is a martingale.
EerX —t)tzo

Proof:
1. This is obvious.
2. We have for t > s,
E [Xf _ X2 fs}

_ E[(Xt ~ X+ X)) X2 J-"s]
—E [(Xt ~X)? fs} +2XE[X; — X, | Fo]
= E(X; — X,)? = E(X; — Xo)( Xt + X,) — 2EX(X; — X,)
= EX? —EX2
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3. We have for t > s,
E[e)‘Xt | ]-"S} = eAXSE[e)‘(Xt_XS) ] .7:5}
— eAXs Ee)\(thxs)

_ )\XS EeAXt

o EerXs®
O

Example 4.3 Let (B;)¢>0 be Brownian motion. Then (By);>o, (B — )t>0, (eABt—%Vt?)tzO are all martingales.

Example 4.4 Let f € L{ [0, 00) and consider the stochastic integral defined via Gaussian white noise

M, = /0°° 10,q(s)f(s)dBs = G(l[o,t]f>-

Then (M) has mean zero independent increments, and the processes

(M)izo,  (MF - /th(sms) S CEO S EAREY
0

>0 t>0

are all martingales.

Example 4.5 Let (IV;);>0 be a Poisson process with intensity A, i.e.,
Ne=max{n>0:& + - +& <t}

where (&;);>1 are i.i.d. Exp(A) random variables. Then (N~ At);>o has mean zero independent increments.

Definition 4.2 Let (M;)¢>0 be an adapted process and assume that M; € Lt for all t > 0. We say
that (My)t>0 is a super-martingale if

E[X: | Fs] < X5, VO<s<t,
and say that (My)i>0 is a sub-martingale if
E[X: | Fs] > X5, VO<s<t.
One can use convex/concave functions to generate super- or sub-martingale from martingales.

Proposition 4.2 If (My)i>0 is a martingale, and ¢ : R — R is a convex function, then (p(My))
1 a sub-martingale.

t>0

Proof: Using Jensen’s inequality for conditional expectation, we have for all s < t,
E[o(My) | ] > o(E[X: | B]) = 9(X,). (4.1)
O

Corollary 4.3 If (My)i>0 is a sub-martingale and ¢ : R — R is convex and increasing, then (¢(My))
1s also a sub-martingale.

>0

Proof: Since ¢ is increasing and (M)¢>0 is a sub-martingale, the last equality in will become

e (E[X: | F]) = o(X,),
and this completes the proof. |

Example 4.6 The function |z|? (p > 1) is convex. The functions z V a (a € R), 2+ = 2 V 0 are convex and
increasing.
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4.2 Convergence of martingales

In this section we discuss the a.s.-limit and L!-limit of martingales. The main tools are Doob’s Up-
crossing Theorem and uniform integrability.
Let (X;) be an adapted process (continuous-time or discrete-time) and a < b. Consider the

following stopping times: Tb(o) = —o0,
7O =inf{t > T X, <a}, TV =inf{t>T0: X, >0}, £>1.

In every interval [Ty),:r;ff)], the process (X;) completes an up-crossing. The total number of up-
crossing in a given interval [0, n| is defined by

UX[0,n] = max{k : Tb(k) <n}.

Theorem 4.4 Let (X,,)n>1 be a sub-martingale, then

1

We have the following corollary about a.s. convergence of martingales.

Proposition 4.5 If (X,,)n,>1 is a sub-martingale, and sup EX, < co. Then there exists X such that
n
X, — X a.s.

Proof: The up-crossing number is increasing in n, and hence by assumption,

sup,, EX;F + |a] >
b—a

EUjg [07 OO) = nh—golo EU(% [07 TL] <

This implies U{fg [0,00) < o0 a.s., that is, with probability one, any interval [a, b] is being up-crossed
by at most finitely many times. As a consequence, for fixed

liminf X, < a < b < limsup X,

n—ro0 n—00

cannot happen. Taking a union bound over all [a,b] with a,b € Q, we see that with probability one,

lim sup X, = liminf X,,.
n—00 n—r00

This proves the statement. O

Example 4.7 If a martingale (X,,),>0 is non-negative, then EXT'L" = EX,, = EXy, and hence lim X,, exists.
= n—roo

Next we will discuss the L'-convergence. Recall the definition of uniform integrability for a family
of random variables {X,,}.

Definition 4.3 A family of random variables (X,,) is uniformly integrable, if

i El X, =0.
I sup (1 Xn|>Mm} Xnl =0

Uniform integrability is the necessary and sufficient condition for L!-convergence.

Theorem 4.6 If X,, — X a.s., then X,, — X if and only if (X,,) is uniformly integrable.
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Example 4.8 The following conditions will imply uniform integrability.

1. If there exists Z € L' such that | X,,| < Z for all n, then (X,,) is uniformly integrable. (This is Dominated
Convergence Theorem.)

2. If supE| X, |P < oo for some p > 1, then (X,,) is uniformly integrable.
3. Let Z € L*. Then the collection of r.v.’s {E[Z | G] : G C F} is uniformly integrable.
We will prove the last point.
Proposition 4.7 Let Z € L'(Q, F,P). Then the collection of r.v.’s
{E[Z | G] : G is a sub-o-field of F}
18 uniformly integrable.

Proof: Since Z € L'(Q, F,P), for every € > 0, there is § > 0 such that whenever P(A) < 6,
E|Z|14 < e.
By Jensen’s inequality, for A = {|E[Z | G]| > M} € G, we have

E14|E[Z | G]| < E14E[|Z] | G] = EE[|Z]14 | G] = E|Z|14.
When A = Q, the above inequality gives E|E[Z | G]| < E|Z]|. Then by Markov inequality,

E|Z|
P(4) < ==,

uniformly for all sub—o-field G. Combining all these together we prove the statement. ]

Proposition 4.8 A martingale (X,,) is uniformly integrable, if and only if there exists Xoo € L' such
that X,, = E[ X | Fnl.

Proof: The “=" direction. Uniform integrability implies that sup E|X,,| < oo, hence [Proposi-
n

implies that there exists X, such that X,, - X a.s. But (X,,) is also uniformly integrable,
so the limit is also in L'. Then,

E[Xoo | Ful = lim E[Xpim | Fu] = Xa

as desired.
The “<” direction. It follows from [Proposition 4.7] O

Adaption to the continuous-time.

The L!'-convergence relies on the uniform integrability, which holds true for continuous-time. The
a.s. convergence relies on the up-crossing inequality, and we need extra continuity assumption to take
the limit of approximation.

Theorem 4.9 (Continuous-time Doob’s Up-crossing Inequality) Let (X¢)i>0 be a right-continuous
sub-martingale, then for all’T > 0

1
EUX[0,T] < ;

E(X7y —a)t.
—E(XT —a)
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Proof:  We can restrict the definition of up-crossings to D,, = Z/2". We denote the number of
up-crossing observed on D,, by Ujg [0,T] N D,. Since D,, has few points, the number of up-crossing
is smaller (an up-crossing can occur on an interval (k/2", (k 4+ 1)/2") and not “seen” by the set D,,).
But since X has right-continuous path,

Uap (0,710 Dy, 1 Uz [0,T],m — o0,

almost surely. Now on D,,, (X¢)iep, is just a discrete martingale, and we have
X 1 +
—a

Taking the limit n — oo and using the Monotone Convergence Theorem prove the statement. O

4.3 Optional Sampling Theorem

Theorem 4.10 Let (X¢)i>0 be a right-continuous martingale, and S < T be two stopping times.
Suppose that either

1. S, T are bounded, i.e., there is a constant N > 0 such that S, T < N, or
2. (Xt)e>0 1s uniformly integrable.

Then
Xs = E[X7 | Fr].

In particular, EXg = EXp = EXj.

Remark 4.9 The first condition implies that X; = E[Xx | F¢], and the second condition by
implies that X; = E[X., | F;]. So both conditions implies that there is a r.v. Z € L' such that X; = E[Z | F]
for all ¢ that we care about.

Proof: Let Z = Xy if the first condition holds and Z = X, if the second condition holds. It suffices

to show
Xr =E[Z| Fr]. (4.2)

Indeed, if |(4.2)| holds, since Fs < Fr, we have
E[Xr | Fs] = E[E[Z | Fr]| Fs] = E[Z | Fs] = X.

The proof of [(4.2)| will be done in two steps. First we prove it for discrete stopping times, then we
use approximation.
Suppose that the range of T is countable, i.e., T' € {t1,t2,...}. Then for all A € Fg,

E(E[Z | Fs|1a) =EZ14=> EZlan(r—,)
n=1

=> E(Lanir—t,)ElZ | 7))

n=1

oo
=Y Elanir—4,} X1, = EX7la,

n=1

where in the second line we use that AN{T =t,} € F;, since T is a stopping time.
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General case T > 0. As before, we can approximate 1" by discrete stopping times

26T + 1
P A LAY

Let A € Fr C Fr,. Then by the first step,
Ela X7, =E1xZ

for all T}. The right continuity of X and T} | T imply that X7, — Xr a.s., and Xq, = E[Z | Fr,]
and |Proposition 4.7|imply that X7, are uniformly integrable. Therefore,

Elp X7 = kli_)rgo El X7, =E1aZ.
O

Example 4.10 If T' is a stopping time, (M;);>0 is a martingale, then (Miar)i>0 is also a martingale. We only
need to verify for all s < ¢,
E[Miar | Fonr] = Msar.

This follows from and the boundedness of the stopping time s AT, t AT.

Example 4.11 Let (By);>0 be Brownian motion, and T, T} be the first hitting time of ¢ > 0 > b. Applying
Theorem 4.10| to the bounded stopping time T, A T A n gives

EBTQ/\T(,/\TL = EBO == O (43)

Since |Br, aryan| < |a| V [b] and P(T, ATy < 00) = 1 (one can easily show for some p < 1, P(T, ATy, > k) < p*),
we can take n — oo in (4.3]) and get

0= EBTGAT;, = CLP(Ta < Tb) + bP(Ta > Tb).
Also P(T, < Tp) + P(T, > T) = 1. Hence, we have

a

P(Ta<Tb): a1

P(Ta > Tb) =

a—1b
In particular, letting b | —oo and T} 1 oo, we obtain P(T, < co) = 1.
Example 4.12 Apply to the martingale (B; — tz)tzo and the stopping time T, A T A n, we have

EB%a/\Tb/\n - (Ta A Tb A\ n) =0.

In the limit n — oo, the first term is bounded by |a|? V |b|?, the second term is increasing in n, so by Bounded
Convergence Theorem and Monotone Convergence Theorem, we have

EBTaATb - (Ta AN Tb)

Combining with (4.4) we have ET, A T, = |ab|. Letting b | —oco and obtain ETy, = oco.

2
Homework Recall that (Z; = B t*%t)tzo is a martingale for every A € R. It is a non-negative super-martingale
so it has an almost sure limit Z,.

1. Let T, be the hitting time of a > 0. Use the Optional Sampling Theorem to show that

Ee=cTe = e*"‘/ﬂ7 c>0.
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2. Show that Z,, = 0.
Hint: One possible proof is to use Borel-Cantelli to show that for any e, M >0, B, <en+ M for large
enough n.

3. Let S, =inf{t >0: B; > at + 1}, a > 0. Use the Optional Sampling Theorem to show that
Eezal{gaﬁt} + EeQaBt72a2t1{Sa>t} =1.
Take the limit ¢ — co and show that P(S, < co0) = e~ 2.
We will also mention the Optional Sampling Theorem for sub-/super-martingales.

Definition 4.4 A (sub-/super-)martingale (X¢)i>0 has a last element/is closed by Xoo, if IX oo € L
such that (X¢)o<t<oo forms a (sub-/super-)martingale.

Example 4.13 If (M;);>0 is a martingale, then by it has a last element if and only if it is uniformly integrable.
Moreover, M. is the a.s. and L' limit of M,.

Example 4.14 If (X,;);>0 is a non-negative super-martingale, then it always has a last element X, = 0, since it
is trivially true that
Xt >0=EXsx | F], Vt=>0.

But having a last element is weaker than uniform integrability. Consider X; = 1 + Byar_, which is a
martingale and hence super-martingale. It is non-negative. It is easy to see that

Xoo = lim X; =1+ Br_, =0,
t—o0
but 1 = tlim EX; # EX, =0, so it cannot be uniformly integrable.
—00

Theorem 4.11 Let (X;)i>0 is a right-continuous sub-martingale and S < T be two stopping times.
If either

1. S,T are bounded, or
2. (Xt)i>0 has a last element Xoo € L',

then
E[ X7 | Fs] > Xs.

A similar statement also holds for super-martingale.

Sketch of proof: The first step is to prove the theorem for discrete sub-martingales. This is more
delicate than the martingale case since it cannot be derived from E[X. | Fr| > Xr. For a proof,
see [Chu74, Chap. 9] (which is also a good read on discrete martingale theory). Here, discreteness is
really essential, while previously we only use the ranges of stopping times are countable.

The second step is to approximate the stopping times .S and T by discrete stopping times by above.
From E1,Xg, < E14X7,, A € Fg, pass the limit n — oo by establishing the uniform continuity of
(XSn)nZI and (XTn)nzl' O
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4.4 Doob’s Maximal inequality

We will state the maximal inequality for sub-martingales. Similar statements also hold for super-
martingales.

Theorem 4.12 Let (X¢)i>0 be a continuous sub-martingale and A\ > 0. Then

AP( sup X, > A) <EX/, (4.5)
0<s<t

. _ < + _
)\P(ngg X< A) < EX; — EX,. (4.6)

Proof: Denote the event in as A. Note that A is indeed measurable since by continuity, the
supremum over [0, ] is the same as the supremum over [0,¢] N Q, and the later is measurable. Let
T =inf{t: Xy > A\}. Then A = {T < t}. Since X is a sub-martingale, X" is also a sub-martingale,
hence implies that

EX; > EX > EX pLlir<yy = AP(A).

This proves |(4.5)]
Denote the event in |(4.6)| by B and let S = inf{t : X; < A}. Then B = {S < t}. Again by

eorem 4.11] we have

EXo < EXins = EXilipoyy + EXplir<p
< EXilirayy — AP(B) < EX;F — AP(B),

and |(4.6)| follows. O

Corollary 4.13 Let (M;)¢>0 be a continuous martingale. Then for every A > 0,

AP(sup [My] > \) < B[],
0<s<t

Proof: We apply |(4.5)|in [Theorem 4.12f to the sub-martingale (|M¢|)+>o. 0

For martingales, we also have the control on the maximal of LP norm.

Theorem 4.14 Let (M;);>0 be a continuous martingale. Then for every p > 1,

p
E sup [M,[" < (—2=) EIx, "
0<s<t p—1

Proof: LetY = sup |M;|. Since (|M¢|)¢>0 is a continuous sub-martingale, by the proof of |(4.5), we
0<s<t

have
AP(Y > \) + E[My| Ly <ny < E[My],

and hence )
PY >\ < XE|Mt|1{y2)\}.
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Now

EY? :p/ NTIP(Y > \)dA
0

<p /0 N 2E (M Ly ony)

Y
_ -2
_E<Mt|/0 PAP d)\)
=L _E(My) -y

p—1
< 2 (EIM.IP 1/p EYP p/(Pfl)_
~p— 1( ‘ t’ ) ( )
The last inequality is just Holder inequality. Hence, if EY? < oo, then we can divide both sides by

(EYp)p/(p_l) and then take the p-th power to get EY? < (Ll)pE|Mt]p. To treat the general case

where EY? < oo is not known, we use truncation, that is, we first get the estimate
E(Y Am)P < (Ll)”E\MtVJ
p—

for the bounded r.v (Y A'm) with any m > 0. Then we let m — oo and get the desired conclusion. O

As an application of the Doob’s LP-maximal inequality, let us study the continuity of the stochastic
integral M; = G(Lgyf) for f € L2 _[0,00). Recall that the Gaussian white noise construction in

loc

only ensures that M; has independent increments, and hence is both a Markov process
and a martingale. We can useto get continuity of M if | f| is bounded, but that is still to
restrictive. Using martingale argument, we can show that (M;);>0 has a continuous modification as
long as f € L2.([0,00)). This is essentially the argument that we will use for more general stochastic
integral. See XXX.

Fix T > 0. We just need to show that (Mt)te[o,T] has a continuous modification for every T' > 0
and f € L? [0,T]. By standard argument, there exist piecewise constant functions f, € L2[0,T | such
that ||fn — fllz2(0,77 — 0. It is easy to check that

Mtfn =G (1[0,t] fn)

is a continuous martingale. Without loss of generality we assume || f,, — fn+1H%2 < 87". For every n,

applying [Theorem 4.12| to the submartingale X; = |Mtf” — Mtf’“rl |2, we have

n ]' n n —
P(OiltlngMf" - M 2 ) S 4EIME - MPHR < 47 fo = fasallfany < 27

Then, by Borel-Cantelli, there exists ng = ng(w) such that for all n > ng(w),
1
Sup |M£fn o Mtfn+l| S —
0<t<T 2n
and hence with probability, the infinite function series
o0
M = M4 SO i
n=0

converges absolutely, and the limiting function is continuous in ¢. It is easy to check that (M;°);>¢ is
a continuous modification of G(l[o,ﬂ f )
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Homework Let (X;);>0 be a (F3)-adapted, bounded continuous process. For any partition A : 0 = ¢y < t1 <

n—1
oo <ty =t we define X2 = Z Xt Lty .t000) (). By continuity of X, it is easy to see that the limit
k=0

n—

t 1 t
li X2ds = li X (ther —t5) = | Xod
|Al|r£1>0 0 5 |Al|r£0];) e (Bietr = ) /O 5

t
exists almost surely, so / X, ds is a well-defined r.v.
0

1. Show that for any sub-o-field G C F, there exists a bounded continuous process (¥;);>o such that for
every t >0, Y; = E[X; | §] a.s.
Hint: define Y; first for t € Q and then consider the extension to t € R.

E[/Otxsdﬂg} z/OtE[XS|g}ds.

Hint: The identity is true for XtA ; then justify the limit |A| — 0 carefully using boundedness and conti-
nuity.

3. Let i = v/—1. For any A\ € R, show that

2. Show that

t
GZABt +/ 5)\261)\BS dS, t 2 0
0

is a martingale.

t
1
Note: this implies f(B;) — / 3 f"(Bs) dBy is a martingale if f has a sufficiently nice Fourier transform
0

representation f(x) = /eiszf(f) d¢, since " (x) = —/4W2§26i)"”5f(§) de.

5 Local martingales and quadratic variation

Previously we have define the stochastic integral
¢
| 1B = G(1p0p)

t
for f € L% [0,00). At the end of last section we have also seen that / f(s)dBs is a continuous
0

martingale, essentially because the prelimiting process

Z fto(Bint,r — Bint,,) (5.1)

n=0
is a continuous martingale. We will consider the following generalizations.

1. First, we want to replace the deterministic function f(¢) by a random process. Consider

f(t)= Z§n(w)1(tn,tn+1](t) (5.2)
n=0
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and

t o
| 16)aB. = Y 60() By = B, (5.3)
0 n=0
The equation |(5.3) defines a martingale as long as &, € F;,,. For such f, we also have the Itd’s
isometry:
t 2 t
E(/ £(5) dBS) - E/ £2(s) ds. (5.4)
0 0
t
By approximation, we can define f(s)dBs for all processes that can be approximated by

0
processes of the form |(5.2), known as the progressively measurable process, such that the right-

hand side of (5.4 )is finite.

2. But even the Brownian motion B; is not necessary in to define a martingale. We can
replace (Bt)t>0 by any continuous martingale (M;);>o. Then the term ds in also needs
to be adjusted, since t = EBt2 is no longer true for other continuous martingales (in fact,
it uniquely determines the Brownian motion, see XXX). To this end, we will introduce the
quadratic variation of a continuous martingale.

t
3. Lastly, the condition E / f%(s)ds < oo can by replaced by a much weaker condition
0

P(/Ot F2(s) ds'< o0) = 1. (5.5)

This requires a general technique called “localization”. In this context, consider the stopping
time

T, = inf{t : /Ot f2(s)ds > n}.

tATy,
Then / f(s)dBs will be a martingale. To define the stochastic integral for all ¢ > 0, we

0
only need T), 1 oo if n 1 0o, which follows from [(5.5)]

5.1 Continuous local martingales

Continuous local martingales form the natural class of processes that will be invariant after stochastic
integration. It works well with stopping times.

Definition 5.1 A process (My)t>0 is called a continuous local martingale, if
1. the sample path t — My(w) is continuous for all w, and

2. there exists stopping times T,, T 0o such that (Miar, )t>0 5 a (u.i.) martingale.

Remark 5.1 If (MiaT, )e>0 is a ud. martingale, then (Miar, an)e>0 1S u.d., since it is closed by X1, an (see
Definition 4.4]). This means we can always require T}, to be sequence of bounded stopping times.

Proposition 5.1 Let (M;)i>0 be a c.l.m. and T be any stopping time. Then (Mir)i>0 is also a
continuous local martingale.
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Proof: By definition and for some bounded stopping time T}, T co, X; = Myap, form a
u.i. martingale, and hence by

Munryar, = E[Mr, | Finrl,

so by [Proposition 4.7 (M1, A7)0 is u.i. O

Proposition 5.2 Let M be a c.l.m. If there exists Z € L such that |M;| < Z for all t, then M is a
u.1. martingale.

Proof: Suppose that (Miat, )e>0 is w.i. Then by [Theorem 4.10| for ¢ > s,
Ms/\Tn = E[Mt/\Tn | fs] . (56)

By assumption, |Mgat, |, |MiaT,| < Z, so by Dominated Convergence Theorem, we can take T,, 1 oo
in|(5.6) to get EM; = [M; | Fs]. Uniform integrability follows from the fact that M is dominated by
Z for all t. O

Proposition 5.3 Let S,, = inf{t > 0: |M;| > n}. Then (Mps, )t>0 is a u.i. martingale.

Proof: By [Proposition 5.1} (Mg, )t>0 is a c.l.m. But [Mag, | < n for all ¢, so by [Proposition 5.2|
it is a u.i. martingale. O

Remark 5.2 This means that we can remove the “uniform integrability” assumption from the definition of
continuous local martingales.

5.2 Quadratic variation for continuous local martingales

In this section, for a partition A : 0 =ty <ty < --- < t, =t, |A| will be the maximum length of the
intervals in A. For a process (X¢)s>0, we write AX; = Xy, | — Xy, for short if there is no ambiguity.

Theorem 5.4 Let (My)i>0 be a c.l.m. Then the quadratic variation process

M, (5.7)

exists, and M? — (M) is a c.l.m.
We should compare with the Doob—Meyer decomposition for local sub-martingales.

Theorem 5.5 (Doob-Meyer Decomposition) Let (Xt)¢>o be a continuous local sub-martingale. Then
there exists a c.l.m. (Mi)i>0 and a continuous increasing process (Ai)i>o such that

X = M, + Ay (5.8)
The decomposition |(5.8)| is unique up to an additive constant.
For the detailed proof of [Theorem 5.5, one can see [KS98, Chap. 1]. Here we only give the proof of

uniqueness, which itself is an interesting fact about c.l.m’s. Note that the quadratic variation process

(M) in [Theorem 5.4]is the increasing process in [Theorem 5.5
Proof of existence of Suppose there are two decompositions

Xy =My + Ay = M} + Al
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Then
}Q:A;—At:Mt—Mt’

is both a c.l.m. and has finite variation (as it is the difference of two increasing functions). We will
show that such process Y; must be a constant.
Without loss of generality we assume Yy = 0. Fix K and define

T =inf{t > 0:|A] + |4} > K}.

Consider the c.lm. Z; = Yiar. Since |Z;| < K, by [Proposition 5.2|it is in fact a u.i. martingale. Then
we have for any partition 0 =ty < t1 < -+ <ty =1,

m—1
EZ; = (Zi,, —Zx)* <KE sup |Zy,, — Zyl. (5.9)
=0 0<k<m—1
Since Z is continuous, sup |Z; ., — Z;| — 0 a.s., so by Bounded Convergence Theorem, the
0<k<m—1
expectation at the right-hand side of |[(5.9)| goes to zero. Hence Z; = Yjar for every K. Letting K 1 0o
we obtain Y; = 0 for all ¢. O

Next we will prove Let us first look at the case of Brownian motion. We already

know that for any partition A,
EY IAB> =D At =t

t; €A t; €A
We will show the L?-convergence
2
E’ 3 IAB? - t‘ 50, |Al -0, (5.10)
t; €A

which implies the convergence in probability. Indeed,

2 L 2 A2
E’%%]ABZ] t) E{;[\ABZ\ Atz]}

—EY " [IABi - a4 [|AB, - At

,J
3 [|ABi|2 - At,}z.

In the last line we use that all the cross terms are zero, which follows from the fact that (B — t)¢>0
is a martingale. To see this, for ¢ > j, we have

0 = E[B?

tit1

and since |AB;|> — At; € F,

— B — (tis1 — ti) | Fi,,.] = E|AB|* — At; | Fy (5.11)

il
1
E[|ABi|2 . Atz} [\ABj\Q - At]} - E[]ABj|2 - At]} E[\ABJ»P — Aty | Fiyu| =0
Finally, it is easy to see that
STE(ABP - At)? <0 |AGP < A Y |AL] < ClAJt - 0

as desired.
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Homework Let ¢ > 0 and consider the partition A, : t; = it-27", 0 <4 < 2". Show that

2" -1
. . 2 _
nhHH;O z% (Bt — By,)" =t, as.
=

Hint: Compute the L*-distance, and then use Markov inequality and Borel-Cantell.

Proof of [Theorem 5.4: Since (My)i>0 is a clm., there are T, 1 oo such that (Miat,)e>0 is
a bounded martingales. Then (M2 )i>o is a sub-martingale, and by there exists a
continuous martingale N; and a continuous increasing process A; such that M; = N; + A;. We can
further assume that A; is bounded, otherwise we replace the stopping 73, by

T, =T, Ninf{t > 0: A; > n}.

So let us first prove the statement under condition |My|,|A;| < K for some K > 0. Now N; =
M? — Ay is a bounded c.l.m., so it is a martingale.

We will show )
‘ — 0.

E‘ S(AM)? - 4,
i
In fact, the left-hand side is equal to

3 E((AMi)Q - AAi) ((AMj)Q - AAj).
.3
Since Ny = M? — A; is a martingale, by the same computation as all the cross terms are zero.
For the diagonal terms, we have
2
EY [(AM)2 ~ AAz-] < 2B JAM* 1 2EY AL
< 2Esup |[AM;[* - > |AM;[? + 2Esup |[AA;] - Y [AA.

For the second term, sup |[AA4;| — 0 a.s. by continuity of A, so the expectation goes to 0 by Bounded

(2
Convergence Theorem. For the first term, we use Cauchy—Schwartz and obtain
1/2 211/2
E sup |AM;|? - AM;]? < [Esup AM; 4} . [E( AM; 2) } .
1p |AM;] zi:! il 1p [AM;] zijl il

The first term goes to zero by the continuity of M and Bounded Convergence Theorem. It remains
to show that the second term is bounded. In fact, after we expand the square, for the diagonal terms
we have

EY |AM;|* <AK®E |AM;[* = 4K*EM} < 4K*,
i i
and for the cross terms we have:

ED [AMP|AM;? = EJAM* - E[ > |AM;|* | ., | = E[AM? - E[M? — MZ | | Fi,,,] < 2K* - E|AM;],

J:g>1 J:j>i

and summing over all i we obtain that the sum of all the cross terms are bounded by CK*.
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Let Tk be the corresponding stopping time. Clearly klim P(Tk > t) = 1. We have just shown
—00

that there is an increasing process A; such that MEATK — ATy is a martingale, and Z(Mtz PATK —
i
My, /\TK)2 — ATy in L? and hence in probability. Now

PIDIAMP = A > ) < P(t < T | D (Mayy nmic = Miiame)* = Al > €) + Pt = Tx).

For any 6 > 0, we first choose K such that P(¢t > Tx) < §/2, and then choose |A| small enough such
that

P(’ Z(thATK — Mypr)? — At | > 5) <6/2
7

Then P(\ Z |AM; > — Ay| > 5) < 0 as desired. This completes the proof. O

5.3 Cross variation and continuous semi-martingales

Definition 5.2 Let M, N be two c.l.m.’s. The cross variation, or bracket of M and N is defined by

(M, N): = 3 (M + N)e — (3 = N))

The cross variation has the following properties.
Proposition 5.6 Let M, N be c.l.m.’s.

1. (M, N) is the unique (up to indistinguishability) finite variation process such that My Ny — (M, N);
is a c.l.m.

2. For every t > 0, we have convergence in probability

(M,N); = lim > (M, — M,)(N, N.).

A0 i i+l '
3. The map (M,N) — (M, N) is bilinear and symmetric.

4. For every stopping time,
(MT,NT) = (M",N) = (M,NT).

1
Proof: For[ltem 1| noting that M;N; = 1((Mt + Nt)2 — (M — Nt)Q), the difference of two c.l.m.’s

MyN; — (M, N), = i [((Mt Y N)? - (M + N)t) - ((Mt CN)? - (M — N>t)}

is still a c..m. The uniqueness follows the same argument as
For it suffices to notice that before taking the limit,

> AM; - AN; = i[z IAM + N)i|> = > |AM - N)Z-ﬂ.

follows from since each product AM; - AN; is symmetric and bilinear.
[tem 4l also follows from [fem 3 since

AM] - AN; = (Mypt;,, — Mras)(Ne,,, — Ny) = AM] - AN = AM; - AN}
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Definition 5.3 A process X = (Xt)i>0 is called a continuous semi-martingale (c.sm.) if it has the
decomposition
X = M+ Ay,

where My is a c.l.m. and A; is a continuous finite variation process.
The cross variation between c.l.m’s can be extended to continuous semi-martingales.

Proposition 5.7 1. If A is a finite variation process and X is a continuous process, then for every
t > 0 and partition A of [0,1],

‘iilnjo Z AA;-AX; =0, a.s.

2. If X=M+AandY = N + A’ are two continuous semi-martingales, then for every t > 0 and
partition A of [0,1],

lim AX; - AY; = lim AM; - AN; = (M, N), in probability.
|A|—0 |A]—0 p

In particular, we can define (X,Y); = (M, N); as the cross variation between X and Y .

Proof: It suffices to prove the first part. We note that
13" A4AX] < (sup |AXG]) DT A4

By continuity of X, as |A| — 0, the first term converges to 0, while by definition of finite variation
processes, the second term is bounded a.s. Hence, the left-hand side converges to 0 a.s. O

6 Stochastic integrals

As we have seen in the discussion at the beginning of the stochastic integral

t
/ Y, dX,
0

is defined by some limit of the left Riemann sum Z Y, (X4, — Xi,). We have seen the case where Y;

is a deterministic L? function and X is the Brownian motion; this is the stochastic integral constructed
in the Gaussian white noise expansion In general, we will need more assumptions on the
process X (some martingale properties) than Y. Indeed, the appropriate class of processes to consider
is the continuous local semi-martingales.

We will first present the celebrated [t6’s Formula, which says for twice continuously differentiable
function f and a continuous semi-martingale X, f(X}) is also a continuous semi-martingale, and gives
the decomposition into local martingale and finite variation processes. This justifies that continuous
semi-martingales are the right class of processes to perform stochastic integration. On the other hand,
1t6’s Formula plays the role of Fundamental Theorem of Calculus in classical calculus.

Then we will detail the approximation scheme to define stochastic integrals. It will rely on some
Hilbert space theory and the localization techniques.
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6.1 Ité’s Formula
Let C3(D) = {f : D — R : Vf, V2f exist and are continuous on D}.

Theorem 6.1 Let f € C*(R) and X = M + A be a continuous semi-martingale Then f(X;) is also a
continuous semi-martingale, such that

F(X0) — F(Xo) = / / FI(X)dX,+ 2 / 71X d(X), (6.1)

/Of’(XS /f )dAs + = /f” X)e|.  (6.2)

The first and second brackets in |(6.2)| are the local martingale and the finite variation term for the
continuous semi-martingale f(Xy), respectively.

We also formally write |(6.1)| and in the derivative form
AF(X0) = F/OX) dX; + 3" (X)d(X)e = /(X0 dMy + f/(X0) dAc 3 f/ (X)X (63

In |(6.2), the second and third integrals can be interpreted as Riemann—Stieltjes integral, so only
the first integral is new.
Since we have not defined stochastic yet, we will only assume the following fact in our proof of

Theorem 6.1} if M is a c.l.m. and Y is a nice process (in the theorem Y; = f'(X;)), then as a limit in
probability the stochastic integral

t
| YedM, = lim >V (Minsy, — Minr,) (6.4)

can be defined, and is also a c.l.m.
There is also a multi-dimensional version of the Ito’s Formula.

Theorem 6.2 Let f € C*(RY) and XD XD e continuous semi-martingales. Then f(Xy) =

7‘(Xt(1)7 . 7Xt(d)) is also a continuous semi-martingale, and
d f d 92f
§ 7 ){ d)( E Xd(x @ x )
8 ) ]k 8x]8$k( LY ’ )i (6.:5)

Remark 6.1 One can take_Xt(l) = t, so the function f can also depend on time. In this case, since Xt(l) =t has
finite variation, (X, X)), = 0 for all j # 1.

It is not enough to give definition for the stochastic integral After applying It6’s formula
multiple times, it is inevitable to compute the cross variation between stochastic integrals. Namely, if
dX; = HidMy, dY; = KidNy are two c.l.m.’s given by the stochastic integral, we need to know (X,Y"),
to apply It0’s formula again on X and Y. This will be a key property of stochastic integral we need
to establish. We will show

d(X,Y) = HK;d(M,N),

in this case.

We will prove [Theorem 6.1] assuming |(6.4)] Proof of [Theorem 6.1 By localization, we can

assume that My, A;, f', f” are all bounded. If they are not, we can define a stopping time

Ty = inf{t > 0: [M,| > K, |4 > K, |/'(X)| > K, |f"(X)| > K}
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and prove the statement for X7¥, and then let K — co. Note that by continuity of X and f’, f”, we
have T — oo as K — oo.

Let A: 0=ty <ty <--- <ty =1tDbe a partition of [0,¢]. Applying Taylor’s expansion on each
interval [t;,t;11] with Lagrangian remainder, we have

n—1
F(Xe) = f(Xo) = Z (X)) — F(X,)

—Zf (Xe)AX; + 5" (Kiyi ) (AXP

|
—

n

[f//(Xti) - f//(Xti,ti+1)] (AXZ)2

n—1
S PXAK + 5O FX)AX)
=0 1=0

Il
=)

i

=01+ 1+ Is.

Here, X, +,,, is some number between Xy, and X, ;.

By|(6.4), Iy — / f(Xs)dXs in probability as |A] — 0. Denote the modulus of continuity by

w(g,0) = sup  |g(x) —g(y)|
2y, |z—y|<d

For I35 we have

|
—

n

I3 < ( sup |f//(Xti) y f//(Xti,t¢+1)|> : : (AXZ')Q

0<i<n—1

~
I
o

n—1

<w(f",w(X,|A]) Z

=0

The first term converges to zero a.s. as |A| — 0, since X are bounded and X, f” are uniformly
continuous on compact intervals. The second term converges to (X); in probability. Hence, their
product converges to 0 in probability.

Now it remains to show that

JAR % /0 F1(X,) d(X)s. (6.6)

We will indeed show that holds almost surely. We will use some measure theory argument.
Recall that a sequence of r.v.’s have a limit in probability if and only if every subsequence has a
further subsequence that converges almost surely to that limit. In case of the quadratic variation
process (X) , there exist partition A,, on [0,¢] with |A,| — 0 such that with probability one,

Z (Xs/\ti+1 - Xs/\ti)Q — <X>S (67)
tieAn

for a fixed s > 0.
By the diagonalization method, we can find require that |(6.7)| holds simultaneously for all s €
QN 0,t]. Indeed, enumerate Q N [0,¢] as qi,qo,.... We first have a sequence of partition (A(l))nzl

n

such that [(6.7)| holds for ¢ = ¢;. Then, there exists a subsequence (A?)),>; ¢ (AM),> such that

n n

(6.7)[ holds for t = g2, but being a subsequence, it also holds for t = ¢;. Continuing this construction
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we obtain (A%k))nzl that holds simultaneously for t = ¢1,...,qg. Finally, the desired sequence
of partitions will be given by the diagonal sequence, A, = Ag”), which is a subsequence of every
(A1

Since the limiting process (X)s is increasing and continuous, if holds for all s € QN [0,¢], it
holds for all s € [0,¢] since Q is a dense subset of R. Define the measures pu, on [0,¢] by

Hn = Z 6Xti (Xti+1 - Xti)Q
t;€Ap

Then the distribution of p,[0, s] converges to (X)s for all s € [0,¢]. Hence, with probability one, the
measure [, converge weakly to the measure u(ds) = d(X)s. By weak convergence, for the continuous
function g(s) = f”(X;), we have

! _ " o 2 ! S s) = ! "
/0 g(s)unus)—gnf (X0) (Xiry, — X0)? — /O o(s) p(ds) /0 F(X0) d(X)..

This proves and completes the proof of the theorem. O

6.2 Some preparation

We define the space

H? = {M : continuous martingale, sup EM? < oo, My = 0},
>0

= {M : continuous local martingale, E(M, M), < oo, My = 0}.

This will be the martingale that will replace the Brownian motion. In fact, Brownian motion is not
in H2, but BT € H for all bounded stopping time 7.

The equivalence of these two definitions of H is guaranteed by the following proposition. For its
proof, see [LeG16, Theorem 4.13].

Proposition 6.3 Let M be a c.l.m. with My = 0. Then M is a martingale and sup EXt2 < o0 if and
only if E(M)oo < 00. And when this holds, M? — (M) is u.i. and E(M)s = EMgOt.
The space H? is an inner product space, on which the norm and inner product is given by
1M]f2 = E(M)oo = EMZ,
(M,N)g2 = E(M,N)o = EMsNwo.
In fact, H is a Hilbert space, i.e., an inner product space which is also complete.
Theorem 6.4 Every Cauchy sequence in H? has a limit in H?. Hence, H is a Hilbert space.

Sketch:  Let M™ be a Cauchy sequence, i.e., E(M™, M"), — 0 for n,m — oco. Then by
we have
Esup |M™ — M}"|? < 4E(M™, M™), — 0.
>0

The rest is essentially the same as the argument given at the end of O
Next, we define what should be the integrand process. Let M € H2. We define

L*(M) = {H : progressively measurable, E/ HZ2d(M),}.
0
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The space L? (M) can be identified as a L? space. Indeed, define the progressive o-field
P={AeFo:AN(Qx0,t]) € B([0,]) x F, Vt > 0}.

Then for @ = dPd(M) defined by

Q(A) = E/O La(w, s) d(M), = /dP(dw)/O 1y(w, s) (M), A€P, (6.8)
we have
L*(M) = L*(Q x [0,00), P, Q = dPd(M)).

The condition M € H ensures that () is a finite measure.

Note that the order of integration in cannot be changed, since d(M) depends on w. In some
sense, is more like a conditional expectation decomposition.

A special case is (Ms = Bias)s>0, where d(M)s = ds is independent of w. Then @) will have the
product form @ = P ® ds.

As an L*-space, the norm on L?*(M) is defined by

|E 200 = /0 H2 d(M),.

Finally, as we are doing approximation of stochastic integral by left Riemann sum, we need to
know that L?(M) has a dense subset that takes a simple form.
Define the space of elementary functions

g {H H ( + ZHt 1(tl,ti+1](5)? Hti € ‘th}

Theorem 6.5 Let M € H2. The set € is dense in LQ(M), i.e., for every progressively measurable
process H, there exist H" € £ N L?(M) such that

||Hn—H”L2(M)—>O, n — o0.

Sketch: If H is continuous, we can define

ZHz/n 1(1/71 z+1)/n]( )
Then for a.e. w, since H(w,-) € L*(R>q,d(M)) and continuous,

/OOO H™ (w, 5) — H(w, 3)2d(M)s — 0.

It is not hard to show that the limit holds after taking expectation E.
If H is not continuous, we can approximate H by the continuous process,
t
m _ Jaziymy, Mo ds
¢ (1/m)vt

since by Lebesgue Differentiation Theorem, for a.s. w, H™ — H a.s. in ¢ and in L?. Then we can use
the approximation on H™ in the first step. O
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6.3 Stochastic integral for square integrable martingales

Step 1: H € €.
Let M € H? and H € £ N L*(M). Tt only makes sense to define the stochastic integral as

t oo
(H-M); = / HydM, =Y Hy(w) (M, — Mipg,.,,)-
0 i=0

One can verify that H - M € H?, with

HH-MH%IFE(/ H,dM,)? = E / H?d(M), = Y EHZ (My,,, — M)
0 0 =0

The identity
[1H - M|z = [[HI|£2(nr) (6.9)

is known as Ito’s isometry.
From & to L*(M).

Let H € L*(M). By [Theorem 6.5| there are H™ € £ such that

|H" = H|[2200 = E /0 (H? — H,)? d(M), 0.

By [(6.9)}
|H" M — H™ - Mllgz = |H" — H"|| 20y — 0, n,m — 0,

that is, H™ - M forms a Cauchy sequence in H?. By [Theorem 6.4} there is a unique X € H such that
H" M — X in H2. We define H - M = X. Clearly, |[H - M||g2 = li_)rn |H™ - M||gz. So|(6.9)|also
n o0

holds for H - M defined in this way.
The process H - M can be characterized in the following way.

Theorem 6.6 Let H € L?(M). Then H - M is the unique process in H? such that
(H-M,N)=H-(M,N)
or, in the integral form,
(H - M,N), = /OtHS d(M,N)s, t>0.

can be used to compute the quadratic variation of two stochastic integrals. Indeed,
if dXt = Ht th and Y;f = Kt dNt, then

(X,Y)=(H-M,K -N)y=H-(M,K-N)=H - (K - (M,N}) = (HK)-(M,N), (6.10)
or in the derivative form,
d(X,Y), = H K d(M,N),.

In the last step of |(6.10), we in fact use the chain rule for Riemann—Stieltjes integral.
Another way to interpret is through the general theory of Hilbert space. We recall

below the Riesz Representation Theorem.

Theorem 6.7 Let H be a Hilbert space. Let £ : H — R be a bounded linear functional. Then there
exists a unique u € H such that
Ux) = (u,z)y, x€H.
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We also need the following Kunita—Watanabe Inequality

Theorem 6.8 Let Hy and K, be measurable processes. Then

[/0 | H|| K| |d(M, N)| /H2 )s./OOOKsdeS

Sketch: Consider the case H = K = 1. Note that by Cauchy—Schwartz, we have

DISTARINVIIRE=S SN VAL SIS

Hence, by the definition of cross variation and quadratic variation, we have

’ <(ME(NYE, s < t.

S S?

(1, V),

Then, one can show that the inequality holds for all H, K to be simple functions, and then for all
measurable H and K. O

To make the connection, we consider the following linear functional

o0
N cH? — E/ H,d(M,N),.
0

By [Theorem 6.8, we have (with K = 1)
2 1/2 1/2
/ H,d(M,N), / H2d [E<N>Oo] — |Hl2(ar) - [N 322 (6.11)
So by [Theorem 6.7] there exists X € H? such that
o
E(X,N)y = E/ Hyd(M,N)s.
0

Then [Theorem 6.6] identifies that X = H - M.
Proof of [Theorem 6.6; Let H € £N L*(M). By direct computation we have

(Ht;(M.pt;y — Moag,), N)¢ = Hy, <<M, N)int o — (M, N)t/\@-)-
Summing over all ¢ we have

t
<H-M,N>t:/ Hyd(M,N),, t>0.
0

By this holds for all H € L*(M). O

Finally the stochastic integral we have define work well with stopping time.

Theorem 6.9 Let M € H? and H € LZ(M). If T is a stopping time, then
(LomH) M= (H-M)"=H-M",
or more explicitly in the integral form,

00 T T
/ Lo Hy dM; = / HydM, = / HydMnr,
0 0 0

that is, the stopping time and stochastic integrals behave like normal time and integrals.
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Proof: We will use the characterization in although a direct approximation approach
is also straightforward.

We will use [[tem 4] in [Proposition 5.6/ many times.

For the first inequality, we have for any N € H?>

(Lo H - M,N) =10 H(M,N),

where for the Riemann—Stieltjes integral,
/ Ljomy(s)Hsd(M,N)s = / Hyd(MT N),.
0 0
Hence, we have
<1[O,T]H - M, N) = 1[O,T]H<M7 N> =H- <MTaN> = <H ’ MT>N>'
For the second identity,
<(HM)T7N> = <HM,NT> =H- <M7NT> =H- <MTaN> = <HMT7N>

6.4 Stochastic integral for local martingales
Let ~
L3 (M)={HecP: / H2d(M), < oo}
0

Theorem 6.10 Let M be a c.l.m. and H € L3, (M).

1. There exist stopping times T,, T oo a.s. such that M e H?, H € LQ(MT”). There exists a
continuous local martingale X such that Xynr, = (H - MT")t. We define H - M to be the process
X.

2. For any c.l.m. N,
(H-M,N)=H-(M,N).

3. For any stopping time,
(LomH) -M=(H -M)"=H M".

Proof: For the first part, consider
¢
T, =inf{t >0: / (1+ H2)d(M)s >n}.
0
Then (M M™"); < n implies that M1" € H?, and
) Ty
/ H2d(M™), = H2d(M), <n
0 0

implies that H € L2(M™™). So H - M™™ is well-defined.
To check that X is well-defined, we need to show that if m > n and X; = (H-M T”)t fort <T,
and X; = (H - M™m), for t < T},, then X, = X, for t < T},. This is due to for t < T},

X, = 1[0,Tn]5(t =(H-M™"\T), = (H-H™), = X,.

The second identity is by
The second and third parts follows from our definition and and [6.9] O
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Homework For two c.l.sm.’s X and Y, define the Stratonovich integral

t t
1
/YsodXs ::/ Y,dX, + =(X,Y),.
0 0 2

1. Show that if Z is another c.l.sm., then
t
(Z,/Yo ix), :/ Y, d(X, 2)..
0

2. Verify the chain rule for Stratonovich integrals: for c.l.sm.’s X, Y and Z,

/Otzsysodxs:/Otzsod(/osx.odxr).

7 Representation of martingales

7.1 Lévy’s characterization of Brownian motions

We say that a stochastic process B; = (Bt(l), e ,Bt(d)) € R? is a d-dimensional standard Brownian

)

motion if for each coordinate, Bt(] is a one-dimensional standard motion.

Theorem 7.1 Let X be a d-dimensional process. Then X is a d-dimensional Brownian motion if and
only if XU) are c.l.m. with quadratic variation

L, ]:ka

X(j),X(k) Y
< e = O 0, j#k.

Example 7.1 (Counter-example) The condition on continuity is essential. As an counterexample, consider the
Poisson process defined by
Nf‘ =max{k:& + &+ -+ & <t}

where &1,&, -+ are a sequence of i.i.d. Exp(\) r.v.’s. Then Ng‘ has independent increments and Nt)‘ — N;\ ~
Poi(\(t — 5)). One can show that (N*)? — Mt is a martingale, and hence (N*); = Xt. If A = 1, the condition of
Theorem 6.10| except continuity of the process is satisfied, but obviously N! is not the Brownian motion.

Proof: The “=" direction is easy, noting that the quadratic variation of two independent Brownian

motion is 0 since EABYWAB® = EABUEAB® = .
For the other direction, we will show that for every £ € Rd, t > s, we have

E[ei£~(Xt—Xs) | F| = e 3léP0=s) — ci&(Bi=By),
If this is true, then (X;) will have independent increments, and the increments has the same distribution
as the d-dimensional Brownian motion, i.e., the standard N (0, I;) Gaussian vector. So indeed X will
be a d-dimensional Brownian motion.

It suffices to show that
My = f(t, X;) = € Xe+5ll

is a martingale. The It6’s Formula ( [Theorem 6.2)) applies since Xt(j ) are c.l.m.’s. We have
1 ;
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Hence,
d

A(4.X0) = (Ouf + AP+ (i€ - ax, = Y igax;,

J=1

where we used (X (j), X (k)>t = §jt so only Af remains in the It6 correction term. Therefore, M; =
f(t, X;) is a c.l.m. On the other hand,

|My| = |€i§Xz+%|§\2t| < 6%|§\2t7
So M; is a true martingale. This completes the proof. O

Homework Let (W) and (W?) be two independent Brownian motions starts at W} = x;, 1 # 3. Let
T=T(w)=inf{t>0: th = Wf} be their collision time. Define
4% t < T(w)

) 1
%+EM%W—%—WLQHM

1. Explain why T'(w) is a stopping time.

b

Bi(w) = i=1,2.

)

2. Find bounded progressively measurable processes (Y;’), (ZZ), t = 1,2, such that
. t . t .
B! = x; +/ Yidw} +/ Ziaw? i=1,2.
0 0

3. Use Lévy’s characterization to show that (B;) and (B}) are Brownian motions (starting at @ ).

4. Show that (B, B?); = (t —T) V0.

7.2 Martingales as stochastic integrals

Let B be the standard Brownian motion on (€, Foo, (Ft)i>0,P). In this section, we assume that the
filtration is given by the augmentation of the natural filtration, namely,

Fi=0(FPUNL), No={A:3NeFE ACN, P(N)=0}.
By discussion in the augmented filtration satisfies the usual condition.

Theorem 7.2 Let B be the standard Brownian motion on (2, Foo, (Ft)t>0,P) where (Fi)i>o is the
augmented filtration.

1. For any Z € L*(Q, Fuo, P), there exists a unique h € LZ(B) s.t.

Z—EZ+/ hs dBs. (7.1)
0

2. For any L*-bounded martingale M (i.e., supEM? < oc), there exists a unique h € L*(B) and
t

constant C s.t.

t
M:C+/hd&. (7.2)
0

3. For any continuous local martingale M, there exists a unique h € L3, .(B) and constant C' such

that |(7.2)| holds.
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Remark 7.2 Recall that
L*(B) = L*([0,00) x Q,P,dt ® P).

In principle, so elements in the L? space are defined up to a dt ® P-null set. As we assume the usual condition,
any modification on the dt ® P-null set will not affect the progressive measurability of the process.

Proof: We will first prove everything except the existence part of .
Uniqueness of Suppose there are two representations in terms of hg, hs. We have

Z:EZ+/ hSstzEZJr/ hs dBs,
0 0

and hence

By It6’s isometry,
00 . 2 00 -
0= E[/ (hs — hs)st} - E/ () — hig(w)]? ds = 0.
0 0
Therefore, hg(w) = hy(w) for dt @ P-a.e. (s,w) and there are the same element in L(B).

From [[tem 1] to [tem 2l
Since sup EMt2 < o0, My are u.i., and by [Theorem 4.6| there exists My, such that M,, - My in !

t
and a.s. Note that (M;)o<t<co is @ martingale even we do not assume continuity of M, since

E(M, | Fi] =M, n>t =  E[My|F]= lim E[M,|F]=M,.

We also have M, € L?(€, Fuo, P), since by Fatou,

n—oo n—oo

EM2 =E lim M2 < liminf EM? < sup EM? < oc.
t
Applying [ltem 1| with Z = M, there exists h € L?(B) such that

[e.9]
My = EM —1—/ hs dBs.
0
t
Note that ( / hs dBS>0< - is a martingale by the construction of stochastic integral, we have
0 <t<oo

t
M, = E[My, | 7] = EM +/ hs dBs.
0

The uniqueness of the representation follows from the uniqueness of

From [[tem 2l to [tem 3l
Since Fy is trivial and My € Fy, Mo = C a.s. for some constant C. For simplicity we assume C' = 0.
Let T,, = inf{t > 0 : [M;| > n}. Then M is L>-bounded, and by there exist h™ € L?(B),
such that

t
M = / h{MdB,. (7.3)
0

Let m > n. Note that M/" has two representations. The first one is the second one is

T T tATy, t
M= Ml = /0 h™ dB, = /O L1 h™ dB;,
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where the last equality follows from the property of stochastic integral regarding stopping times, see

By the uniqueness of we have
W (w) = L7, w0y (5)R™ (W), for dt @ P-ae. (s,w). (7.4)

Hence, we can define
he(w) = A (W), if s < Tp(w) for some n.

Noting T}, 1 oo a.s. and thanks to |(7.4)] it is easy to see that this gives a consistent definition of an
element in LQ(B) up to dt ® P-null sets. This proves the existence of the desired representation. The
uniqueness follows from a similar localization argument. O

Next we turn to the proof of existence of [ltem 1| in [Theorem 7.2l Consider the set of random
variables

H ={Z € L*(Q, Fs,P) : the representation in [(7.1)] exists}.

We observe that H is a closed subspace of the linear space L2(Q, Foo, P). The linearity is obvious.
For the closedness, let

o
Zn =EZ, + / h{™ dB,
0
be a Cauchy sequence in L2(Q7 Fso,P). Then by Ito’s Isometry,

E/ WM — ™2 ds = E| Zy — Z|?,
0

and hence (™), is Cauchy in L?(B). But the space L?(B) is complete ([Theorem 6.5)), and hence
there exists h € L?(B) as the L?*(B)-limit of A™." Then Z = lim EZ, + / hs dBs will be the
n—oo 0

L2-limit of Z,, and the closedness of H is proved.
Now, to prove H = L?(Q, Fao, P), it suffices to show that H contains a dense subset of L?(€2, Fao, P).
The proof of the existence of |[[tem 1| in [I'heorem 7.2| will be completed by the following two lemmas.

Lemma 7.3 For all \j; e R, 0 =ty < t1 < ... <y, the real and imaginary parts of
G A (B - B;)
is element in H.
Lemma 7.4 The random variables in the form
ei'zz'r:ol Aj(BtHl*BJ), NeERO=tg<t; < <tpn (7.5)
are dense in LE(Q, Foo, P).

Idea and intuition:  Any r.v. measurable with respect to Fo, can be approximated by the form
f(Biy, ..., By, ) where f is a sufficiently nice function. One the other hand, by the the theory of
Fourier transform, we can write

[(Bu....\Bi,) = / PTEB f(¢) de

for some function f (w). As integrals can be approximated by Riemann sums, this suggests that the
left hand side can be approximated by linear combination of r.v.’s in the form of |(7.5)|
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In principle, one can also approximate a genericr.v. f(By,, ..., B, ) by polynomials in By, ..., B, .
But growth of polynomials is difficult to control, while complex exponentials are always bounded, and
thus serve as perfect choices for basis functions. O

The proof of follows from a general statement below about exponential martingales,
which we will also use a lot when discussing the Girsanov Theorem in

Proposition 7.5 Let L be a c.l.m. Then
&(L) = b=z, (7.6)

is a c.l.m., and d&€(L) = EdLy.

1 1
Proof: Let X; =L; — §<L>t. Then dX; = dL; — §d<L>t and

since (L); is a finite variational process and does not affect the quadratic variation (Proposition 5.7)).
By It6’s formula, we have

1 1 1
de™ = Xt d X, + iede(Xﬁ = et (dL; — L)t + 5d{L)) = et dLy,
Hence & = e*t is a c.l.m. and d&;, = & dL;. O
Proof of Cemma 7.3/: Let )
f(S) - )\jl(tj,t]url](s)
j=0
t m—1
and L; = z/ fsdBs. Then (L); = — Z )\?(t Atjy1 —t At;) By |[Proposition 7.5, we have
0 ;
7=0
imz_l Aj (Bt 1—Bt-)+%mz_1/\2-(tj+1—tj) tm
& (L)=e =0 77 7= =1+ | &(L)f.dB,.
0
Therefore,
m—1 —1
i >0 Nj(Be;, —Bt) =13 N(tja-ty) tm
=" I\ Ptip1 TP . 250 i1 {1+ gS(L)deBS} € H.

0
g

A surprising consequence of is that any martingale with respect to the augmented
filtration must be continuous. The intuition is that the augmented filtration is generated by a con-
tinuous process, namely, the Brownian motion. We have seen the process itself can enforce some

properties on the filtration, see for example [Theorem 3.18| so it also makes sense that the filtration
will determine some properties of an adapted process. The precise statement is the following.

Proposition 7.6 All martingales adapted to the augmented filtration (Fi)i>0 has a continuous modi-
fication.
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Proof: Let M = (M;)t>0 be the martingale. If M, is L?-bounded, then the statement follows from
[Theorem 7.21

If not, we can assume that M; is u.i., otherwise we can just discuss the continuity of the martingale
Mg for each a. By uniform integrability implies that there exists M., such that
(My)o<t<oo is a martingale. We can find M) bounded such that M — M. in L (for example,

[e.9]

M) = (—n)V My An). Then by [Theorem 7.2 Mt(n) = E[M{" | F] are continuous martingale. Now

by Doob’s maximal inequality, we can choose a subsequence (which we still denote by M (”)) such that

P(sup \M™ — Y| > 2*") <2,
t>0

Hence, by Borel-Cantelli, almost surely we have

and hence ~
M, = lim M™

n—oo

exists and the limiting process M; is continuous as the convergence is uniform convergence for contin-
uous function. It remains to show that M; is a modification of M;. In fact,

M; = E[Mw | Fi] = lim E[MQ) | 7] = lim MM, as.
n (o] n—oo

7.3 Continuous martingale as time-change Brownian motion

In this section we assume that the filtration (F;) satisfies the usual condition [Definition 3.11}

Theorem 7.7 Let M be a c.l.m. such that (M), = oo a.s. Then, there exists a Brownian motion
(Bs)s>0 such that almost surely,
vt >0, M = By

te

Proof: Let N'= {(M)sx < co}. Then P(N) = 0 and N € F; for all ¢ > 0 since (F;) satisfies the
usual condition. Let

(W) =

inf{t >0: (M) >r}, weNC
0, weN.

Then N € F; implies that 7,.(w) is a stopping time for every r > 0. Moreover, by definition and the
continuity of (M), r — 7, is increasing and left-continuous, and its right limit at every point is given
by

Tr = lim 75 =
slr

inf{t >0: (M), >r}, weNC
0, weN.

Now let
Br = M. (7.7)

We will show that 3, is a BM adapted to the filtration G, = F..
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Since r — 7, is left-continuous with right limits, and s — M is continuous, their composition
r — M, = (B, is left-continuous with right limits. We will show at the end that (5, is in fact right-
continuous, so that Lévy’s characterization can be applied. Assuming the continuity of
Br, to show that 3, is BM, it suffices to show that (8s)s>0, (582 — 5)s>0 are both c.l.m.’s.

Let n > s > r. For each n > 1, M™ is a u.i. martingale since (M), = n < oo (Proposition 6.3)).
Since M™ is u.i., we can apply Optional Sampling Theorem to the stopping times 7. < 75 and obtain

So (fBs)s>0 is a martingale.
To see that (82 — s)s>0 is a martingale, we apply Optional Sampling Theorem to the uniformly
integrable martingale [M i "]2 — s. We have

BB — 51 G = E[[M7]* = (M), | Fr, | = M7 = (M), = 82—

We have used the continuity of (M) to conclude that (M),, = u for all v > 0.
Having proved that 8 a BM, we need to show that almost surely,

Vt >0, M= By, (7.8)
In light of |(7.7)} if t = 7, for some r, then |(7.8)| follows from |(7.7)| since
My = M;, = Br = By, -

But in general, r — 7, is a increasing function that is left-continuous with right limit, the image of
7, may not be R. That is, it could happen that 7, < £ < 7,4 for some r. In this case, (M); = r for
Tr <t < 7py. To verify |(7.8), it remains to show

Mt = MTra Tr <t< Tr4- (79)

Note that M, = liin Bs, s0((7.9)| also implies the (right-)continuity of 8. We will put this statement
EANS
in Lemma 7.8 O

Lemma 7.8 Let M be a c.l.m. Then with probability one,
V0 <a<b, M, = M,, Vt€la,b] < (M)y=(M),.
Proof: Since both M and (M) are continuous process, it suffices show that for fixed a < b,
{M; = M,, YVt € [a,b]} ={(M)y = (M),}, as. (7.10)

Then we can take intersection over all a,b € Q and use continuity to get the desired result.
The “=" direction of |(7.10)| follows immediately from the construction of quadratic variation,
(5.7)]
To show the “«<” direction, letting Ny = My — Myp, and A = {(M), = (M), }, it suffices to show
E1AN? =0, for all t € [a,b]. Then N; = 0, € [a,b] a.s. when w € A and follows.
Let
T.=inf{t >0: (N); = (M) — (M)ipq > €}
Then A C {T. > b} and hence for t € [a, b],
E1AN? = E14NE, <ENZ =E(N)iar <e.

Since the left hand side is independent of e, and the above inequality holds for all € > 0, we must have
E14N? = 0, as desired. O
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Homework Let W = (W', W?) be a standard two-dimensional Brownian motion starting from the origin. For

functions

2

u(z,y) =2” —y?, o(z,y) =2y,

define
Btl :u(ththZ)v BtQ :U(ththz)-

1. Show that Bf , 1 =1,2, are continuous martingales with
(BY)y = (B%):, (B',B?;=0,
2. Show that there exists an random strictly increasing continuous function ¢ such that
(Bi. BY) = (Byy, By,
such that B = (B', B?) is a standard two-dimensional Brownian motion.

3. For a two-dimensional continuous process X = (X}, X7), define
TY =inf{t > 0: (X} £10)* + (X7)* < 1}
to be the hitting times of the unit disks centered at (£10,0) of X. Show that

P(TE >T8) =PV >1W).

8 Girsanov Theorem

8.1 Motivation
8.1.1 Gaussian measures on C|0, o)

Let P and P be two (probability) measures on (£2, F). Recall the definition of absolute continuity: we
say that P is absolutely continuous with respect to P, written P < P, if P(A) = 0 implies IS(A) =0.
If P < P and P < P, we say that P and P are equivalent, written P ~ P.

We have the following result on the Radon—Nikodym derivative.

< dP
Theorem 8.1 If P < P, then there exists Z = -5 € LY(Q, F,P) such that

- dP

P(A) = / —(w) P(dw) = EpZ14. (8.1)
4 dP

The converse is also true: if holds for some r.v. Z € Ll(Q,}', P), then P<P.

One common example of absolutely continuous measures is the continuous r.v. Recall that X is a
continuous r.v. if there exists px € L'(R) such that

Px(A) = /ApX(:U) dx.

That means the distribution of X, Py, is absolutely continuous with respect to the Lebesgue measure
on R. If px > 0 for a.e. z, then Px and the Lebesgue measure are equivalent.
Now let X and Y be two continuous random variables with positive densities px and py. We have

Py(A):Apy(y)dy=Apx(x)- [py(x)}dx

px(z)
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dPy  py(x)

Then P P d — =
en Py < Px an Py px(x)
dPy

dP x

In fact, we have a more general statement for Gaussian vectors.

. In the case where X ~ N(0,1) and Y = X +v = N(p, 1), we

have 2
(g;) = 6_($—v)2/2+x2/2 _ 61}.1*_%.

Proposition 8.2 Let X € R ~ N(11,Q) and Y = X + v where v € RY. Then Py and Px are
mutually absolutely continuous, if and only if v € Im(Q) (so that Q ‘v is defined). The Radon—

Nikodym derivative is
dPy

dPx

If @ is non-degenerate, then any translation in direction v will produce another absolutely contin-
uous measure on R%. When Q is degenerate, then only vectors v € Im(Q) will produce an absolutely
continuous measures. The space Im(Q) is known as the Cameron—Martin space for the Gaussian
measure Px.

The Brownian motion B = (By)>0 induces a measure P on C[0, 00). Consider a translation

(2) = e~ Q=T (8.2)

B, = By + h(t), h(t) € C[0,00), h(0) = 0.

Then B induces another measure P on C[0,00). The natural question is when the two measures P and
P are mutually absolutely continuous, or equivalently, what is the Cameron—Martin space for Wiener
measure?

The answer is h € H[0,00) where

H}[0,00) = {hs = /0 g(s)ds, g € L*[0,00)}. (8.3)

Let us discuss some intuition behind First, consider hy =t. Then hiar € H& for any T'> 0
but h & H&. Hence, P and P are mutually absolutely continuous on C[0, T for any 7" > 0, but not on
C[0,00). To illustrate the second point, consider

@)
A = N 1 = .
Cl0,00) D Ac =A{f Jim = c}
By Strong Law of Large Numbers and the independent increment property of Brownian motion, it is
easy to see that a.s.,

Hence, P(Ag) = 0, P(4p) =1 and P(A4;) =0, P(A;) = 1. So P and P are in fact singular with respect
to each other. On the other hand, if h € H, then

t
d
lim ht) = lim 7f0 g(:) > =0

t—o00

since g € L? [0,00). So we cannot use the event Ay to as a counterexample for absolute continuity.
The second perspective is that sometimes one can intuitively think of the standard Brownian
motion as a Gaussian measure on C[0, co) with “density”

o5 Jo7 lb(s)|? ds (8.4)
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makes 1o sense on its own, since first, the derivative b is not defined for b € C[0, ), and second,
there is no equivalent thing as the Lebesgue measure on C[0, 00) to discuss the density. Nevertheless,
we can do some computation using [(8.4)f formally we have

~ 1 . iN2

dP eSO e
dP e_% f |b|2

One then sees that [ |A|? needs to be finite so that the density is a well-defined quantity.

Lastly, the|(8.4)[could be derived from the following consideration. Recall that a Gaussian measure
is such that (v,b) ~ N (0, (Qu,v)), where @ is positive symmetric. In the finite dimensional case, the

1
Gaussian density is given by Cexp(—=(Q b, b)). Here, a bounded variation process V = [ v defines
2

a linear functional on C[0, 00):

(v, b) ;:/ bsts:—/ Vs dbs ~ N(0, [V[72).
0 0

(Qu,v) :/OOO\VFdSZ —/Ooov(/V)ds.

In other words, Q = (—8,,) "' Hence, Q! = (-0,,) and

Q7 'b,b) / Db - b_/ 1b]2.

The above argument can be made rigorous with the general theory of Gaussian measures on Banach
spaces.

So we have

8.1.2 Brownian motions under change of measure
Let 1 € RY. Let p and j be the density functions for N'(0,I;) and N (u, Iy):
p(u) = (2m) =42 l=nl 2 p(u) = (2m)~ 9212,

Consider a random vector X = (X7, ..., Xy) with distribution N (y, I), viewed as a measurable map
from (2, F) to R, which induces a probability measure P on (Q, F), that is,

PoX 1(A) = P(X € 4) = /1A(u)p(u) du, VA e BRY.

Now we define another measure P which is absolutely continuous with respect to P by
. p(X
p(T) = /lp(w)p( ©) p ).
p(X(w))

Then the measurable map X has a different measure under P. We have the following computation:
for A € B(RY),

- - o( X (w
PoX 1(A)=P(X €A = /1X(°J)€A(W)ZEX§w§;P(dw)
= ElA(X)p(ig

= [ [1a 28] - ) = [1atwita)



That is, PoX ' =N (0,1;). The message is that, under a suitable change of measure, we can
“normalize” every Gaussian random vector to be a standard Gaussian vector.
This is usually how the Girsanov Theorem is formulated.

Theorem 8.3 (Girsanov) Let T' € [0,00]. Let X be a progressively measurable process and define

t 1 t
Zt(X):exp(/ XSdBS—2/ 1X,*ds), 0<t<T.
0 0

Assume that (Z;(X)) is a martingale so that

0<t<T
P(A) =E14Z,(X), YAecF (8.5)

defines a new measure.

t
Then, By = B; — / Xsds is a Brownian motion on [0,T) on (2, F,P).
0

8.2 Exponential martingale and Radon—Nikodym derivatives

In this section we will discuss the change of measure formula We will see that Z; being a
martingale is essential for |(8.5) to define a measure, and that Z; will play the role of the Radon—
Nikodym derivative of the new measure with respect the original measure.

Proposition 8.4 Let T € (0, 0]

1. Let P and P be two probability measures on_a filtered probability space (Q, Fr, (Ft)o<i<r)-Let
Pi and Py be the restriction of P and P on the smaller o-field Fy C Fr. Suppose that P < P.
Then Py < Py for all t, and

Zt:flE’;:E[flE\Ft}, 0<t<T (8.6)
s a martingale.
2. Let (Zi)o<t<T be a P-martingale. Then
P(A) = Ela(w)Zi(w), VYAeF, 0<t<T, (8.7)

defines a probability measure P.
Moreover, if (Zt)o<t<T 18 u.i., that is, Zp = 1thnrjl’ Zy exists in L' and a.s., then P < P and
- —
dP

Tp =2
T=ap

Proof:
1. Let A € 7. Then

P(A)=0 = PA) =0 = PA)=0 = PyA)=

Hence, P<P implies that P, < P,.
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To show that Z; is a martingale, it suffices to show the second equality in Let A € F;.
Then by the definition of Radon—Nikodym derivatives,

- Py - dP
P:(A)=Els—, P(A)=El,—.
Therefore, B B
dPy dpP
Ely— =Els—
Aap, — Tap
for all A € F;. Hence the second equality in holds by the definition of conditional expec-
tation.

2. We need to check that |(8.7)| gives a consistent definition of a probability measure, since if
A € Fs C Fi, there are two definitions for P(A):

P(A) =E14Z;, P(A)=E1,Z,.

But E147; = E1 47, just follows from Z; being martingale.
Suppose now that Zr exists. For any A € Fy, {14Z,, r >t} is u.i. since Z, are u.i. Then,

P(A) = lim E14Z, = E14Zp.
r—T

Since IS(A) = E14Z7p holds for any A € F;, t >0, it holds for any A € Fp. Therefore, P<P
and Zr is the Radon—Nikodym derivative.

|

Remark 8.1 An analog in the case of product measures is the Kakutani’s dichotomy (see also [Dur(7, Example
4.3.7, Theorem 4.3.8]). Let (Q,F) = (RN, B(RY)), and consider two product measures

P=Gi1®G®G3® -, P=FRROFR®--
dF, dP,, . .
Assume that P, < G, and ¢, = pren > 0, Gp-a.s. Then, X, = T is a F,-martingale. Note that by the

v n
nature of the product measure, X,, are independent random variables. Since

n—oo

{lim X, =0} = {Zlogqn > —o0}

belongs to the tail o-algebra, the zero-one law guarantees that X,, — X P-a.s. for some X. We have either
PLPifX=0or P<PifX>0.

Interestingly, this is not too far from our Brownian motion case. Recall the Gaussian white noise construction
of Brownian motion

Bi(w) = Z En(W)(Lo,4)s €n) L2,
n=1

where {e,} is an ONB and &, are i.i.d. A(0,1) r.v.’s. So Brownian motion also have some product measure
structure.

So far we have seen a martingale Z; plays the role of a Radon—-Nikodym derivative of two probability
measures on a filtered probability space. The non-trial part of is that Z; has a special
form of an exponential martingale, introduced in |Proposition 7.5 Here, dL; = X;dBy. In fact, for any
positive c.l.m., we can express it as an exponential martingale.
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Proposition 8.5 If Z; is a positive c.l.m., then Z; = E(L) where

t
Ly =log Zy + / z;vaz,. (8.8)
0

Proof: Let L be defined by |(8.8)} Then

dlog 7, — thdZt - ;ZIth<z>t T %(L))t.
O
8.3 Girsanov Theorem: proof and applications
8.3.1 Girsanov Transform of c.l.m.’s
In this section, we assume Z; is a martingale and P is defined by
Lemma 8.6 An adapted process X; is a P-martingale if and only if X;Z; is a P-martingale.
Proof: We have
X, is f’—martingale & EXyli4=EX,14, VAEF, s<t
& EXy 2140 =EX,Z1,, VA€ Fg, s<t
< X;Z; is P-martingale.
O

The next proposition describes how continuous semi-martingales behaves under the Girsanov trans-
form.

Proposition 8.7 Assume that Z; = &/(L) is a martingale.

1. If My is a P-c.l.m., then M, = M, — (M, L) is a P-c.l.m.

2. Let M =M — (M,L) and N = N — (N, L). Then (M,N) = (M, N), computed under P or P.
Proof:

L. After localization, we can assume that Z;, M; are bounded martingales. By[Lemma 8.6] it suffices
to show Z; My = Z; My — Zy(M, L) is a martingale. By It6’s formula, recalling that dZ; = ZydL,,
we have

d(Z:My) = Zy dMy + My dZy + d{M, Z)y
=m.t. + Zt <M, L>t,
and

d[Z(M,L)¢| = Zyd(M, L)y + (M, L) dZ;.

Taking the difference, we see that dZtMt only has martingales terms, and hence ZtMt is a
martingale.
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2. Note that under P, M and 5\7 are continuous semi-martingale, and their martingale parts are
given by M and N, so (M, N) = (M, N) under P.

Since P < P and (M, N) is defined as limit in P-probability and P-a.s. has finite variation, (M, N)
is also a finite variation process under P. So M and N becomes continuous semi-martingales
under P, and their cross variation is defined.

To show that (]\Z,N) = (M, N) under P, we need to show that MN — (M, N) is a P-c.L.m., i.e.,
by Zy(MyN; — (M, N)) is a P-c.L.m.
We have

d(ZMyNy) = MyNy dZy + My Zy(dNy — d(L, N)¢) + Ny Zy (dMy — d(L, M);)
+ Zyd(M,N); + My d(N, Z); + Ny d(M, Z);
=m.t. + Zt d<M, N>t

(since (M,N) = (M,N), M;d(N,Z); = M;d(N, Z); = M;Z; d(N, L); and likewise for the last
term), and
d[Zy(M,N)¢| = Zyd(M,N)¢ + (M, N); dZ;,

so Zy (MtNt — (M, N}t) is indeed a P-c.l.m.

|

Now we are ready to give the proof of )
Proof of Theorem 8.3t Let L = X - B. Then Z = £(L) and by [Proposition 8.7, B = B — (B, L)
is a P-c.L.m. Moreover, (B, B); = (B, B); =t under P. By Lévy’s characterization ( [Theorem 7.1, B

is a Brownian motion under P. O

8.3.2 Application: Brownian motion with drift

Let 4 € R. By |[Theorem 8.3 B, =B, — ut is a Brownian motion under

1
P#(A) = Eljexp <MBt — §M2t), A€ F.

Let Ty = inf{t : B; = b}. Recall that we have computed Ee b = e 1bIvV2a,
We want to compute P# (7T}, < 00). Note that under P, B, = B;+ ut is a standard Brownian motion
with a drift ut. We have

PH(T, < t) = Elyg,< Z
= Bl <y E[Z: | Fingy) ({1, <t} € Finry)
= Elin < Zinty, = Ely1, <y 2,

)
= ELgp<pe” 2

Letting ¢ — oo, by Dominated Convergence Theorem and noting that P(7, < oo) = 1, we have

1, ub > 0,

PH(T, < c0) = Eetb—31°b — onb=lubl
T ) e 2 <1, ub<O0.

The last result is very intuitive: for example, if y > 0, then the Brownian motion has a positive drift,
which will dominate the typical behavior of By ~ V/t, so it is less likely to hit a negative number b < 0.
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Proposition 8.8 (Wald’s identity) Let u € R and T be a P-a.s. finite stopping time. Then
EetBr—3r'T =1 & PHT < o) = 1.
Proof: The same argument with Tj replaced by T gives
PA(T < t) = Elypey Zr = Elgpay et P13,

Letting t 1 0o, the desired result follows from Monotone Convergence Theorem. O

8.3.3 Application: Cameron—Martin space

Let h € C[0, 00) with h(0) = 0. Consider B; = B; — hy. Then B is a Brownian motion on [0, co) under
P if and only if h € H}[0,00), where

HL[0,00) = {h : weak derivatived,h € L*[0,00) and h(0) = 0}.

And when h € H}[0, c0), i
AP fee lh(s) dBa=} 5 1h() ds

dP

Note that the space HJ[0,00) is much smaller than C[0,00). It means that although the Wiener
measure is defined on C[0, o), not all translations in C[0, co) will generate a new measure that is abso-
lutely continuous with respect to the original measure. Such subspace consisting all such translation
for a Gaussian measure is called the Cameron—Martin space.

For infinite dimensional Gaussian measures, the. Cameron—Martin space is strictly smaller due to
the fact there are “too many” directions. For a finite dimensional Gaussian measure, i.e., a Gaussian
vector X € R ~ NV (11, Q), the Cameron—Martin space is R?, unless Q is degenerate, in which case
the Cameron—Martin space is the range of @, or the domain of Q~!. This is also easy to see since
otherwise, one cannot write down the Radon—-Nikodym derivative |(8.2)|

8.4 Novikov condition

A key assumption in the Girsanov Theorem [Theorem 8.3]is that Z; is a martingale. In this section
we introduce a sufficient condition.

Proposition 8.9 If Z; is a positive c.l.m., then Z; is a super-martingale.

Proof: Let T), T 0o be such that Z7* is a martingale. Since Z is positive, by Fatou’s Lemma, we
have for s < t,

Zs = lim ZI'" = lim E[Z]" | F,] > E[nlgn;ozf“ |fs} =E[Z | Fo].

n—oo n—o0

Lemma 8.10 The process Z; is a martingale if and only if EZ; = 1.

Proof: By |Proposition 8.9 Z; is a super-martingale. By Doob—Meyer Decomposition, Z; = M; — Ay,
where A; is an increasing process and M, is a martingale. Then EZ; = 1 < A; = 0. This proves the
lemma. O
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Theorem 8.11 (Novikov’s condition) Let L be a c.l.m. and Z; = &(L). If
Eez(l)e < oo, (8.9)

then Z; is uniformly integrable and hence a martingale.
Proof: We will represent L as the time-change of a standard Brownian motion ( [Theorem 7.7)).
Note that implies that P-a.s. (L)oo < 00, so we need to adapt [Theorem 7.7| to such case. The
Brownian motion will be defined by
8, = L, $ < (L)oo, Ts =inf{t > 0: (L); > s},
’ Lo + (53 - B(L)oo)v 5 > (L)oo,

where 3 is a Brownian motion independent of L. Then T = (L)~ is a stopping time with respect to
the filtration

gs = -F’Ts7
since {T' > s} = {1; < o0} € F,.
The condition can be rewritten as
ir
Ee2" < oo. (8.10)
In light of it suffices to show that
1 = EeBr—aT. (8.11)

Clearly, by [Proposition 8.8} [(8.11)| holds if and only if P*=!(T < oo) = 1. But we know nothing about
T except [(8.10)] [Proposition 8.8|is directly useful. The point here is to derive [(8.11)| from [(8.10)}
Let S,, T 0o be a sequence of stopping times such that

1 = EeBsn 25 (8.12)

By Optional Sampling Theorem applied to the uniformly integrable martingale eBSn“*%(S”At), we

have
1
1 = EePonn=3(80nT) _ El(s,<rye’s 2% 4 El{SnET}eBT*%T.

1
Letting S, 1 00, the second term converges to Ee®T~27 by Monotone Convergence Theorem. Hence,

to establish [(8.11), it remains to show
. _1
lim Elgg, cppelsn 2% =0 (8.13)
Now we pick
Sy =inf{t: B =1t —n}.
Then |(8.13)| is bounded by

- B, —Sn
hnnigf El(s,<me”*n

1lg . —n 1
-e2”" < liminfe "E1 e2" .
~ n—oo {Sn<T}

The last limit is 0 by [(8.11)] and Monotone Convergence Theorem. Also
pu=1(5n < 00) = PM(Bt hits —n before c0) = 1,

so [(8.12)| holds by [Proposition 8.8 This completes the proof. O
Remark 8.2 If only for some € > 0 small, Eez—o7T < o0, then for the argument above we need to consider

instead
Sy =inf{t: By = (1 —e)t — n}.

~ 1
However, |(8.12)| no longer holds since B; = By — t will not hit —et — n a.s. This explains why 3 is “sharp”.
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9 Stochastic differential equations

9.1 Markov semi-groups and diffusions

A Markov process is an adapted process that satisfies the Markov property, see To
develop the semi-group theory, we take the state space of the Markov process to be a metric space
E. Usually E = Z,R? or subsets of them. A Markov kernel is a family of probability measures
pe(z,-) € M(E), t > 0,2 € E that satisfies the following two conditions

d pt(xa ) - 61‘) t l/ 0.

e (Kolmogorov—Chapman) For ¢,s > 0 and any = € F,
Pe+s(z, ) = /pt(ﬂz dy)ps(y;-)- (9.1)

Any Markov kernel defines a Markov process. Let u € M(FE) be the initial condition. Then the
f.d.d. of the Markov process (X;);>0 is given by

P“(Xto € Ao,th S Al,Xt2 S A27 s ,th71 S An—hth S An) = /,u,(d.%'())
(9.2)
'/pt1($07d$1)/pt2tl(xladx2)/"'/ptn1tng(:L'nZadajnl)ptntn1($n1>An)'

The f.d.d. is consistent thanks to Then Kolmogorov Extension Theorem guarantees the
existence of a stochastic process with as its f.d.d. In case that X, starts from a delta measure
i = 0z, it is conventional to write P? instead of P

Formally, given a Markov kernel, the integral operator

P = / P, dy) f(y) 9.3)

defines a semi-group, since [(9.1)| implies the semi-group relation
PtPS == Pt—i—s, t,S Z 0. (94)

Most often we impose some regularity assumptions on the Markov kernel so that |(9.3)| defines an
operator on the functional space of continuous functions. To be more precise, let

Co(E) ={f €C(E): \x1|ii>noo /()] = 0}.

Definition 9.1 The equatz’on defines a Feller semi-group (P¢)¢>0 if
e forallt >0, f€Cy(E)=Pf € Co(E);
o for all f € Co(E), t — Pyf is continuous in the topology of Co(E).
It is natural to discuss differentiability once continuity is known. Consider the operator

£f i=tim ot =Pl gy P2

i ; i ———, in Co(E) (9.5)

The operator L is called the generator of the semi-group (P¢);>0. The limit may not exist for any
f € Co(F); the domain of L, denoted by D(L), consists of all the functions in Cy(E) such that
exists. A nice account of the theory can be found in [EK86]. We will not dive deep into the theory of
semi-group and generators, but just assume some facts that we will utilize frequently.
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Remark 9.1 e D(L) is dense in Cy(F).

e When the Markov process is a diffusion, £ is a second-order differential operator and
D(L) 5 C5 = {f € C*(B) : [f(2)], [(8:f) ()], (i ) ()| = 0, x| — oo}
e £ and (P);>0 determine each other.

We will elaborate the last point. The key observation is from the semi-group property |(9.4)]

Pif — Psyitf —Ps P
ef f):hm +tf f N dPy

=P, L.
t 10 t dt t

P.Lf = limP,
£f =1timP,

At AL

The ODE z/(t) = Az has a unique solution x = zge”, so naturally we expect P; = e** in some sense.

When L is bounded. This occurs when (X¢)¢>0 is a finite-state continuous time Markov chain
and £ becomes a N x N matrix which is always bounded. In this case, the matrix exponential can
be defined by the Taylor expansion

> L

Pt = etL = I
n.:
n=0

and the infinite sum converges in the matrix norm. Clearly, term-by-term differentiation makes sense,

and we have )
E" f thTr L f
( of) = Z n! Z (n—1)!

n=0

Hence p
a(Ptf) = L(P1f) = Pi(Lf). (9.6)
When £ is unbounded. The relation still holds for non-bounded L, even though the

exponential via the infinite sum is no longer available.

Proposition 9.1 If f € D(L), then Pyf € D(L) and holds, as well as the integral form

Ptf—f:/o E(Psf)ds:/o P.(LS)ds. (9.7)

Remark 9.2 Note: Lf € Co(E) and s — Ps(Lf) is continuous in Co(F), so the last integral could be defined as
a Riemann integral for continuous functions.

Example 9.3 Let (B;);>0 be the d-dimensional Brownian motion. Then p,(z, dy) = (27t)~%?%e
elementary calculus, one can check directly p; defines a Feller semi-group.
Next we will show that £Z = A. Indeed, let f € C2(R?), then by Ito’s formula,

f(Bt)—f(Bo)Z/Zﬁf B,)dBY + = / Z (0, f)(B d(B®W BW),.
i,j=1

Taking expectation, and noting that |9; f| is bounded so that the first term is a true martingale, and (B®, BU)) =
6ijta we have

Ef(B) — @) = [ EGANBIds = (Pu@) = @) = [ P(GAn @) ds

1
Hence f € D(£P) and by |(9.7)} £P = 3O
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9.2 Diffusion and forward/backward Kolmogorov equations

Let us look at a generalization of the calculation at the end of last section. In one dimension, let b, o
be bounded measurable process R — R and (B;):>0 a standard Brownian motion. Suppose X; is a
process that solves

X, =z+ /Ot o(X;)dB; + /Ot b(X,) dt. (9.8)
Let f € C2(R). By Ito’s formula, we have
f(Xy) ==z +/ (X s) dBs + b(Xs) ds) + /Ot %f”(XS)UQ(XS) ds.
After taking expectation, the martingale term disappears, and we have
/() = f(0) + [ EER(CX) ds 99)
where
(LF) = (£ 1)) = 507 (@)(Oue @) + D) (02f) ). (9.10)

If we define u(t,z) = Ef(X}:) (noting that X, starts from x), then wu(t,x) satisfies the forward Kol-

mogorov equation
Oy = Lu,
u(0,z) = f(z).

Here, L is a differential operator acting on the z variable, so (Lu)(t,z) = (Lu(t,-))(x).
Now we assume that the distribution of X; is absolutely continuous with respect to the Lebesgue
measure, and denote by p(t,y) its density. Then

EF(X,) = / o(t,9)f () dy,

and

/E( ds—// o5, 9)(LF)(y dy—/ /c* y)dyz/f(y)dy/otw*p(s,-))ds

Combining these with |(9.9)] - we have for all f € C3(R)

[ 16y [pteen) ~ [ @ pts.ds] = 7o)
As C2(R) is dense in C(R) and hence determines an element in M(R), the density p(t,y) satisfies the

backward Kolmogorov equation
(%,0 = ‘C*pa
p(t,") = bz, t{0.

Here, the adjoint operator £* is the differential operator such that for all g,h € C5°(R),

[o@ren@ = [@ @)
When L is given by we have

from integration by parts.
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Proposition 9.2 If for every u € M(R), there exists a unique solution p = p(-;u) to the backward
Kolmogorov equation, that is, t — p(t,-) is continuous in M(E) in the weak topology and

n(

t) =,
then py(x, dy) = p(t, dy; ;) defines a Markov kernel.

Proof: By definition of a solution, p;(x,-) = J,. It remains to check |(9.1)]
For|(9.1)|let us fix ¢ > 0 and show its validity for all s > 0. Note that [(9.11)|is a linear equation,
so that

(s, ) = / prle, d2)ps (2. )

solves
8Sﬁ = ﬁ*ﬁa
ﬁ(s7 ) = pt('rv )

But pyis(x,-) solves the same equation since the the evolution PDE |(9.11) is well-posed. Hence
Piys = p(s,-) and |(9.1) is satisfied. O

Now we are ready to define what is a diffusion.
Definition 9.2 A diffusion X, € R? is a Markov process such that
o The sample path t — Xy is continuous.

o The generator of X, is

d d
1
L= Zl a;7(2) Oz, + Zlbi(x)ﬁmi,
7’7]: 1=

where (a;;) is positive definite.

By [Proposition 9.2} such a Markov process exists if is well-deposed. The continuity of the
path can also be derived from the information on f.d.d. if certain additional assumptions are imposed
on L. Let us compute two important quantities for a diffusion. The first is the drift (in the i-th
coordinate):

EY X — 2] =t (Lf)(x) + o) =t - b;(x) + o(t), (9.12)

where f(y) = ', the i-th coordinate of the argument y, and we just use Py f — f = Lf -t + o(t) from
the definition of the generator. Strictly speaking, f(y) = 3 is not in Co(R%), but we can approximate
f by some functions in Co(R?) and our conclusion will not be affected.

In light of it is tempting to guess that (Xt(i) — x;)/t = b;j(x) a.s. However, this is not true,
as the next quantity shows. For 1 <i,j < d, let f(y) = (y' — z;) (3’ — xj). Then we have

aij(x) + aji(z)
2

First, implies that X; cannot be a.s. differentiable, otherwise the right-hand side should be
O(t?) instead of O(t). Second, one can use derived soly from the f.d.d. information, together
with the Kolmogorov Continuity Test to say something about the continuity of the process.

In this way, using some knowledge from parabolic PDEs (Proposition 9.2|), we know pretty well
what is a diffusion process. But it is still meaningful to construct the diffusion as some “stochastic

EX(X® — 2)(XW) —z) =t (Lf)(2) + o(t) = -t 4 oft). (9.13)
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differential equation”, like This used to be the main motivation behind the stochastic calculus.
We have derived the form of £ from but we have not yet define what is a solution to let
alone how to solve it. That will be discussed in the next few sections.

Finally, let us derive the form of £ and £* without using It6’s formula. Imagine we are in one
dimension and there are some particles on moving on the real line doing “diffusion”. We can observe
p(t, z), the density of the particles at time ¢, at location z. Fixing a small region [z, x + Az]|, the first
identity we can write down is the conservation of particles, namely,

0

ap(t,a:)Am = J(x + Az) — J(z),

where J(y) is the flow of particles crossing {x = y}. The form of J will come from some physical laws.
It is reasonable to write

J(x) = a(z)0zp + b(z)p(x).

The first term states that the flow should be proportional to the difference of density to the left and
to the right of {y = x}; this is the principle of diffusion. We add a term a(x) as a factor. The second
term gives some external factor which forces particle at = to move in speed b(x). Using this form of
J, one sees that p indeed solves a second-order parabolic equation.

9.3 Strong and weak solutions, notion of uniqueness

We start with a general stochastic differential equation:

.14
Yo_¢ (9.14)

{dXt = b(t, Xt) dt + O'(t, Xt) dBt
Here, X; € R? and B; is r-dimensional Brownian motion; accordingly, b(t, X;) € R¥! and o(t, X;) €
RY": ¢ is a random vector in R? with given distribution . More explicitly, we could also write down
the equation coordinate-wise:

dX," = bi(t, X;) dt + > ot Xy) B, 1<i<n,
j=1

The processes X, By will be adapted on a filtered probability space (Q, F, (F)¢>0, P) that satisfies
the usual condition.

A strong solution X; is a functional of the Brownian motion B;. We will encode such dependence
via adaptedness to the Brownian filtration. More precisely, suppose that on a probability space
(Q, F,P) there lives a r-dimensional Brownian motion and an independent r.v. { with distribution
p. Let G = o(€) V FP and N be the collection of all P-null sets of (€, Go,P). We define the
augmented filtration F; = o(G; UN). This filtration satisfies the usual condition, and it just contains
the information of the Brownian motion and the initial condition.

Definition 9.3 The equation|(9.14)| has a strong solution if there is a process X; satisfying|(9.14)| and
s adapted to Fy defined as above.
We say that strong uniqueness holds if X is another strong solution, then P(X; = X,,Vt > 0) = 1.

Remark 9.4 As a solution, we implicitly assume that the stochastic integral could be defined in the broadest

T
sense given in [Section 6.4} e.g., / 02(t,Xt) dt < oo a.s. if we want to consider the solution up to some time
0

T € [0, 00].
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A weak solution relaxes the condition that X is adapted to the filtration generated by the Brownian
motion.

Definition 9.4 The equation |(9.14)| has a weak solution (X, By) if (X, Bt) are a pair of adapted
process on some filtered probability space (2, F, (Ft)i>0P) such that|(9.14)| holds, and By is a Brownian

motion under P.

We will introduce other notions of uniqueness and discuss the distinction between strong and weak
solution through the celebrated example by Tanaka.
Consider the SDE
dXt == Sgn(Xt) dBt, XO =0 (915)

First let us construct a weak solution to|(9.15) Let X; be a Brownian motion on (92, F, P). Define

t
Bt:/ SgH(Xt) dXt
0

Note that |sgn(X;)| < 1, so the stochastic integral is well-defined and B, is a martingale. Moreover,

(B); = |sgn(Xy) |2 d(X)s = dt, so by [Theorem 7.1 B; is a Brownian motion. Hence (B, X;) is a weak

solution to |(9.15)

Definition 9.5 We say that |(9.14) has weak uniqueness in law if for given initial condition u, for
any weak solution (Xy, By), the law P(X; € -) as a probability measure on C([0,00), RY) is unique.

By [Theorem 7.1f again, if (X, B;) is a weak solution to then (X¢)s>0 is a Brownian motion.
Hence the weak uniqueness in law holds for |(9.15)]

Another notion for uniqueness of weak solutions is the pathwise uniqueness.

Definition 9.6 We say that pathwise uniqueness holds for if for (X¢, By), (X, By) two weak
solutions defined on the same probability space (Q, F,P), Xy and X are indistinguishable, i.e., P(X; =
X}, Vt €]0,00)) = 1.

From the|(9.15)| if (X;, By) is a weak solution, then (—X, B;) is also a weak solution since sgn(x) =
—sgn(—=z). But it is impossible to have P(X; = —X;,Vt > 0) = 1 since (X¢)¢>0 is known to be the
Brownian motion. Hence, pathwise uniqueness fails for

Finally, let us also show that strong existence fails for |(9.15)l Suppose that a Brownian motion
(By) is given, and X; is a strong solution. Then

dBt = SgH(Xt) . sgn(Xt) dBt = sgn(Xt)dXt,

and hence ‘
By = / sgn(Xy)dX; = | X¢| — L (0),
0

where L;X(0) is the local time of the Brownian motion X at 0. There is various way to define the local
time, an increasing process, through limit of certain expression of X, for example,

t
. 3
L¥ =lim

—————ds
0 Jo (VIXE+2)?

which comes from approximating f(x) = |z| by f-(z) = V22 + €. One sees that L;* could be defined

through |X| (which is intuitive since X; = 0 is the same as |X;| = 0). Therefore, FZ C Ft‘X|. On
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the other hand F;¥ < FP by the definition of strong solution. But then we arrive at the inclusion

Ffc .7:t|X|, which cannot be true since X is a Brownian motion. This shows that m cannot admit
a strong solution. As we will see in this is due to the discontinuity of the sign function.

As far as the construction of a diffusion as a solution of SDE, what we need is weak existence and
uniqueness. On the other hand, it is usually very easy to work on pathwise uniqueness since it starts
on a coupling. The surprising result by Yamada—Watanabe states that pathwise uniqueness plus weak

uniqueness lead to strong solvability of [(9.14)] We will develop the result in [Section 10.1
Theorem 9.3 (Yamada-Watanabe) If there exists a weak solution to|(9.14)| and pathwise uniqueness

holds, then weak uniqueness also holds.
Moreover, the above assumptions lead to the existence of strong solutions to|(9.14)]

9.4 Lipschitz case and generalizations

In this section we will prove strong existence and uniqueness of solution to|(9.14)|under the assumption
that the coefficients b, o are Lipschitz in x: 3K > 0 such that

lo(t,z) — o(t,y)| + |b(t, ) — b(t, y)| < K|z —y| (9.16)
lo(t,z)|? + |b(t,z)|> < K(1+ |z]?). (9.17)

Analogous to the solution theory of ordinary differential equation, the solutions are constructed via a
Picard iteration scheme. For simplicity the results we state are in one dimension. But the extension
to higher dimensions is immediate.

We first state the uniqueness.

Theorem 9.4 Suppose the coefficients b, o are locally Lipschitz, i.e., for n > 1 there exists K, > 0
such that
ot 2) — ot )| + 1b(t, 2) = b(t, )| < K|z —yl, Ve, Iyl < n. (9.18)

Then pathwise uniqueness holds for|(9.14)]

We will use the following version of Gronwall’s inequality.

Lemma 9.5 Let g > 0 be a bounded, measurable function. Let a,b > 0. If

t
g(t) < a—i—b/ g(s)ds
0
for all t >0, then g(t) < ae™.
Proof: Let (X;, B;) and (X;, B;) be two weak solutions to Let
T = inf{t > 0: | X¢| A|X¢| > n).

Then 7,, n > 1 are stopping times and 7, 1T oo a.s.
Fix T'> 0. For every 0 <t < T,

~ tATh ~ tATn
Xinr, — Xinr, = / [b(s, Xs) — b(s, X,)] ds +/ [o(s, Xs) — 0(s, Xs)] dBs.
0 0
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Squaring both sides and taking expectation, we have
tATh _

tATh _
E[Xinn, — Xinr |2 < QE[/ [b(s, X,) — b(s, Xs)] dsr n 2E/ [o(s, X) — o(s, X)) ds
0 0

tATh tATh
< QK};TE/ X, — X,|%ds + 2K§E/ | X, — X, ds
0 0
t
<2KX(T + 1)/ E|Xonr, — Xonr, |? ds.
0

Here, the first line is due to (a + b)* < 2a® 4 2b%, the second line is by and Cauchy-Schwartz
on the first term.

~ Now let g(t) = E|Xinr, — Xinr,|?, a=0and b= 2I§Z(T+ 1). Then by g(t) = 0. Since
Xinr, and Xynr, are continuous processes, Xiar, = Xinar, for all ¢ < T. The desired result follows

from letting 7' 1 oo and 7, T c0. O
For the existence of strong solutions, we will consider the following Picard iteration scheme:
0
X =¢,
t t (9.19)
Xt(k—H) = 5—}—/ b(s,Xék))ds+/ o(s, X dB,.
0 0

The goal is to show X (k) converges to some strong solution X. We will use the following lemma.

Lemma 9.6 Let f,, > 0 be bounded, measurable and A, B,C > 0. Suppose that
folt) <C

t (9.20)
fog1(t) < A+ B/ fn(s)ds.
0
Thent (B! (BY)
Bt)"~ Bt)"
n(t) <A1+ (Bt)+--- C .
falt) < [+( )+ +(n—1)!]+ n!
In particular,
limsup f,, () < AeB!
n—oo
and fn(t) < C(Bt)"/n!if A=0.
Proof: Use induction. O

First we assume the initial condition has bounded second moments:
El¢]? < oc. (9.21)
Lemma 9.7 Assume . Then for T > 0, there exists C' > 0 such that
ExXP2 <ol +EEP) S, 0<t<T.

Proof: Let 7, = inf{t: \Xt(k)] >n}. For 0 <t <T, we have
tATh 2
Xt P < sfee? +E( [ s X ds) e [
0 0

tATh
< 3[Elel? +TE/ K2(1 + | XM]2) ds + E/
0 0

tATh
o (s, X) 2 ds|
tATh

K21+ X)) ds|

tATh
< Ci(1+E¢)?) + CgE/ X2 ds.
0
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Letting 7, T 00, by Monotone Convergence Theorem, we have
t

X < a1+ EIgR) + Ca | EXIP s
0

The conclusion follows from [Lemma. 9.0l O
Now let us show that Xt(k) given in |(9.19)| converges. We have

S

t t
Xt(k+1) _ Xt(k) _ /0 [b(s,Xs(k)) _ b(S,Xs(k—l))] ds +/0 [U(S,X(k)) _ O.(sté(k—l))] dBs.

Let .
M = / [o(s5, X)) — (s, XF1)] dB,.
0

By [Lemma 9.7| and |(9.17)|, Mt(k) is a martingale. By Doob’s Maximal inequality [Theorem 4.14

t
E sup |[M®?2 < 4E|MP2 §4(1+K2)/ E sup | X — X112 gs.
0<s<t 0 0<u<s

Combined with another simple estimate on the integral of b, we have

t
E sup [X*H) — x®B2 < ¢ / E sup [X®) — x(k-DJ2 g
0<s<t 0 0<u<s

for some constant C' > 0 depending on K,T. Then, by

1 (CtF _ alCH)F
€ s, P = XU < (€ s I ) T = O

Hence by Markov inequality,

(40T)*
kL

P( sup \Xt(kﬂ) — Xt(k)] > 2_k> < C
0<t<T

The right-hand side is summable, so by Borel-Cantelli, there exists ky = ko(w) such that

k-+1 k 1
sup X X< L
0<t<T

for k > ko(w). This implies

X, = x4 ixt(k) _ x{
k=1
converges uniformly to a continuous process almost surely. We can then pass the limit £ — oo to
to see that X solves m Moreover, Xt(k) is a functional of the Brownian motion, so is their
limit X;.

Finally, let us remove the condition For M > 0, let T'yy = {|¢| < M} and &y = €lpy,.
Then &y € L?, and hence we know there exists a unique strong solution, X to with initial
condition &yy.

Our goal is show that X™ can be combined to obtain a strong solution to We need to
show:
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o XM gatisfies

Xudr,, = XM1p,,, VM' > M, (9.22)
which implies there exists a process X such that
X1r,, = XM1r,,. (9.23)

e X solves|(9.14)|
Since XM is a solution to we have

t t
xM :5M+/ b(s,X;W)der/ o(s, XM dB,. (9.24)
0 0
We claim that
t t
XM1ip,, = &ydr,, +/ b(s, XM)1r,, ds +/ o(s, XM)1r,, dB;. (9.25)
0 0

This seems trivial It is not as trivial as it seems, to put 1r,, inside the integral, since the last integral
is stochastic integral and not defined pathwise.

We will need some result similar to Indeed, consider
0, w r M,
Ty () = { i

oo, w ey,
then T/ is a stopping time. And for any H € L%OC,
t tATas t t
1r,, / H,dB; = / H,dB; = / Hglj 1, (5)dBs = / H,lr,, dB;. (9.26)
0 0 0 0

And|(9.25)| follows from using this and |(9.24)]

Similarly, we also have for M’ > M,

t t
XMy, = &ulr,, +/ b(s, XM™)1r,, ds +/ o(s, XM)1r,, dB, (9.27)
0 0

(noting that &y 1r,, = {mldr,,). Taking the difference of [(9.25) and |(9.27)] it is routine to get for
some L = L(T) > 0,

t
E sup |XM — XM 1p,, < L/ E sup [ XM — XMP1p, . VO<t<T.
u€l0,t] 0 wu€l0,9]

And Gronwall’s inequality implies that E sup [XM — XM'|21p - = 0 which leads to[(9.22) So we can

u€e(0,t]
find the process X satisfying|(9.23)|
To show that X is a solution, we notice that [(9.23)} |(9.25) and |(9.26)| imply that

t t
Xilr,, = XM1r,, = €ydr,, +/0 b(s, XM)1y,, ds +/0 o(s, XM)1r,, dB,
t t
=1, +/ b(s, Xs)1r,, ds+/ o(s,Xs)1lr,, dBs
0 0

t

— 1, [g+/0 b(s,Xs)dH/Ota(s,Xs)st]

Since 1r,, T 1, this shows that X is indeed a solution to
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9.5 Pathwise uniqueness for 1D SDE

In general, uniqueness and existence of solutions are established by very different techniques; that
is how plays a role. In this section, we present some general results on the pathwise
uniqueness for 1D SDEs:

dX; =b(t, Xy)dt + o(t, X;)dB;, b,o:Ri xR —=R. (9.28)
Proposition 9.8 Assume that b is locally bounded and
b(t,x) <b(t,y), z=>y. (9.29)
, and that o = 1. Then pathwise uniqueness holds for .

Proof: Let (X @), B), j = 1,2, be two weak solutions (defined on the same probability space). Let
Ar=X"Y— X Then
dA; = (b(t, XY — b(t, X)) dt

and

Note that [(9.29)| implies (z — y)(b(t,x) — b(t,y)) < 0 for all z,y. Hence,
t
A2 = 2/ (x = XY (b(t, xy = b(t, X)) at < o.
0

So Ay =0 a.s. and we get the desired conclusion. |

A more general statement than the pathwise uniqueness is comparison between different solutions.

Proposition 9.9 Suppose (X(j),B), j=1,2, are weak solutions to
) _p. () () ) _ ¢
dX9 =b;(t, XY dt + o(t, X9 dB,, X =¢;.

on the same probability space. Suppose that the coefficients and initial conditions of the SDFEs satisfy
the following.

o & < & almost surely.

e for all (t,z),
bl (t, l’) S bg (t, IL’) (930)

e by (or ba) satisfies the global Lipschitz condition

|b1(t,z) — b1(t,y)| < Klx —y|, z,y€R. (9.31)

e o satisfies
|O'(t, ZE) - J(ta y)| < h(|l‘ - y‘)? T,y € Ra (932)

where h : Ry — Ry is strictly increasing functions such that h(0) =0 and

/1 h=2(u) du = oco. (9.33)
0
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Then Xt(l) < Xt(Q) for allt >0, almost surely.
As a corollary, we also get pathwise uniqueness.

Corollary 9.10 Suppose that in [(9.28), b is globally Lipschitz (i.e., [(9.31)]) and o satisfies|(9.32)].
Then pathwise uniqueness holds.

Proof: By [Proposition 9.9L for two weak solutions (X(j), B), j = 1,2, almost surely Xt(l) — Xt(Z) is
both non-negative and non-positive, and hence is constantly 0. This proves the claim. ]

Now let us return to the proof of [Proposition 9.9 In general, results of pathwise uniqueness
and comparison starts from applying It6 calculus to ¢(A¢), and then using Gronwall’s inequality to
deduce p(A;) = 0. For uniqueness, a common choice is ¢(w) = w?. For comparison, a natural choice
is p(w) = wy, the positive part, since (Xt(l) - Xt(Q))Jr = 0 will imply Xt(l) < Xt(z). Formally, using It
calculus on p(A;), one has

A+ = Lpasoy |01 (X = bo(t, X))t + (o, X(V) = o(t, X)) dBy (9.34)

where the It6 correction term is zero since ¢”(w) = 0 except at w = 0. Taking expectation gives
t

E(A)y < K / (As)+ ds, and then Gronwall’s inequality will finish the proof. The hole in this
0

argument is that ¢ is not C? at w = 0, and It6’s formula is very sensitive regarding this. To fix this,
one should approximate ¢ by a family of C?-functions ©n, and hope that holds for ¢, with
small errors terms, which can be got rid of in the n — oo limit.

To approximate ¢(w) = w4 by C?-functions, we impose the following constraints:

o ou(w) = p(x) when 7 & (0,1/n).
e |¢l ()| <1 for all z, and ¢'(z) is increasing from x =0 to z = 1/n.

Anything such function is uniquely determined by its second derivative ¢”(x) =: n(x) that satisfying

1/n
n@) =0, =¢0,1/n), nlz)>0, /0 () dz = 1. (9.35)

We have the freedom to choose any function 7, and we will take advantage of this in the proof.
Proof of [Proposition 9.9k  After localization we can assume that

t
E/ 0%(s, XV ds < oo
0

for all t > 0.
Let ¢, € C? such that ¢,(0) = ¢, (0) = 0 and ¢” satisfies Let A; = Xt(l) - Xt(2). Applying
Itd’s formula to ¢, (A;) and then taking expectation, we obtain

t 1 t 2
Eon(A;) =E / @' (A3 [br (s, X{)=ba(s, X)) ds+SE / (p;;(As)[a(s,X§1>)—a(s,X§2>)] ds =: I1+1>.
0 0

For the integrand inside I, we have
@ (A5) [b1(s, X)) =ba(s, XP)] < @ (A5) [ba(s, X)) =1 (s, XIP) |4+ (A5) [ba (5, XP)=ba(s, XP)] < K (D).

The condition|(9.31) to bound The first term is estimated using|(9.31)} noting that it is zero if Ay <0,
and the second term is non-positive due to|(9.30)]
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For I, we first have the following observation: if f(z) is a decreasing positive function on (0, J]

such that / f(z)dx = oo, then for every € > 0, there exists an positive function g(x) such that
0
0
g(x) <ef(x) and / g(x)dr = 1.
0
Now we choose ¢”(z) and hence ¢, as follows. For any &, | 0, let ¢"( satlsfy m (9.35) and
¢"(z) < en,h™2(z), which is possible by the observation above and the assumptlon Then, by
3]
1 L, 9 ent
Iy < -E [ ¢"(As)h*(As)ds < —.
2 Jo 2

Combining all these, we have

t
Epn(Ay) < K/ E(Ag)4+ds + —.
0

t
Hmp<K/EA
0

and the desired conclusion will follow from Gronwall’s inequality. O

Letting n — oo, one has

Remark 9.5 A direct proof of the pathwise uniqueness could be done by applying 1td’s formula to @, (A;),
where ¢, (w) approximate |w| in a similar way. In fact, one can just define @,, to be an even function such that
&n(w) = pp(w) when w > 0.

9.6 Some examples of SDEs

9.6.1 Linear equations

Here we consider a multi-dimensional SDE

dX; = [A(t) X + a(t)] dt + o(t) dBy, (9.36)

where A(t) € R q(t) € R o(t) € R¥" and B is a r-dimensional Brownian motion. Assume
that all the coefﬁcients are locally bounded.

To solve [(9.36)| we will borrow the idea of the method “variation of constant” in ODE theory.
Suppose that <I>( ) € R solves the matrix equation (which is called a fundamental solution)

d(t) = A@)D(t), ®(0)=1.

In variation of constant, we expect X (t ( ) ®(t)v(t) for some “varying” vector v(t). Effectively, we
need to deduce what equation v(t) = ®~1() X (t) solves. We have
d(@71 () X;) = d~ ()X, + [@71(1)] X, dt. (9.37)

Nmmgmm15¢@y¢4@%mbymmmanm
0=a'(t)- 21 (t)+@(t)- [@7'()] = [e7'()] =2 )@ (1) ().
Back to we then have
M®_%ﬂXﬂ::@‘%ﬂde+®_%ﬂ®%ﬂ®_%ﬂX}ﬁ::¢_%ﬂ[¢&r%A@ﬁ&dt

= o (1) [a(t) dt + o(t) dBt} .
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The right-hand side does not depend on X and can be integrated. We arrive at the explicit form of
the strong solution

Xt = Xo+ ®(t) /Ot d1(s) [a(s) ds + o(s) dBs]|. (9.38)

9.6.2 Ornstein-Uhlenbeck process
The OU process is the strong solution to the SDE

dX, = dB, — \X,dt, Xo=¢, (9.39)

where A > 0 is a constant. It is a special linear SDE so strong solution exists and is unique. The
expression |(9.38)| specialized to the OU process gives

t
X =eMXg — / e M=) 4B, (9.40)
0

Intuitively, OU process is like the Brownian motion with a drift towards the origin. So, in contrast
with Brownian motion which is a Markov process without stationary distribution, the OU process has
a stationary distribution, which is Gaussian. In general, for a Markov process X; € R, a stationary
distribution is a probability measure on R such that if Xg ~ p, then X; ~ y for all t > 0.

There are several ways to understand the stationary distribution. First, imagine we are solving
the equation from —oo instead of time 0, then implies

to——o0

t t
X, = lim e M-t — / e MN-sgp, — / e M9 g,
to

— 00

(We need to define what is Brownian motion B; for ¢ < 0; this is done by the so-called two-sided
Brownian motion by running an independent copy of Brownian motion backward from 0.) The key
point of the analysis is that the initial condition is “forgot” by the limiting procedure due to the
exponential decaying factor, and the stochastic integral, even defined on an infinite interval, still
makes sense. In fact, since the integrand is deterministic, one has

1

t t
_ / e M9 dB, ~ N(0, / e 20 ds) = 0, o5

).

And N(0, (2\)71) is the stationary distribution.

We will use the semi-group theory to check that A(0, (2A)7!) is indeed stationary. Note that the
density of a Markov process evolves according to [(9.11)l It is easy to compute £ and L* for the OU
process:

Lf = §0uf —Nadef, Lg=

1
2893:139 + 0y ()\l’g) = 583019 + )\g + )\:Eﬁxg

Then for p(x) = Ce ",
Ozp=p-(=2X\x), Opp=p- [(—2)@)2 —2].

So
Lp= p[%(4)\2x2 —2)) + A+ Ax(—zAx)} =0.
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9.6.3 Brownian Bridge
Let T' > 0. The following SDE is called Brownian bridge over [0, T:

e
Xy = _tt dt +dBy, t€[0,T) Xp=0. (9.41)

Note that when ¢ 1 T, there is a singularity for the drift term b(t,z) = T

a linear SDE. To define construct a solution to|(9.41), we first obtain the existence of strong solution
over each interval [0, — €], € > 0. By uniqueness of the strong solutions, all these solutions will be

;%t’ but otherwise |(9.41)| is

consistent with each other, so that we obtain a solution over [0,7"). Indeed, b(t,z) = — Tx ; is still

“locally finite”, where “local” means for every compact subset inside ¢ € [0,7"). The solution can be
expressed by

' dB,
Xt:(T—t)/T , 0<s<T. (9.42)
0 — S

There is another definition of Brownian bridge: let W; be a Brownian motion, then
Xe =Wy —t/T -Wp, te€]0,T] (9.43)

is a Brownian bridge. Of course, the Brownian motions W; in and By in are differently.
From one can easily read the f.d.d. of Brownian bridge, but it is not clear that B, is a Markov
process. Another point is that @ implies that X7 = 0, which is not clear from

Let us prove that X; defined in |(9.43)| satisfies ltlTI%l X = 0. Indeed, let

t
dB,
My = .
! /0 T—s

11
Myy=—— —.
(M) =7— — %

We can express M as a time-changed Brownian motion: M; = Byyy,, so that

Then

By,

X, = M
(M) + =

But for any Brownian motion 8, by Strong Law of Large Numbers one has

lim & =0.
stoo S

So

lim X; = lim le
tTT S§—00 § _|_ F

= 0.

10 Weak solution and martingale problem

10.1 Yamada-Watanabe Theorem
In this section we will prove
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10.1.1 Weak uniqueness

For simplicity we will work in one dimension: d = r = 1. To start, let us assume that we have two
weak solutions (X @) wl )), defined on two probability spaces (Q(j ), FO), vj), with filtrations (.7-"1,’(J )).
To separate the initial condition, we introduce the processes Y;(] ) = Xt(] ) Xé] ) and write the weak

solutions as a triple (Xéj ), wl ), yU )). We think of the triple as a random element taking value in
0 =R x C()[O, OO) X C()[O, OO),

where the subscript 0 means that the continuous process starts from 0. The space © is a Cartesian
product of three metric spaces, and hence is also a metric space. The measurable sets are just the all
the Borel sets, denoted by B(©). The initial condition X(()j ) will have distribution w. We will write a
general element in © by 0 = (z,w,y)

To apply pathwise uniqueness, we need to have two weak solutions defined on the same probability
space. Since weak solutions only care about the distribution, it is natural to consider the measures on
© induced by v;, namely,

Pi(A) = v (X, WO yDye 4), Aco, =12

Another crucial point in pathwise uniqueness is that the driving Brownian motion must be the same.
Although as weak solutions, Y0 is generally NOT a functional of W), but the distribution of Y1)
will depend on W(j); this is the idea of conditional probability. More precisely, we are trying to
decompose P; into

P;(4) = /A Q; (2w dy)PY (dw)pu(d), (10.1)

where PY (-) is the Wiener measure on Cy[0, 00), i.e., the law of standard Brownian motion on Co[0, oc),
and for each (z,w), Q;(x,w;dy) is a probability measure on Cy[0,00), which is the conditional dis-
tribution of Y1) given (X(()j ), W) = (z,w). The decomposition is rigorously defined via the
regular conditional probability.

Definition 10.1 Let (Q, F,P) be a probability space and G C F. A regular condition probability is a
functional Q(w; A) : Q x F — [0, 1] such that

1. Vw € Q, Q(w;-) is a probability measure on (2, F).
2. VAe F, wr Q(w; A) is a G-measurable.
3. VAeF, Qw;A) =P[A]| G](w), P-a.e. we Q.

A sufficient condition for the existence of regular condition probability is that (2, F) is a Borel
space, i.e., there exists a one-to-one bijection ¢ : (Q,F) — ([0,1],B([0,1])) such that ¢ and ¢! are
both measurable. A Polish space, i.e., a complete separable metric space, equipped with its Borel
o-algebra is a Borel space.

As a special case of the regular condition probability, we consider a probability measure P on a
product space 2 = €)1 x {2y where ); are metric spaces equipped with their Borel o-algebra F;. The
coordinate map (X (w),Y (w)) := (w1,w2) may be regarded as a pair of random elements on (2, F, P)

where F = F; ® F5. We want to have such decomposition

P(dW1,dWQ) = Q(wl;dWQ)P OXil(dwl). (10.2)
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In the case where P is a probability measure on R? with joint density p(x,y) > 0, it is very clear that

P oXﬁl(dx) =px(x) = /RP($7ZU) dy,

and
p(x,y)

px(x)’
where Q(z;-) is a probability measure and (x,y) — py|x(y | =) is measurable.

Now let us apply the regular conditional probability to obtain in the general setting. Let
G = o(X). Assuming Q is Polish, there exists a regular condition probability Q(w;A). Since w
Q(w; A) is G-measurable, we can write

Qz;dy) = pyix (v | 2)dy, pyx(y|z) =

Qw; A) = Q(X(w); A) = Q(uwi; A).
For A = G x F where G € G, we have

P(G x F) = /Q(wl;G X F)PoX_l(dwl).

But Q is a functional on Q; x F. Compared to we need a functional @ on Q; x F3 such that

Qwi;G x F) =1g(w1) - Qi F), Geg, FeF, (10.3)

such that Q(wi;-) is a probability measure and wy — Q(w1; F') is G-measurable. Note that Q(wr;-) is
already a probability measure, so Q(w1;G X -) is a measure on Fo. To be a probability measure, it
must have total mass 1 when wy € G, i.e., we need

Q(wl; G x QQ) = 1g(w1). (104)

For every G € G, 10.4)| holds for P o X !-a.e. w; due to [Item 3| in [Definition 10.1 We can then
define @ via @ To get the measurability of w; — Q(w1; F'), we need to be careful about the
exceptional zero-measure sets where fails. These sets depends on G. In order to obtain a
common exceptional set, a sufficient condition is that G is countably determined. Note that the Borel
o-algebra of a Polish space is always countably determined (due to separability).

Finally we can put everything together. Note that © is a Polish space, so that regular conditional
probability exists and that a common zero-measure exceptional set for can be found (we use
separability twice in for different purposes.) For P;, there exists Q;(x, w; F') : RxC[0, 00) x B(Cp[0, 00))
such that

e for every (z,w), Q;(x,w;-) is a probability measure.
o for every F, (z,w) — Qj(z,w; F) is B(R x Cy[0, 00))-measurable.

o for every G € R x Cy[0,00) and F € Cp[0, 00),

P;(Gx F)= /GQj(a:,w;F)u(dx)PW(dw). (10.5)

Now we turn to the proof of weak uniqueness. Let © = R x [CO[O, oo)]g. Define the following
probability measure on (0, B(0)):

P(dl’, dw7dy1a dy?) = Ql(l’,’w; dyl) ' Q2(ZE,U}; dyg)p(daj)PW(dw)
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We can equip the probability space with a proper augmentation of the filtration B; = B(R x [CO [0, t]] 3).
On (©,B(0),P), by we have

P((z,w,y;) € A) = /1{(x,w,yj)€A}Qj(x7w;F):U'(dx)PW(dw) =P;(4), AeB©).

(First prove this for A = G x F and then for general A by standard argument.) But (X, BU)) =
(z 4+ yj,w), j = 1,2 are two weak solutions on (6, 5(0),P). By pathwise uniqueness, xW = x@
under P, so .

Pi(A) = P((z,w,y1) € A) = P((z,w,y2) € A) = P2(A), A€ B(O).

This is the weak uniqueness.

10.1.2 Strong existence
Continuing the discussion of [Section 10.1.1} let B = {(y1,¥2) : y1(t) = y2(t)} C B(Co[0, 00)?) and
Q(z, w;dyrdyz) = Q1(z, w;dy1) - Q2(z, w; dyz).

Then pathwise uniqueness implies that
1 =P((y1,y2) € B) = /Q(m,w;B),u(d:c)PW(dw).

Therefore, Q(z,w; B) =1 for all (x,w) € N¢ where N is some P-null set in B(R x Cy[0, c0)).
We first note that since for every (z,w) € N¢ Q(z,w;-) is a product measure of 1 and Q2. So
Q(z,w; B) = 1 implies that there exists k(z,w) € Cy[0, 00) such that

Qj(z,w; {k(z,w)}) =1, j=1,2.

In other words, pathwise uniqueness forces the solution process y(t) to be a functional of (x,w).
It remains to show that (z,w) — k(z,w) is progressively measurable. Let us first show that it is
measurable. In fact, for any I" € B(Cg [0, oo)), since Q1 (z,w;-) a.s. assign full measure to a singleton,

{(z,w) : k(z,w) € I'} = {Q1(z,w;T) = 1} € B(R x ([0, 00))

by measurability of the regular condition probability. This shows measurability of (z,w) — k(z,w).
To obtain progressive measurability, we need to first establish that (z,w) — Q;(z,w;-) are pro-
gressively measurable. Then the same argument as above will lead to progressive measurability of
(x,w) — k(x,w). We skip the details here.
Now it is clear that we have strong uniqueness. Let (B;) be a Brownian motion on a probability
space (€2, F,P) and £ be a r.v. independent of B with distribution p. Then

Xy =&+ [k(z, B)](t)

is a strong solution to the problem.
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10.2 Martingales from SDEs
Let X; be a weak solution to |(9.14), For any f € Cl’z([O, o0) X Rd), by It6’s formula,

d r d r
1
df (Xy) =D (0:f)(Xy) - [bilt, Xp) dt + > oun(t, Xp) dB*] + 5 D (05X (oinowy) (t, Xy) dt.
i=1 k=1 t,j=1 k=1
(10.6)
This leads to the definition of the generator
d 1 r
(Lef)(x) = D2 bilt)(Oif) + 5 D as (1,20,
i=1 ij=1
where
" d
— _. T _ ) .
A (aw)”_l =00 = (;Uzkak])m:1
is the diffusion matrix. We have the following observation.
Proposition 10.1 Let (X, W) be a weak solution and f € CH2([0,00) x RY). Then
t
M = F(t, X)) — £(0, Xo) — / (B + L) (5, X.) ds (10.7)
0

s a c.l.m.
Moreover, let f,g € CY? and M’ , M9 be defined by then

d t
(T MY, = Z/o iy (5, X) (D) (5, X:) (D59 (s, X,) ds.

i,j=1
Proof: Consider the process stopped at the stopping times
¢
T, =inf{t > 0:|Xy| >nor sup/ o2 (s, X,)ds > n}.
ik Jo

As a weak solution one must have 7, 1 oo a.s. The proposition essentially follows from the computation
(10.6)] O

We will see that the martingales defined in also characterize the process X. To start, we
investigate the case of Brownian motion.

Proposition 10.2 Let X be a adapted, continuous process. Then X is a Brownian motion if and
only if

t
£ = 1) = [ (GAN (X ds

is a c.l.m. for every f € C2(R%).

Proof: The “=" direction follows from [Proposition 10.1l For the other direction, we consider two
special classes of C2-functions:

fz(:c) = Ty, fZ](CC) = l’il’j, ’i,j = 1,2, ...,d.
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Note that Af; =0 and Af;; = 26;;. By the assumption, X% are c.l.m.’s and X' X7 — 0i;t are c.L.m.’s,
ie., (X' X7);. Hence, by [Theorem 7.1, X* are independent Brownian motions. This completes the

proof. O
A local martingale solution is basically a probability measure on C[0, 00)%. Let (22, Fo) = (C[0, 00)%, B(C[0, 00)%)
and P be a probability measure on (€2, Fy). Consider the following procedure of augmentation. Let A/
be the collection of all P-null sets. Let B; = B;(C[0, 00)?) be the natural filtration. Let G; = o(BUN).
Let
F=0(FoUN), Fi=Guy.

Then (Q, F, (Ft)t>0, P) is a probability space with a filtration satisfying the usual condition.

Definition 10.2 A solution to the local martingale problem |(10.7)| is a probabilistic distribution P on

(Q, Fo) such that for all f € C*(RY), if y = (y(t)) ;5 has the law P, then

M/ = f (1) — F(5(0)) - /0 (Laf) (u(s)) ds.

is a (Fy)-c.l.m., where F; are given by the above augmenting procedure.

It turns out that to verify a solution to the local martingale problem, we do not need to check
every f € C%, but only all the polynomials in z; of degree one and two, which is already the case in
[Proposition 10.2]

Theorem 10.3 If M/ is a c.L.m. for f being filx) = z; and fij(x) = x;xj, then there exists a
Brownian motion (By)i>o on (Q, F,(F:),P), an extension of (Q, F,(Fi),P), such that (X; = y(t), By)
15 a weak solution.

Consequently, M7 is a c.l.m. for every f € C2.

Proof: Step 1. Let

We claim that .
Mt(i)Mt(j) — / a;j(s, Xs)ds
0

is a c.l.m., which implies that

t
(MO, A0y, = / aij(s, X,) ds. (10.8)
0

Indeed, from th(i) = dXy — bi(t, Xy)dt, M @) and X@ differ by a finite variation process, and
hence

axx9 = xPax? + xV ax® + am®, My,
= xPamD + X9 a4 bt X)X dt + bi(¢, X0) XD dt + d(MD | M)y,
One the other hand, using the assumption on f = f;;,
dXO X9 = mit. 4 bi(t, X)dX D + bi(t, X)dX " + ai (¢, X,) dt.

Comparing these two displays proves the claim.
Step 2. By [KS98, Theorem 3.4.2], if ME’) are c.l.m.’s with cross variation then there exists
an extended probability space (2, F, (F;),P) on which there are a d-dimensional Brownian motion
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B _ B B ot
W =WW, .. W) and (F)-adapted processes (pij(t))i>0, 1 <, j < d such that P(/o p?j(s) ds <
oo) =1 for all t > 0 and

. d o
Mt(’)—Z/O pij(s) AW, (10.9)
j=1

We illustrate the idea in the case d = 1. We can define

Y L S
_/0 Vaii(s) M

Clearly, W) is a c.l.m. and <W( )> t, so by 1, WM is Brownian motion and
holds with p;11(¢) = y/a11(f). One may need to extend the probablhty space to handle the smgular

case where a1 (t ) = 0 for some t.
Step 3. Assuming [(10.9)| we need to show there exists r-dimensional Brownian motion W such

that . .
/p(s)dWs—/ o(s, Xs) dW,
0 0

) d t o r t
Mt(l) _ Z/O pij(s) dWS(J) — Z/O o(s, Xs) dWs. (10.10)
j=1 J=1

So that (X, W) indeed is a weak solution.
Note that the only relation between the matrices p and o is

so that

ppl = A=o00", P-as.
The claim follows from a linear algebra construction: there exists a Borel-measurable map

R: RdXd % RdX’r‘ N RTXd
(p,o) = R(p,0)

such that if pp? = ool then p = oR. We skip the construction here. With this at hand, we can
define

t
W, = / R<p(s), o (s, XS)> AW,
0
and holds.

We will finish this section by two generalizations of the local martingale problem.

The first is that we can also consider the more general functional SDFEs, namely, the coefficients
b,o depend on the trajectories ¢t — y(t) but not just y(t). To fix the idea, let b;(t,y), 04j(t,y) be
progressively measurable functions. Then for u € C?, we can define £} by

|

d

d r
(L) () =5 D> awlt,y)duwu(y(t)) + Y bilt, y)du(y(t)),

=1 k=1 1=1

N —

and accordingly for f € C%2,
t
ME = (t9(0) = F0.90) = [ Ouf +£,)(s.90) ds
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The second is the martingale problem, in which instead of taking f € C? (]Rd), we test all functions
fe Cg(Rd), and the process M/ will be continuous martingales instead of c.L.m.’s. Note that we can
always approximate f;, f;; by some fZN ) i]]\-[ € Cg (Rd) that coincide with them for |z| < N. To justify
the limiting process N 1 oo and obtain the equivalency between the martingale problem and the local
version, we need the local boundedness of o, i.e.,

e in the functional SDE case,

lo(t,y)| < Kr, YO<t<T, yeC0,00),
e or, in the non-functional case, o(t,y) is locally bounded.

10.3 Existence for martingale problem solution

In this section we consider the case d = 1 and the time-homogeneous SDE
dXt = b(Xt) dt+U(Xt) th (1011)

We assume that b, o are bounded and continuous functions. We also assume the initial distribution pu
has 2m-th moment for some m > 1.

Theorem 10.4 (Varadhan-Stroock) For the above SDE, there exists a solution to the martingale
problem, and hence a weak solution exists.

The starting point is to use Euler scheme to construct approximated solutions. In fact, we will
see a story parallel to what happens in the theory of ODEs: for ODEs, when the coefficients are
Lipschitz continuous, then one can use Picard iteration to show existence and uniqueness of solutions
to the ODE, while when the coefficients are merely continuous, one can use Euler scheme to construct
a family of piecewise linear approximate solutions and subtract a converging subsequence in the
topology of continuous functions. Here, for SDE, we will use Euler scheme to construct a family of
random functions and try to subtract convergence subsequence in the topology of weak convergence
of probabilistic measures on continuous functions.

Step 1: approximation (Euler scheme).

For each n, we discretize the time by ¢ = 0,1/2", ..., and consider the process

X~ X = X b= /27 + o (X0 ) (W = Wypn), £ € (/27 (G +1)/2"],

Then Xt(n) solves the functional SDE

t
X = X+ [ 50 (5, X0) ds (s, X0, (1012
0

where
oM (ty) = b(y(27"[2), o™ (t,y) = o (y(27"[2"1))).

Step 2: estimate.
We need the following lemma.

Lemma 10.5 Suppose that X solves the functional SDE

t
Xt:Xo—i-/ b(s,X)ds+ o(s, X)dWs, Xo=2~¢. (10.13)
0
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where for each T > 0, the coefficients b, o satisfy
ot + o6,y < Kr(1+ mas [y(s)), Y0<t<T,
<s<

for some K > 0.
Then for any m > 1, there exists C = C(T, K) such that

E X[ < O(1 + E|¢]>™) et <t<T 10.14
()Ig?%(t’ ST < C(A+EEPM) e, 0<t<T, (10.14)
and

EIX: — Xs|*™ <CA+EEP™)(t—s)™, 0<s<t<T. (10.15)

We will need to use the martingale moment inequality by Burkholder-Davis—Gundy.

Theorem 10.6 (Burkholder-Davis-Gundy) For any m > 0, there are universal constants ¢, Cr,
such that for any c.l.m. M and any stopping time T,

EnEQMYP < E(MF)™™ < CE(M)F, (10.16)
where M = sup |Ms| is the maximal process of M.
0<s<t

For the proof, see [KS98, Theorem 3.3.28].
Sketch of the proof of [Lemma 10.5; [(10.14)|follows from applying Gronwall’s inequality on the
left-hand side. To set up the conditions for Gronwall’s inequality, we first observe that

t t
X< C(ePm+ | [ o530 a5+ [ [ ols ) aw]).
0 0
Taking supremum over an interval [0, ¢], only the supremum of the c.l.m.

t
Mt:/ o (s, X) dWV,
0

needs special attention to close the inequality. Let M, = sup |M;|. [Theorem 10.6|ensures that
0<s<t

E(M;)*™ < CE(M)}".

Combining this with
t
E(MY™ = E\/ (s, X)|2 ds|™ < Et™ - C(1 + max |X,[2)™,
0 0<s<t

the rest is routine.
(10.15)| follows from applying a similar estimate on

X, — X, 2™ < c([/ b(r, X) dr]*™ + [/ o(r, X)dw,]™").

and [10.19) 0

Since we assume that b, o are bounded and continuous, b™ and o™ will satisfy the condition of

Noting p has 2m-th moment for some m > 1, by for each T' > 0, there
exists C = Cp such that

E| Orgai(tXt\Qm <C, EX;—X,"<C(t-s", 0<s<t<T. (10.17)
_S_

Step 3: extract convergence subsequence.
Let P be the law of X™ on C[0, 00). We recall the Prohorov Theorem.
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Theorem 10.7 (Prohorov; see e.g. [Bil99]) Let E be a metric space and u,, be a sequence of probability
measures on (E,B(E)). Then p, have a convergence subsequence in the topology of weak convergence
of probability measures if and only if u, is tight, that is, for every € > 0, there exists a compact set
K. C E such that un(KY) < ¢ for all n.

We also recall from real analysis that F' C C[0, c0) is pre-compact if and only if all functions y € F
are uniformly bounded and equi-continuous on every interval [0, t].

The tightness of P™ will follow from the two conditions in 1 10.17EL the first inequality implies
that X are uniformly bounded with high probability, the second inequality and argument similar
to implies equi-continuity holds with high probability. Hence, there exists P* as a
(subsequential) weak limit of P(™). This means that

/@(y)P(")(dy) - /<I>(y) P*(dy), n — oo (10.18)

for every bounded continuous functional ® : C[0, c0) — R.
Step 4: P* solves the martingale problem.
First, let us verify that P* gives the desired initial condition. Let f € Cp(R). Then

Os(y) = f(y(0))
is a bounded continuous functional. Hence by |(10.18)

n—oo

EF(4(0)) = Jim E™(4(0) = [ tar) - £0).
Since this holds for every f € Cy(R), we have
P*(y e C[0, 00) - y(0) € r) — (), T eB(R),

that is, P* has the correct initial contidition.
Second we need to check that P* solves the martingale problem, that is, for every f € Cg (R) and
0<s<t,
t
£ (0(0) - 16(0) - [ (L) (w) du | B.] =0,
or equivalently, for every bounded continuous Bs-measurable functional g : C[0,00) — R,
t

E*[1(0(0) = 10(0) ~ [ (€H)(uw) du](y) =0, (10.19)
Fuly) = £(u(®) — £ (5(0)) - / (L 1) (y(w) du,  Fly) = F(y(®) — F(5(0)) / (1) (y(w)) du.

By triangle inequality,

[EMF(y)g(y) — E*F(y)g(y)| < [E™ E,(y)g(y) — E™F(y)g(y)| + [E™ F(y)g(y) — E*F(y)g(y)l.

The second term goes to 0 by weak convergence P(™ — P*. To control the first term, it suffices to
show that F,,(y) — F(y) uniformly on compact sets in C[0,00), which follows from the continuity
of b and o. Combining all these we can establish |(10.19)| and hence P* indeed solves the martingale
problem.
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10.4 Uniqueness for martingale problem solution and strong Markov property

To simplify the discussion, we assume in this section that our coefficients b, os b, os b, os b, os b, os b,
os b, 0s b, 0 does not depend on t. In the most general setting, the uniqueness of martingale problem
solutions is usually guaranteed by the existence of corresponding PDE solutions.

To be more precise, consider the Cauchy problem

oru = Lu, (0,00) x RY,
(10.20)
u(t

=0, = f € C(RY).

We say that the Cauchy problem admits a solution if there is a function u; € C([O,oo) X Rd) N
C?((0,00) x RY) s which is in addition bounded on [0, 7] x R? for every T > 0.

The solution of|(10.20)|exists under very mild condition on b, o. For example, a sufficient condition
is that the diffusion matrix A(z) = (a;;()) is uniformly elliptic on compact sets, and b, o are bounded
and Borel-measurable. In d = 1, 2, this condition also implies uniqueness of solutions. Since we assume
b, o are merely measurable, it is weaker than the continuity condition we imposed in

Proposition 10.8 Assume that [(10.20)| has a solution. Then the one-dimensional marginal of the
solution to the martingale problem is unique. Precisely, let P* and P* be two solutions to the martingale

problem with initial condition x € R®. Then for everyt >0 and T € B(R),
p* (y(t) € F) = P <y(t) € F).

Proof: Fix any f € C(RY) and T > 0. Let g(t,z) := up(T —t,z). Then Oig + Lg = 0 and
g(T,-) = f. Also g is bounded. This implies that g(t, y(t)) is a martingale under both P* and P*.
We have

Ef(y(T)) = E"g(T,y(T)) = E"g(0,5(0)) = (0, z).
and similarly wa(y(T)) = ¢(0,x). Hence,

E“f(y(T)) = E*f(y(T)).

As this holds for every f € C°(RY), the marginal distribution of P® and P? is the same at time 7.

This completes the proof. O
Of course, it is not enough to have only one-dimensional marginals to agree. But before proving

a similar statement for f.d.d., we will take a detour to talk about the strong Markov property of the

martingale solution.
For s > 0, we define the shift operator 65 on C|0, 0)? to be

Osy = (y(s + t))tZO'

Note that 65 is a bounded continuous functional, and (s,y) — 604(y) is jointly measurable in s and y.
We will state a technical lemma, whose proof will be postponed to the end of this section.

Lemma 10.9 Let P be a solution to the time-homogeneous martingale problem, i.e., for every0 < s <t
and f € C3(R?)
t
E[£(0®) = £(0(s) - [ (£N(utw) du| B.] =0 (10.21)
Let T be a bounded stopping time and write G = Bp. Let Qu(F) := Q(w; F) : Q x B — [0,1] be the
reqular conditional probability for B given G.
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Then, there exists a P-null set N C G s.t.

Po = Quo bt (10.22)
is a solution to|(10.21)| and satisfies
P(y € C[0,00)¢ : y(0) = x) =1 (10.23)

with x = w(T'(w)), for allw & N.

Theorem 10.10 The setting is the same as |Proposition 10.8. Then P* and P® has the same f.d.d.

Proof: For every 0 < t1 < &9 < -++ < t,, We will show that P* and p* agree on o(ty,...,t,). We
will show this by induction on n. The base case n = 1 is given by [Proposition 10.8|

Assuming that P* and P* agree on o(ti, -+ ,tp—1) =: G. Then by |Lemma 10.9, there exists a P*-
null set N € G such that Py := Qy 00;171 is a solution toand satisfies|(10.23)| with z = y(t,—1)

for all y ¢ N. There is also aPI—null set N egG and a similarly defined If’y ony ¢ N. Note that by
induction hypothesis, P* and P* agrees on G, so N, N are null sets under both P* and P*.
For any A € B(RY"V) and B € B(R?), we have

Pw((y(tl), o y(ten)) € A, y(tn) € B)
= / P* o ngl(dyl codyp, ) - Py(w:w(ty, —tn—1) € B)
:/ PZom .t (dyr---dys, 1) Py(w: w(ty —tn_1) € B)
= [ PPor t (dyr--~dyi, ) Py(w:w(ty, —t,_1) € B)
=P((y(tr), ..., y(tn_1)) € A, y(tn) € B).
Here, the second equality is due to the fact that for y € (VU N)C (i.e., P*-a.e. y), Py and ﬁy are
martingale solutions satisfying with = y(t,—1), and hence by [Proposition 10.8 they have

the same one-dimensional marginals. The third equality is the induction hypothesis. Therefore, pP*
and P* agrees on o(t1,--- ,t,), and this completes the induction step. O

Now with uniqueness of solution to the martingale problem, we can use the notation P* to denote

the unique solution to|(10.21)| such that |(10.23)| holds.

The following strong Markov property holds.

Theorem 10.11 Let T be a bounded stopping time and x € RE. Then for every F € B(C[0,00)%),
P01 F | Br|(w) = PY F‘ . Pliae w.
05 F | Br| @) =Pre)|
Proof: With the notation in
P* (07" F | Br|(w) = Q(w; 07" F) = Pu(F) = P ()

as desired. O

Proof of [Lemma 10.9:
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Since @, (-) is a regular condition probability, for every I' € G, for P-a.e. w it holds
Qu(T) = 1r(w). (10.24)

Since G C B(C[0,00)?) is countably determined, we can find a common exceptional set N such that

holds for all w & T. Foru € R% let T, = {y € Q: y(T(y)) =u} € G. Then
P, (y € N:y(0) = w(T(w))) = Qu(w; Fw(T(w))) = 1pw<T<w>>(w) =1

for all w & N. This verifies [(10.23)| with z = w(T'(w)).
Next we will show that P, solves [(10.21)] Let f € C3[0,00)? and F € B;. Let

2(y) == F(y(t)) — F(u(s)) - / (CF) (y(w)) du.

For w ¢ N, we have the a.s. equalities

[ 26 Puty)
= [ 201 )16 0r))Qsdy) (definition of P,.)
—E [(z 0 0r)  Tyip | g] (w) (definition of reg. cond. prob.)
- E[E[z 007 | Brs] 1p-1p | g] (w) (F € B, = 07'F € Bry,)
= E0-1,) 1, | Gl(w) (OST applied to M at s+ T,t +T)
=0

The previous computation shows that there exist a null set N(s,¢, f, F') such that

LZ(Y)Pw(dY):O’ VW€N(3’t7f7F)'

Since G is countably determined, and Z(y) is continuous in s and ¢, we can find a null set N(f) such
that Mtf is a martingale under P, for all w € N°.

Note that [Theorem 10.3|and the discussion that follows implies that, if Mtf is martingales for some
countable family of functions f (namely, those Cg—approximations of x;, x;x;), then it is a martingales
for all f € CS. This shows that P is indeed a solution to the martingale problem. O

11 Diffussion and PDEs

11.1 Representation of PDEs solutions
11.1.1 Elliptic equation

In this section we assume that b, o are continuous and independent of ¢, so that £; = £. We consider
the following Dirichlet problem

{_<cu><x> = g(x) — k(x)u(x), =€ D, (11.1)

ulop f,

where D is a bounded open domain, k£ > 0, g are continuous functions on D and f is a continuous

function on 9D. A (classical) solution to is a function u € C*(D) NC(D) that satisfies
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Theorem 11.1 Let u be a solution to|(11.1)l Let X be a solution to the SDE with generator L and
mp =inf{t >0: X; D}
be the exit time of D. If E®1p < oo, then

u(z) = E° [f(xm>e—fo“ o g [ gl RO .

Proof: Let Uy = u(X;), & =€ Jo k(Xs)ds | Then

AUy = m.t. + (Lu)(Xp) dt, d& = & - (—k(Xy)) dt.
Hence

d(U,E) = m.t. + & - [Lu - ku} dt = m.t. — Eg(Xy) dt.

Therefore,

Vi =g ROy [ g0 e K000 g,
is a c.l.m. ’

We have

[Yinrp| < sup|ul + [7p] - sup |g|.
D D

Since E"1p < 00, (Yinrp)e>0 is a uniformly integrable martingale under P*. By Optional Sampling
Theorem, we have

) =¥ = E7Vey = E £ ) 7 H0 8 [ gl 5y
0

as desired. 0O
Remark 11.1 If g = 0, then we only need P*(rp <) = 1.

One may ask when 7p has finite expectation. A sufficient condition is that X diffuses in at least
one direction so that the exit time is not larger that that of a one-dimensional Brownian motion from
a bounded set. A precise statement is the following.

Lemma 11.2 Suppose that

L =sup|zi| <oo, a=minaji(r) >0, b=max|bi(x)| < oc.
zeD zeD z€D

Then E*1p < oo.

Proof: We consider a test function h(z) = pe "' € C*°(RY) with p,v to be determined. Then under
the assumptions,

Lh = vbi(x)h(z) + él/QaH(a:)h(:p) > h(z)[ —vL + %lﬂa] > pe "Fu(va/2 — L).

We first choose v > 2L/a so that the right hand side is positive, then choose L large enough so that
Lh > 1. Then,

M = h(X;) — / t(ﬁh)(Xs) ds
0

is a bounded martingale and
tATD
E*h(Xonry) — h(z) = E° / (Lh)(X.)ds > E(t A 7p).
0

By sending ¢ 1 oo, we see that E*rp < 2sup|h| < 2e*L < . O
D

99



11.1.2 Parabolic equation; Feynman—Kac

In this section, we assume that b, o are continuous and satisfy the lienar growth condition (in z). We
consider the Cauchy problem

{ o= Lu—ku+g, (t,z)e (0,00) x R (11.2)
ulp=0 = f, z e RY,
where k > 0, f, g are continuous functions on their domains. Moreover, g satisfy either
lg(t, @) < L1+ [a*Y) (11.3)
for some L > 0, A > 1 or
g>0. (11.4)

Theorem 11.3 If u € C([0,T] x R NC2((0,T] x RY) solves and for some > 1, M >0,

t < M(1 21,
Orgtfg;IU(,x)!_ (1+ [z[*)

Then -
u(T,z) = E* f(XT)efOT’“(TS’XS)dS%—/ 9(T — t, Xp)e Jo KT=5X)ds gy |
0

Proof: By a similar computation to the proof of [Theorem 11.1] one can show that
¢
Yy = u(T —t, X;)e™ S k(T —5,X) ds Jr/ 9T — 5, Xs)e™ Jo k(T—0,X9)d0 4
0
is a c.lm. on ¢t € [0,T) under P?, since (Yirr, )is a martingale for
T = inf{t > 0:|Xy| > n}.

(The martingale part involves integrals like / diudX, but d;u(t, z) could be unbounded near t = 0. )

We need to show EYy = EYp
First let us Assume |(11.3) By the growth condition on u and g, we have

Vi < C(1+ sup |Xs*)+CT-(1+ sup |X,|*?), telo,T). (11.5)
0<s<T 0<s<T

By |[Lemma 10.5| the right-hand side is integrable, hence (Y})o<t<7 is a u.i. martingale and EYy = EY7.
Next let us assume |(11.4)l For every ¢t < T and 7,, by Optional Sampling Theorem we have

tATh
EY; = EYn,, = E° [u(T ATy Xip, Yo Jo T (T =X ds +/ (T — £, Xy )e Jo MT—s.Xo) ds dt].
0

We first let ¢t T T and then 7,, — co. The first expectation converges due to continuity of w,

(T — £ A Ty Xypgy e~ Jo " BT=5X)ds) < 014+ sup | X,[2)
0<s<T

and The second expectation converges due to g > 0 and Monotone Convergence Theo-
rem. O

Remark 11.2 [Theorem 11.3| can be viewed as a special case of
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11.2 Harmonic functions

We say that a function u is harmonic in a domain D € R? if u € C3(D) and Au =0 in D.

We will use )
ﬁf(x)dm: |A/A!)"(az)d:z

to denote the average of f over a set A (w.r.t. to the Lebesgue measure). Harmonic functions enjoy
the celebrated mean-value property below.

Theorem 11.4 A function u is harmonic in D if and only if for all ball B.(z) C D,

u(z) :]éBr(x) u(y) dy Z]ir(x) u(y) dy. (11.6)

Proof: We only illustrate the “=—" direction as it has a simple probabilistic proof. The other
direction can only be proved analytically and can be found in any undergraduate PDE text.
Let B be a Brownian motion and let 7 be its exit time of D. Then by

Eu(z) = E*u(B,) = / u(y) u(dy),

where u(dy) = P*(B, € dy) is the exit measure of B. Clearly, u is a measure on 0B, (x); also p
must be rotationally invariant since both the set D and the process B are. The only such measure on
0B, (z) is the uniform measure, and hence

[ vl utan) ~4 L

The second equality of [(11.6)| follows from the first one since for some dimensional constant d,

= TT/'C r’d_l- U =ul(x) - x)|.
/BT@)“(y)dy‘/o dr' - ca(r’) ]éBr,<x> (y) dy = u(w) - | Bo(@)

O
Now we consider the Dirichlet problem
AU(.’E) = 07 x € D,
lim u(y) = f(y), ye€oQ, (11.7)
D3z—y

where f is a continuous function on D and u € C*(D). We do not assume that D is a bounded domain;
if it is, then w must also be in C(D) and we in the same situation as [Section 11.1.11 Since we do not
assume the boundedness of the domain, u can also be unbounded over D.

Proposition 11.5 Assume u is bounded and P*(tp < o0) =1 for all x € D. Then, any bounded

solution of |(11.7)| can be represented by
u(z) = E*f(Brp). (11.8)

Proof: Let

D,, = {z : dist(x,0D) > =}, By, ={xz:|z| <n}.

1
n
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Then for every n, |0;u(B¢)| is bounded when ¢ < 7p, A 7p,, and hence

d

tATD, NTB,
U(Bt/\TDn/\TBn) - u(.’L’) — Z/(; 82“(35) dBS
=1

is a martingale. Hence,
u(z) = BE*w(Binrp, Arp, )

for every t and n.
Since 7p, < Tp < 00,
u(Bt/\TDn/\TBn) — u<BTDn/\TBn)7 t — oo.

Since 75, — o0 a.s., and 7p, T Tp < 0,
u(BTDn/\TBn) — f(Brp), m— 00

by the continuity of u at the boundary. Passing the limit under the expectation is justified by the
assumption that u is bounded and the Dominated Convergence Theorem. O

Any function taking the form |(11.8)|is also harmonic under minimum assumption on f.
Proposition 11.6 If E*|f(B;,)| < oo for every x € D, then u given by is harmonic in D.

Proof: By strong Markov property, for B,.(x) C D, we have

u(z) = E*f(B,,) = E* (Ey [f(BrD) | BTBT(OC) = y]) = Ewu(BTBrm).

Therefore, u has the mean-value property in D and hence by [[heorem 11.4] it is harmonic in D. O

Let f : 0D — R be a bounded, measurable function. Assume that f is continuous at a € 9D. The
natural question to when the following limit holds true:

lim E”f(B,,) = f(a). (11.9)

D3x—a
It turns out the validity of the limit only depends on the geometry of 0D.

Definition 11.1 Let op = inf{t > 0: By & D}. A point a € D 1is regular if P*(cp = 0) = 1, and
irregular if P*(op = 0) = 0.
Remark 11.3 Note that {op = 0} € FZ’.. So by Blumenthal’s 0-1 law (Theorem 3.5, P*(op = 0) € {0,1}. So

any boundary point is either regular or irregular.

Let us discuss some examples of regular/irregular points.

Example 11.4 When d = 1, all boundary points are regular. This follows from the fact that P%-a.s., (see

also [(3:12))

sup (B; —a)>0> in

f (Bt — Cl), Ve > 0.
0<t<e 0<t<

Example 11.5 When d > 2, an isolated boundary point is irregular, as the following example shows.
Consider the punctured disk D = {x : 0 < |z| < 1} ¢ R, d > 2 and a = 0 € dD. Since d-dimensional
Brownian motion, d > 2, is point-transient, i.e., the probability of hitting every fixed point is 0, we see that

Po(op =0)<P°’(3t>0:B,=0)=0.
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Example 11.6 When d > 3, irregular points can be found at cusp point, which is connected to D¢ via a very
“thin” tunnel behaving like |r|“, o < 1. This is a small relaxation from the isolation condition, but does not
satisfy the well-known “exterior cone condition” (see ).
We will give the example of Lebesgue’s Thorn in dimension d = 3. The domain will be rotationally symmetric
around the zi-axis. Let
E={lzi| < las+23 <1}, F,=F"={2""<z; <27 23423 <e?}

where €, are sufficiently small numbers to be determined. We set D = E'\ ( U Fn) and will show that when

n=1
€n 1s suitably chosen, then a = (0,0,0) is an irregular point. Here, a is connected to D¢ through the “tunnel”
o0

U F,,, and by choosing ¢,, small we enforce the cusp-like behavior.

n=1

We have -
P%(op =0) < P°(B, € F,, for some n >1) < Z P'(3t >0, B € F,). (11.10)

n=1

Note that by point-transient of Brownian motion in two dimension,

leiﬂ)lPO(Ht >0: B, e F-")=P°(3t>0: B, € FY) = P°(3t > 0, (BY, B{Y)) = (0,0)) = 0.

Hence, by choosing ¢,, small, we can have

P'(3t >0, By e Fm) <37".

Combining with |(11.10)| we have P°(cp = 0) < 1, and hence @ = 0 is irregular (remark after [Definition 11.1)).

Theorem 11.7 Let d > 2 and a € dD. The following statements are equivalent:

1) [AT9] holds;

2) a is regular;

3) Ye >0,
lim P*(rp >¢) = 0. (11.11)

D3z—a

Proof: Here we will only show [[tem 2| =-[ltem 3|=-[[tem 1| The implication [[tem 1|=-[[tem 2|requires
an explicit construction of counter-example; we refer to [KS98, Theorem 4.2.12] for the complete proof.
Without loss of generality we assume a = 0.

[tem 2| = [Iltem 3l We have

lim P* (TD > e) < lim sup P* (UD > a) (tp < op by definition)
D3z—0 D>3xz—0

< limsupr(Bt eD; 0<t< 8)
D>3x—0

< limsuppsz—oP* (Bt <D;§<t< E) (choose any ¢ < ¢)

= limsup/Pz(Bg € dy)Py(TD >e— (5).
D>z—0

Note that although PY(rp > € — 0) is merely measurable, since the transition probability P* (35 € )
is nice, the integral on the last line is in fact continuous in x, and hence we have

lim P*(rp>e) <PYBeD; §<t<e).
D>z—0
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By taking ¢ | 0, the right hand side converges to P’ (op > €) and is zero since 0 is regular. This proves
(11.11)

[[tem 3| = [Item 1l Without loss of generality we can assume that f is bounded.

For any r > 0, we have

E*|f(Brp) = fO) S E*[f(Brp) = F(O)1yB, 1<r} + [1f lcP* (| Brp | > 1)

As r | 0, the first term goes to 0 by the continuity of f at x = 0. For the second term, we have

lim P*(|By,| >r)

D>z—0
<limsupP*(tp < ¢, |By,| > r) + limsup P*(rp > ¢) (choose any ¢ > 0)
D3z—0 D>z—0
< limsup P*( sup |B; — Bo| > r/2) (the second term is 0 by [(11.11))
D>z—0 0<t<e
= P> sup |By| >r/2).
0<t<e

The probability in the last but one line does not depend on x since the law of Brownian motion is
translational invariant. Clearly, the last line goes to 0 as ¢ — (0. Combining all these we finish the
proof. |

Let y # 0 be a direction and 6 € (0,7/2]. We define the cone
Co(y, ) = {x € R? : angle(z,y) < 0}.

Definition 11.2 A point a € dD satisfies the exterior cone condition if a + Co(y,8) € R\ D for
some y # 0 and 6 € (0,7/2].

Theorem 11.8 If a satisfies the exterior cone condition, then a is reqular.
Proof: Without loss of generality, set a = 0. We have
PO(UD <t)> PO(Bt € Co(y,0)).
But AB) -2 2 B, and Co(y, 0) is invariant under dilation, so
PY(B; € Co(y,0)) = P°(B; € Co(y,h)) > 0.

Hence 0 is regular. O

11.3 Some computations about hitting time

In this section we will show some examples of using PDE to compute P*(7p < o0) and E*rp for
Brownian motion.
The key observation is the following.

Proposition 11.9 Let D be a set and u(x) = P*(tp < 00). Then h(x) is a harmonic function in D.

Proof: By strong Markov property, for B,(x) C D,

u(x) = P*(rp < 00) = E*PY (TD <00 |Br, () = y) = E*u(Brp, (,))-
Hence, h has the mean value property and by it is harmonic in D. O
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Let B be Brownian motion in d dimension. For D = B,.(0) and |z| > r, let us compute u(z) =
P*(7p < 00). By |[Proposition 11.9, u is a classical solution to the PDE

Au(z) =0, |z|>r,
u(z) =1, |z|=r.

(11.12)

However, as {x : |x| > r} is now an unbounded domain, the solution to|(11.12)|is no longer unique.
An obvious solution to [(11.12)|is ui(x) = 1. Another solution is the so-called spherically symmetric

harmonic function, given by
|z|

M d = 17
log ||
us(z) = 1OggT . d=2, (11.13)
LW
S d=3,

Clearly, u(z) = P*(tp < o0) is a bounded solution since probability is bounded by 1. In fact one
can show that under the additional assumption of boundedness, for d = 1,2 the solution to |[(11.12)]
is unique, i.e., u(x) = uj(xz) = 1. This means that in dimensions 1 and 2, Brownian motion is
neighborhood-recurrent, i.e., it will hit any open ball almost surely.

However, when d > 3 also gives another bounded solution to|(11.12)} and in fact it is the
correct form of P*(7p < o0). To prove this, we start with a modified problem. For r < |z| < R, let us
consider i, g(z) = u(x) = P*(7, < 7B,). The function @ is the solution to the Dirichlet problem

Au(z) =0, 7 <lz| <R,
u(z) =0, Jz| = R, (11.14)
u(z)=1, |z|=r.
This is a special case of [(11.7)| with
f(x) = 1|x|zr(m)' (11.15)

Clearly all points in {z : |z| = r, R} are regular, and f in|(11.15)|is continuous at every point of the
boundary. Hence, the solution to |[(11.14)|is unique, and is given by

U(ﬂf) = Exf(BTB,«/\TBR) = EwlTBT <TBR

as desired.
Now using|(11.13)| we can easily write down solutions to|(11.14)| by performing a linear transform:
R — |z|
d=1

o Ta] — log R |

i) = § Bl mloe Rt
logr —log R
R27d _ |x’27d
——, d>3.
R2—d _ y2-d °

By uniqueness, now we know that it is the only solution to|(11.14)}
Now we can compute P*(7p, < 00) by sending R 1 co. Note that we use the fact that

lim 7, = 00, a.s.
Rtoo

since paths of Brownian motion is continuous.
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We have
1, d=1,2,

Px(TBT < OO) = ngréo Pm(TBT < TBR) = |$|2_d

Hence, for d > 3, the Brownian motion is not neighborhood recurrent.
When d = 2, we can also let 7 — 0 first to obtain
log|z| —log R
P¥ (10 < =lim ———F——=>— =
(70 < 75z) r10 log |r| —log R
Then by sending R T oo we obatin P*(7p < oo) = 0. This means that two-dimensional Brownian
motion is point-transient.
In general, if X is a diffusion with generator £, then u(x) = P*(7p, < 7p,) is a L-harmonic
function (i.e., Lu = 0) with suitable boundary condition. However, such PDEs are usually difficult to
solve. A manageable case is when the PDE becomes an ODE in dimension one.

1
Let Xy = B; + pt, 1 > 0 be the Brownian motion with drift. Then £ = iﬁm + po,. We want to

compute P*(1y < 00) using PDE/ODE method.
For R > 0, let ur(x) = P*(70 < 7r), Then u = ug(z) solves

%amu(x) + poyu(z) =0, =€ (0,R),

u(0) = 0,u(R) = 0.

This is second-order linear ODE with constant coefficients. The two roots of the characteristic function
5)\2 + puX\ = 0 are A = 0, —24, so any solution can be written as ¢; + coe 2**. With some effort we

can find
e—Q/M: _ e_QMR

P*(10 < Tr) = ugr(x) = (=

By sending R — oo, we see that P%(mg < 00) = e 21,
For the next example, we will compute E*7p A 7 for 1d Brownian motion (without drift). The
idea to solve the ODE

%ax:cu(x) =-1, z¢€ (O’R)7
u(0) = u(R) = 0.

By
TONTR
u(aﬁ)—E‘”/ 1dt = E*1y A 7R.
0

One can verify that the solution to the ODE is u(z) = (R — z), and hence E*19 A 7 = (R — x).

11.4 A brief introduction to Doob’s A-transform

The goal of this section is to how to condition to zero-probability events to get new processes. Two
notable examples are:

1. the Bessel-3 process as “one-dimensional Brownian motion conditioned on never hitting zero”,
2. the Brownian bridge as “one-dimensional Brownian motion conditioned on hitting zero at time

1.
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This is done via the Doob’s h-transform. Here we will not give a full account of whole theory but just
focus on the computation part.

Let X; = w; be a Markov process on a state space S. Recall the shift operator (f;w)s = ws¢ The
mvariant o-field is

T={A:A=0"A, Vt >0} = { sets invariant under 6;}.
Elements in Z are also called tnvariant sets. Typical invariant sets are

{TF < 00}7 {TF1 < TFQ}'

In general, an invariant set should only depend on the infinite future.

We also say a function h is harmonic if P;h = h. If the Markov process is in continuous time and
has a generator £, then this implies £Lh = 0, which justifies the term “harmonic”. We may also say
that h is £-harmonic if we are dealing with more than one generators.

The first observation is that harmonic functions are linked to invariant sets.

Proposition 11.10 Let A € Z. Then h(x) = P*(A) is harmonic.
Proof: We have
h(z)=P'(w:weA) =P (w:we 9;1A) =P%(w: 0w e A) =P*(X; € A) = (Pih)(x).

a

Let A be an invariant set and h(z) = P*(A). Let S={xeS:h(x)>0} We can define a new
measure P? < P* by specifying the Rydon—Nikodym derivative

P? (dw) = 1;((;‘;)

P (dw). (11.16)

Theorem 11.11 (Doob’s h-transform) Let x € S. The process X is again a Markov process under
P*. Moreover, the transition kernel for the new Markov process is

o) = 1 V) (117

Proof:
Let us first verify that |(11.17)] indeed gives a Markov transition kernel on S. First, pe(x, ) is a
probability measure on S, since

iz, 8) = /S Z&;pxx,dy) - h(lw) /S h(y) pr(, dy) = h(lx)wxn 1

as h is harmonic. Second, h satisfies the Komolgorov—Chapman equation: noting that ps(z,5) = 0 if
h(z) =0

s(ody) = [ M) (. d2)palz, dy) = / M) (o, d2)pa(z. dy)

s h(z) 5 h(z)
R TN T R .
- [ it St dn) = [ o2 dy).
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Next, we will show that [(11.16)| defines a Markov process with kernel [(11.17). Note that restrict
to any Fy, the Markov property implies that

1a(w) h(Xt)
h(x) h(x)

For the Markov property of X; under P%, it suffices to check that for any bounded continuous function

f

P, (dw) = B[ =20 | R P, (dw) = 2P 5, (o) (11.18)

E® [f(Xt—i-s) \ft] = [/ﬁs(y,dz)f(z)}\yzxt,
Take I' € F;. We have

B ([ (Xiws) | Fi]r) = E*f(Xero)Lr
M) f
e (Xt
L), o)

- (fnuene),

€1 ( [ Alnd2) (o)

as desired. O

= E®

xT

—E F(Xis) |y = Xi]

M
y=Xt

If the original process X has a generator £, then by |(11.17)[ the generator for the new process is
given by

1
= @(ﬁhf)(ﬁ)-

. o 1 . . .
If X is a diffusion and £ = 3 Z a;;0;; + Z b;0;, then direct computation gives

h(l)( (@) - (EN) + (@) (E)@) + 5 3 aijosh f)

= (£+5-9) 7,
1
= 20z ;aij(ajh)(fv)

That is, the effect of Doob’s h-transform is to add a drift to the diffusion.

What if P*(A) = 0? An intuitive idea is to consider A. | 0 with P*(A4.) > 0, and taking the € | 0
limit of the conditioned processes. What will happen is that as € | 0, there will be some function
harmonic function h(z) such that

where




In light of [(11.17)[ or |(11.18)} the Doob’s h-transform makes sense for any harmonic function h.
Let us return to the examples we mention at the beginning of this section.
One-dimensional conditioned on never hitting 0.

A candidate for A. is Ac = {79 > 71/.}. One can easily find that

he(z) = P*(10 > 7)) = .

Therefore, we should choose h(x) = z and consequently,
s 1 1

L= =0y +—0;.
2 T

This is the generator for Bessel-3 process.

Brownian bridge.
A candidate for A; is A, = {Br € (—¢,¢)}. Note that to use the invariant set setting, we need to
lift the Brownian motion to X; = (¢, B;) on the state space (0,00) x R, so that A is an invariant set.
One can check that now the corresponding h(t, ) is given by

h(t,x) = ;672(%724).
2n(T — 1)
Hence ) 1 . .
b6 =155 (_ T—t)h R
Therefore, the generator for the conditioned process'is £; = %&m — TL—ta‘T’ and we recover the SDE

(9.41)| satisfied by the Brownian bridge.

12 Local time and Brownian excursion

12.1 Local time for continuous semi-martingale

One way to understand the the It6’s formula (Theorem 6.1)) is that continuous semi-martingales as a
class of processes are invariant under C? transforms. One can ask if the C? condition can be relaxed.
The first result is to generalize this to convex functions.

Proposition 12.1 If f is convex and X is a continuous semi-martingale, then f(X;) is also a con-
tinuous semi-martingale and we have

(X)) = f(Xo)Jr/Ot FL(Xy) dX, + Af, (12.1)

where (A{)tzo is some increasing process.

Proof: We will try to approximate f by f, € C? and investigate what will be the limit of the It&’s
formula applied to f,.
The approximation is a standard argument using mollifiers. Let h(z) € C°(R) be a such that

1
h(z) >0, supph C [0,1], / h(z)dx = 1.
0
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S
Such function exists, one example being h(z) = ce =*(1-»?. The mollification

(1) = (hn # 9)(z) = / () — ) dy = / (e — 9)g(y) dy

enjoys many good properties:

1. if g is locally integrable, then g, € C*;

N

gn(x) = g(z) for a.e. x;
3. if g is continuous on [a, b], then g, — g uniformly on [a, b];

4. if fe LV |1 <p< oo, then g, — gin L

loc? loc®

Write the decomposition of the continuous semi-martingale X as X; = M;+ V; where M is a c.l.m.
and V; a finite-variation process. Consider the stopping time

t
ric = inf{t > 0 [ X;] + (M), +/ V| > K.
0

We first look at the stopped process X/%. We can assume that f, f are all bounded since we only
care about their values in a finite interval.

Let f, = hy, * f. Note that f is a convex function, so f is continuous and f’ is left-continuous.
We have f, — f uniformly and in LP, p > 1. Also, we have f), = hy * f_ (= hy, = fi, but f, differ
at countably many points, so the integration is the same), and since f’ is left-continuous and h,, is
supported on [0,1/n], we know that f, — f’ at every point. Finally, f, is a convex function, since
fn is a convex integration of the convex functions f(- — y), y € R, and convexity is preserved under
convex combination. As a result, f; > 0.

Applying Itd’s formula to f, € C2, we have

tATK tATK tATK
FXinm) = fu(Xo) + /0 £1(X,) dM, + /0 f{l(Xs)stJr% /O TX)A(X)s  (12.2)

The left-hand side and the first, third third term on the right-hand side is defined path-wise. Moreover,
almost surely, we have

fn(Xt/\TK) — f(Xt/\‘rK)a fn(XO) — f(XO)
since fn(z) — f(z) for every z and

tATK tATK
/ FL(X) dVs = / LX) dV,
0 0

by f1(Xs) = f(X;) for every s and Bounded Convergence Theorem applied to the measure dVs. The
second term on the right-hand side is a square-integrable martingale defined in the L2-sense, and we
have by It6’s isometry,

t/\TK t/\TK tATK
E| / 2 dM, — / JdM,? = E /O FL(X) — F1 (X2 (M),

The right-hand side converges to 0 Inside the expectation, since |f],(Xs) — f.(Xs)| — 0 for every s and
is bounded, by Bounded Convergence Theorem applied on the measure d(M)s, we know that

/0 "X — LX) P (M) — 0.
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This integral is bounded due to our localization. Then by Bounded Convergence Theorem again, we

tATK
know the second term in |(12.2)| converges in probability to / L(Xs) dMs.
0

Therefore, there exists a process A{ K such that

1 tATK " FK
3| en)an. s af

in probability for every ¢ > 0. Since the pre-limiting process is increasing in ¢, the limit A{ K s also
increasing in t.

The remaining procedure is to remove the localization. We omit the proof here. We will obtain
an increasing process A{ such that A{ K — A{ for t < 1. This completes the proof. O

Remark 12.1 We use f,,(z) — f' (x) for every . The above argument does not work if only assuming f,, — f
a.e. (in fact, we also have a.s. f;,(x) — f! () since f. = f) except at countably many points), since the random

t t
measures A — / 14(X)dVs and A — / 14(X,)d{M), do not have to be absolutely continuous w.r.t. to the
0 0

Lebesgue measure.

Remark 12.2 One can get a similar statement if we consider the mollifier h(z) = h(z — 1), then h will be

supported on [—1,0] and f,, — f%. Correspondingly we will get another increasing process A{ such that

F(X0) = F(Xo) + / Fi(X,) dX, + AL

In general AY # Af. When f € C?, then

Let sgn(x) = 1,50 — 1z<o = (Jz])_. The Tanaka’s formula gives the definition of local time.

Theorem 12.2 Let X be a continuous semi-martingale For every a € R, there exists an increasing
process L*(X) such that

t
| X —a| = |Xo — a —I—/ sgn(Xs —a)dXs + LX), (12.3)
0
t 1
(¥i= ) = (X =)+ [ Lo X+ 512X, (12.)

t
1
(X; —a)- = (Xo—a)_ — / Lix oy dXs + 5 LE(X).
0

Proof: Applying [Proposition 12.1| to the convex function f(z) = |z — a|, we obtain an increasing
process A{ , which we will call L{(X) and holds. Applying [Proposition 12.1] to the convex
functions f(z) = (x — a)+, we obtain another two increasing process

t
(X; —a)s = (Xo—a)y + /0 1ix.oa) X5 + A (12.5)

t
(X; —a)_ = (Xo—a)_ —/ Lix.<ay dX, + A7 (12.6)
0
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1
It remains to show that A = §L§(X)
In fact, taking the difference of [(12.5)] [(12.6) and noting that = x4+ — x_, we obtain

t
(Xt —a)=Xo—a—+ / (Lixosay + Lixo<a}) dXs + (AF — A7).
0

From this we have A" = A;". On the other hand, taking the sum of |(12.5) and [(12.6){ and noting that
|z| = x4 — z_, we have

t
‘Xt—a|:|X0—CL|+/ Sgn( —a)dX +(A++A )
0

1
Comparing with |(12.3)| we see that A = A, = iL(tl(X) as desired. O

Definition 12.1 Let X be a continuous semi-martingale. For a € R, L*(X) = (L$(X))i>0 given by
(12.3)| is called the local time of X.
12.2 Continuity of local time and other properties

The main result for this section is the Generalized Ité’s formula.

Theorem 12.3 Let X be a continuous semi-martingale and f be a convex function (or difference of
two convez function). Then

F(X)) = f(Xo) / FUX) X, + 2 / Lo(X) f"(da), (12.7)

where f”(da) = df’ (a) is the signed measure generated by the finite-variation f’ .

First, we note that when f(z) = |x — al, (x — a)4+ and (z — a)_, [Theorem 12.3| reduces to [Theo-
In fact, any convex function is more or less a convex integration of (x —a), so[Theorem 12.3
just comes from a convex integration of

Lemma 12.4 Let f be a convez function with lim f(x) =0. Then
T—00

fa) = / (x—a)y f"(da), f'(x) = / Lpou /" (da).

Proof: The convexity of f and the assumption also imply that lim f/(x) = 0, so we have
Tr—r—00

= /j 1" (da). (12.8)

For the first identity, by Fubini and |(12.8)[ we have

f(.’L') :/1{y<x}f/(y)dy:/1{y<x}dy'/1{a<y}fﬂ(da)

= [ 7t0) [ tasyendy = [ = a) (o)
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Second, since f”(-) is only a signed measure, we need the f”(-)-measurability of a — L (X) for
the last integral in to make sense. In fact, we will show that a — L{(X) is cadlag, so that it
is f”(-)-measurable for any convex f, and for many scenarios it is even continuous. Such regularity is
not obvious from the definition of local time |(12.3)

Let X be a continuous semi-martingale with decomposition X = M + V. Let

t t
}Q“(X):/O lix,>a) dMs, Z,?(X):/O lix,>a) dVs

We note that Y* = (Y}*);>0 and Z% = (Z})¢>0 are continuous processes. We can view a — Y
and a — Z% as a stochastic process taking values in C(R; ), equipped with the locally uniform (LU)
topology:
x, > yinC(Ry) < lim sup |z,(t) —y(t)| =0, VI > 0.
n—00 <4< T

Equivalently, the LU topology is generated by open sets given by the metric

o [Tn = Ylpoofom A1

n=1

Lemma 12.5 The mapping a — Z° is cadlag in C(R4).

Proof: For all s > 0, we have the convergence
ilfcfé lixo>ar = ixo>a0}s ilﬁf(l) Lixosay = Lx.>a0}-

Using Bounded Convergence Theorem w.r.t. the measure dVs, we have
t t
lim l{Xs>a} st = / 1{X$>a0} d‘/s,
alao Jo 0

and
t

t
lim ) 1{X5>a} d‘/; = /0 1{X52a0} d‘/s = Zf_. (129)

atag

Lemma 12.6 The process a — Y® € C(Ry) has a continuous modification.

Proof: Let .
T, — inf{t : (M)t+/ V| > n}
0
and consider the stopped process Y;.r. . By standard localization argument, it suffices to show that

a — (Y1, )i>0 has continuous modification for every n. Therefore, without loss of generality, we
assume that for some K > 0,

t
<M>t+/ dV,| < K, Vt>0.
0

Our main tool is Although is stated for a stochastic process on R,

the theorem also holds for stochastic processes taking value in any metric space, for example C(R}.).
Taking into account the definition of local uniform topology, it suffices to show

E sup |[Y? —Y2*<Clb—a'? (12.10)
0<t<T
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for some «, 8 > 0; then [Theorem 2.7| will ensure that a — Y* has a continuous modification.
Let b > a. Since

t
Y;b _}/t(l :/ l{a<Xs§b} dMS
0

is a martingale, by we have for any p > 0,

T p/2
E sup |Y;fb_y;ta’p < [E/ 1{a<Xs§b} d(M)s
0<t<T 0
We will try to bound the integral on the right-hand side. This integral is almost the It6’s correction
term, but 1y, x,<p} is not continuous so it is not the second derivative of a C?-function.
To fix this, let us introduce

r — al
, x<a,
a—ay
Yap(r) =41, z € la,b], ai=a—|b—al, by=b+|b—al
b @ x>b
bl—b, 9

Then f(x / / Yap(2)dz € C? and f" = ©Pq,p- Moreover,
[f'(2)] < laplrr = 2[b—al.
By It6’s formula, we have
T T T
0< [ Lpcxian D) < FX0) < F0X0) ~ [ DM~ [ (X0 Ve
0 0 0
For ¢ > 1, we have
T q
El (Xr) ~ F(Xo)|" < sup| " - E[Xr — Xol? < Clb — al'E[|Mr ~ M|+ [ [avi]
0

< cp—ape[ng?« ([ 1avi)’] < Culo o
0

/2
" < cxlp - alt

E)/ F1(X0) th <CE‘/ £ (X2 (M),

and
E\/ earad <0E\/ /(xo)avi|" < Cxelp —al”.

Combining all these, we see that

€ sup V2~ Y7 < [E [ Luexyatin).]” < Culp—ap
0<t<T 0
if p > 2. This completes the proof. O

With all these preparations, we have the regularity for the local time L{(X).
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Theorem 12.7 Let X be a continuous semi-martingale and L} (X) be its local time. Then a — L
has a cadlag modification in C(Ry). Moreover,

t
LE(X) — L (X) = 2 /0 1x.ay Vi,

where X = M 4V is the decomposition for X.
In particular, if X is a c.l.m. so that V =0, then L{(X) is jointly continuous in (a,x).

Proof: By we have
t
LX) =2 (%= )~ (Yo =) = [ Lcon X,

The two functions (X; — a)+ and (Xo — a)+ are obviously continuous in (a,z). The conclusion then

follows from [Lemmas 12.5] and O
Now we are ready to prove the Generalized It6’s formula. Proof of [Theorem 12.3} After

localization, we can assume that X is bounded, so without loss of generality we can assume that the
support of f” is contained in [~ K, K] for some K > 0. Moreover, is invariant after adding

a linear function to f, so we can further assume that f(x) = 0 for x < —K. Noting [Lemma 12.4

integrating w.r.t. the measure f”(-) gives
1

FO0) = 50 + [ 1@ [ L dXat g [ 100 0

We only need to justify the following Fubini Theorem holds:

t t t
[ 1@de [ o= [ ax, [ P@de g = [ e,

Note that /dXS = /dVS —i—/dMS. The integral w.r.t. dV; is a Riemann—Stieltjes integral, which

is defined pathwise and Fubini Theorem holds. On the other hand, the stochastic integral is NOT
defined pathwise and justifying the change of order of integration has to be more careful. This is also
knows as the stochastic Fubini Theorem and we give a proof here in our setting.

For simplicity let us assume that (M), < K (which can be achieved by localization). Let

t
@t:/ f”(da)/ 1{X8>a}dMs:/f”(da)Y;a
[-K,K] 0

Note that @, is a martingale, since a — Y is cadlag and hence ®; can be approximated by Riemann
sums, each of which is a linear combination of Y;** and hence a martingale. So ®; is the limit of
martingales, and must also be a martingale. It is not hard to see that ®; is square-integrable, so
® € H2.

Take any N € H?. Then

=E d<M, N>s . / f”(da)l{xs>a}
[_KvK]

—E f(Xs)d(M,N)s
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Hence by
t
Q)t:/ 1 (Xs) dMs.
0

This completes the proof. O
We can use [Theorem 12.3|to characterize the local time as density of occupation time.

Theorem 12.8 Let X be a continuous semi-martingale and L§(X) be its local time. Almost surely,
for any t > 0 and ¢ > 0 measurable, we have

/ P(X,) d(X), = / () LE(X) da. (12.11)
0 R

In another word, the random measure

A /Ot 1a(Xs)d(X)s

almost surely has density L (X).

Proof: Since a signed measure is determined by the integral of countable many compactly supported
continuous functions against it, it suffices to show that holds almost surely for a fixed compactly
supported continuous function.

Let f € C? such that f” = ¢. Then comparing the Itd’s formula and Generalized It6’s formula
applied to f(X;) gives the desired result. O

Proposition 12.9 Let X be a continuous semi-martingale. Then almost surely, for all a and t > 0,
t
L0 =tim o [ Lusxcara X0
0
Proof: By with ¢ = 1, 444, We have

1 t 1 a+te )
im = [ L cara d0. = 2 [ LH) @

The desired conclusion follows from the right continuity of b — L2(X). ad

Corollary 12.10 Almost surely, for all a and t > 0,

1

1 a a— . !
S0+ 1 (0) =tim o [ 1o cuny d1X).

~ 1
We call L3 (X) = i(Lf(X) + L7 (X)) the symmetric local time. We also have the generalized 1t6’s

formula for symmetric local time:
¢
1~
FOX) = 1(X0) + [ /X)X, + 51800 (da),
0

where f/(x) = 3 [F(@) + (2)].
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12.3 Brownian excursions

We recall the Lebesgue decomposition for an increasing function f : R — R: f can be uniquely written
as the sum of three functions
f _ fjump + fabs + fsmg’

such that
e}
o fIUMP increases only by jumps, that is, df/""P = Z ;0 ;
i=1

o f2P% is absolutely continuous and increasing, so it has a derivative g(z) a.s. and df*> = g(x) da;

o f5IN8 g continuous, increasing, and it is differentiable almost everywhere but the derivative equals
to 0, that is, df*"® is a mutually singular with respect to the Lebesgue measure.

Note that an example for 5" is the Cantor’s function:

oo o
2z T
w(m)zz 3nn, x:E:Q—Z,xG[O,I}, z, € {0,1}.

We recall the notation for level sets of a process X:
ZX(w)={t>0: X;(w) =a}.
Also, for a measure p on R, we denote by supp u the support of u, defined
supppu={r € R: u(x —c,x+¢) >0, Ve > 0}.
It is easy to check that supp p is always a closed set.

Proposition 12.11 Let X be a continuous semi-martingale and let L} (X) be its local time at level a.
Then for a.e. w, dsL(X) is supported on ZX(w).

Proof: Let Y; = |X; — a|. Then by [Theorem 12.2] Y; is a continuous semi-martingale and
dY; = sgn(Xy —a) dX; + dL{(X).

Applying 1t6’s formula to Yf, we have

t

t t t t
YE=Y02+/ 2YtdYt+/ d<X>5:Y02+/ 2(Xt—a)dXt+/ 2|Xt—a|dL§(X)+/ d(X),. (12.12)
0 0 0 0 0

Here, we used sgn(z) - |z| = x.
On the other hand, Y;> = (X; — a)?. Comparing the Ité’s formula for this expression with [(12.12

we obtain

t
/ X, — a| dLY(X) = 0.
0

Then, for every ¢ > 0, dL3(X) ({s >0:|Xs—al > 5}) = 0. So if X, # a, then s & supppu. This
completes the proof. O

In what follows we focus on the case where X is the Brownian motion. Recalling [Proposition 3.22|
we first have the following.
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Corollary 12.12 For every a, with probability one, Leb(Z2(w)) = 0.

Since the Brownian motion has continuous sample path, its zero set Z := Z(j)B (w) is a close set,
and hence Z€ is an open subset of R. As any open set in R, Z¢ can be written as a disjoint union

(e 9]

Z¢ = U (an, bn)7

n=1

where on each (an, by), the Brownian motion B is either strictly positive or negative. We call these
intervals (an, bn) ezcursion intervals of the Brownian motion, and for each n, (Bt)ic[a,, b,] an excursion
of the Brownian motion. Consider the renormalized excursion

. 1
efb — bi (Ban-i-s(bn—an) — Ban), S € [O, 1]
n — Qn
In fact,
o (én)n>1 are i.i.d. processes.
e ¢ solves the SDE ) ~
& =0, dé=—— -t dt+dw,.
€t 1—1¢

The SDE can be derived from the Doob-h transform of the Brownian motion with

22

2(1—t)

i _
h(z,t) = me ;

interpreted as “conditioned on hitting 0 at time 1”, and h(z,t) is the hitting time density.

One of the goals of studying Brownian excursion is to reconstruct Brownian motions path from
excursions. Intuitive, this is achieved in two steps:

o
1. Determine the zero set Z, and write Z¢ = U (an,bp).

n=1

2. Sample i.i.d. excursion processes €, and on each interval (an,by,), define

Bt:\/bn_an'én(t_an )7 te(anabn)'

bn_an

We will focus on the first step, and we will see that Z already determines the local time of
Brownian motion at 0. This is remarkable since previously we see that the local time of a continuous
semi-martingale X is determined by the behavior of X near a, see [Proposition 12.9]

12.3.1 Lévy’s Theorem and Skorokhod equation

We use the notion X; = sup |X;| to denote the mazimal process of X.
0<s<t

Theorem 12.13 (Paul Lévy)

* * d
(Bf,Bf = By, t>0) = (L{(B),|Byl, t >0).
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We will prove the theorem by studying the Skorokhod equation. Let y € C[0,00) with y(0) = 0. A

pair of functions (z(t), a(t))t>0 is a solution to the Skorokhod equation if they solve

z(t) = —y(t) +a(t), t>0, (12.13)
and satisfy
o z(t) >0, Vt > 0;
e a(t) is continuous, increasing, }1_r>1(1) a(t) =0, and
suppdas C {s > 0: z(s) = 0}.

Lemma 12.14 There ezists a unique pair of solution (z,a) that solve|(12.13), Moreover, the function a
can be represented as

a(t) = Slgt)y(s) (12.14)

Proof: Uniqueness.
Suppose there are two pairs of functions (z,a) and (2, a) that solves|(12.13)l Then, z — Z = a — a has
bounded variation. We have

1, P N
0< 5= = [ =D da—a)

t t t t
:[/ zda+/5da}—/2da—/zdago.
0 0 0 0

Here, the two integrals in the bracket are zero since supp das. The other two integrals are non-negative
since z,Z > 0 and a, a are increasing. Hence Z — 2= 0 and this proves uniqueness.
Uniqueness.

It suffices to verify |(12.14)| and z(¢) = a(t) = y(¢) indeed give the solution. Clearly, by the definition
of supremum, z > 0 and « is increasing. Also, a is continuous and ltifél a(t) = 0 since y is continuous

and y(0) = 0.
The most difficult part is to verify |(12.14)l Let z(t) = a(t) — y(¢) > 0. Then by continuity of y,
there exists ¢t < ¢ such that a(t) = y(t1) > y(t). By continuity of y, there exists ¢ < ¢t — ¢; such that

y(t1) > y(s), se(t—et+e),

and hence a(s) = y(t1), Vs € (t —e,t + ¢), that is, t € (suppdas)®. This proves |(12.14)] O
Proof of [Theorem 12.13; By we have
t

|B;| = LY(B) +/0 sgn(B,) dBs =: LY(B) — f,

and by B¢ is a Brownian motion. By [Proposition 12.11],
(y,2,a) = (8,|B|, L°(B))
solves [(12.13)l By [Lemma 12.14) 8f = LY(B) and the theorem is proved. O

Now let us define two new clocks for the Brownian motion £:
Sy =inf{t >0:8f >b} =inf{t >0:p; > b} = inf{t > 0: LY(B) > b},
Ty, =inf{t>0:8f =b}y =inf{t >0: 8 =b} =inf{t > 0: LY(B) = b}.

It is not hard to see that (Sp)s>0, (Tp)p>0 are the right-continuous and left-continuous inverse of the
increasing function t — g = LY(B).
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Proposition 12.15 Almost surely, the process b — Sy grows only by jumps.

Proof:  Since almost surely, Leb(ZZ(w)) = 0 and T, S are the left/right-continuous inverse of
t — LY(B), we have
Sy =Y (Sy — Ti).
b'<b
This proves the claim. |

The process Sy is known to be a stable process. In the last part of this section, we will collect some
fact about infinite divisible laws, stable process and subordinates.

Definition 12.2 A probability measure p is infinite divisible if for all n, 3p, such that p = w,", that
18, if Xq,..., Xy are i.i.d. with distribution pn, then X1+ -+ X, ~ p.
Examples for infinite divisible distributions are Poisson, Gaussian, and Cauchy distribution, which
can be verified easily from their characteristic functions.
Definition 12.3 A stochastic process X is a Lévy process if X has stationary, independent increment.
If X is Lévy, then for every t, Xy — Xg is infinite divisible.

Theorem 12.16 (Lévy—Khintchine) A r.v. X has infinite divisible distribution if and only if its
characteristic function has the representation

2 .
X , ocu ; ux
Eelu = eXp (Zﬂu — 7 + /(elux — 1 — m) V(d.f)), (1215)
where B € R, 0 > 0 and v is a measure on R such that i v(dr) < oo.
1+ a2

If X comes from a Lévy process, then the three parts in the characteristic function corresponds to
the linear part (i8u), Brownian motion (o?u/2) and the pure jump process.

Definition 12.4 A r.v. Y is stable if for every k, there exists ay, by such that forY; 4 Y,
Y1++Yk i akY—l—bk

If Y is stable, then necessarily a = ke for some « € (0,2]. The number « is called the stable index.
A Lévy process with stable increment is called a stable process.

Proposition 12.17 If X is stable, then in|(12.15), 0 =0 and
V= (mll{m<0} + m21{x2>0})’$|_1_a
where o is the stable index of X.
In fact, Sy is a stable process with index 1/2. We have

Spp=inf{t >0: 8 >nb} £ SV ... 4 5
where i .

SIS ) = inf{t > S(k—l)b D By > k‘b} — S(k—l)b = Sp.
On the other hand, by the diffusion scaling of Brownian motion,

Spp = inf{t > 0: B >nb} L n2inf{t > 0: B, > b}.

Definition 12.5 A stable process X is called a subordinates if X; is non-decreasing.

Although it is possible to study S, using the tools from stable law, in this note we will study it
using Poisson point process, with the knowledge that b — S, only have jumps. This will be done in
the next section.
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12.3.2 DPoisson point process and excursion

Since S; grows only by jumps, it is completely characterized by the information of all jumps. Each
jump can be represented by a point (b, j(b)) € (0,00)%. The first coordinate is the location of the jump,
and the second coordinate j(b) = S, — Ty, is the size of the jump. It is still consistent to write j(b) = 0
if Sy is continuous at b.

All the jumps constitutes a simple point process on ]Ri. A standard way to study such point
process is to regard it as a random counting measure

v="Y @)
3(6)£0

The minimum measurability assumption on the random measure v is that we can count how many
points there are in a given set. This leads to the following definition.

Definition 12.6 Let (H,H) be a measurable space. A (simple) point process is a random counting
measure v on (H,H) such that for all C € H, v(C) € {0,1,--- } U{o0} is a r.v.

Note that we are thinking of H = (0, 00).
Definition 12.7 A random counting measure v is a Poisson point process (PPP) on (H,H) if

1. for every C € H, either v(C) = oo almost surely when Ev(C) = oo, or v(C) ~ Poi(A(C))
where A(C) := Ev(C) < oo;

2. for any disjoint Cy,Co,--- ,Cyp, v(Cy), v(Co)y: -+ ,v(Cy) are independent Poisson random vari-
ables.

The measure \(C) := Ev(C) is called the intensity measure of the PPP.
The distribution of v is completely determined by its f.d.d.

E(V(Cl),l/(CQ),“' ,I/(Cn)), Cy,Coy,---,C, € H.
Example 12.3 (Poisson process) Let A > 0. A Poisson process with intensity X is defined by
Ny =max{k:& +& + -+ & < t},

where &; are i.i.d. Exp()) r.v.’s. The process N; is counting how many independent exponential clocks have
rang in the interval [0,¢]. The times when these clocks ring form a PPP on [0, 00) with intensity measure A dt.
We can write N; = v([0,¢]).

Example 12.4 (Compound poisson) Let n; be i.i.d. r.v.’s and N; be a Poisson process with intensity A. We define

We can represent Z; as

Zy = / :/ Lv(dsdl),
! Z [0,t]><]R+ ( )

0<s<t, (s,f)Esuppv

where v is a PPP on [0,00) x R constructed as follows: for each s = & + -+ + &, place a point at (s, ),
where 7, are i.i.d. random variables. In fact, v is a PPP with intensity Adt ® w, where 7 is the common
distribution of ;.
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It is standard to compute the Laplace transform of the compound Poisson r.v. Z;. We have

N.
Ee— %t — e~ Xniinm

= e M=) —exp ( - )\t/(l - eaf)ﬂ'(dé))
In general, we can consider any integrable function f(s,f) instead of f1;,<; and obtain
Eemo 0 (0) — exp (- / (1= =) \(dsdt)), (12.16)

where A is intensity measure of v.

Now we return to our study of .S;. Consider the random measure
Vy = Z 5(b7j(b))' (1217)
j(b)>0

For I" € B(0, 00), we also define

Ni =) 1r(j(0)) =v([0,4 x ).
b<t

Proposition 12.18 For any T, NtF has stationary and independent increments.

Proof: Note that N} — NI depends only on (Br),~ g,- The statement follows from the fact that S;
is a stopping time and the strong Markov property for the Brownian motion /3. O

Our goal is to show that v is a PPP. We can identify the intensity measure (in variable ¢) as

1
p(I) == ZEN{.

The definition of p is independent of ¢ by [Proposition 12.18, Also, p is a measure on B(0, c0).

Theorem 12.19 The random measure v, is a PPP on (0,00)* with intensity dt ® p.
We need a lemma.

Lemma 12.20 Let @ : (w,t,{) — Ry be predictable. Then

E/@(w,t,z)u(dtd@ —/OOO dtf/@(w,t,@p(cw).

Here, the predictable o-field is the smallest o-algebra such that all left-continuous in ¢ map p(w, t)
are measurable; ® is predictable if (w,t) — ®(w,t,¥) is measurable w.r.t. the predictable o-algebra.
Below we will use such a property: if ¢(w,t) is predictable and M; is a right-continuous martingale,
then

t
/ o(w, t) dMy
0

is well-defined and is also a martingale.
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Proof: Tt suffices to check for ® taking the form ®(w,t,¢) = p(w,t)1r(¢) where ¢ is predictable and
' € B(0,00). Then N} —tp(T) is a right-continuous martingale, and hence

0= E/OOO o(w,t)(dN} — p(T)dt) = E/@(w,t,ﬁ)u(dtdﬁ) =p(I) /000 dt Ep(w,t).

Proof of [Theorem 12.19;  We will show (c.f. [(12.16)) for every f(¢,£) > 0 with

/Ooodt/f(t,ﬁ)d€< o,

E exp < - /f(s,f)l[()’t](s)l/w(dsdf)) = exp ( - /Ot ds /(1 - ef(s’g))p(dﬁ)) (12.18)

This will implies v, has the same f.d.d. distribution as a PPP with intensity measure dt ® p.
Let

we have

X, = / F(5,0)10 grn(dsdl) = > f(s,0).

s<t, (s,f)Esupp v
The
H(t):=Ee Xt —1= Z Ee X — X
s<t,

—E > e X (e D 1)

s<t, (s,£)Esuppuw

¢
= E/ dse=Xs= /(ef(s’é) — 1)p(de).
0

In the last equality, we use and the predictability of the functional in the last but one
line follows from the strong Markov property of 5.

Write G(t) = /(e_f(t’g) — 1)p(dl). We have

H(t)=1+ /Ot H(s—)G(s)ds, (12.19)

and G € L'(R) by our assumption on f. Since |H(s)| < 1, the integrand in [(12.19)|is also L' and
hence H(t) is continuous, and H(s—) = H(s). Then the integral equation has a unique solution
H(t) = exp(G(t)), and this completes the proof. O

We know very precise information about the distribution of Sp.

b 2
P(Sy € dt) = mef%, Ee 5b = ¢~V

d¢
From either of them, we can compute p(df) = = > 0.

vV 2ml

Now we will give another description of the local time using only the set Z = Zég (w). Let

levf =v([0,b] x [g,00)) ~ Poi(i\%)

= # of jumps of size £ > ¢ for (Sg)o<a<b-
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Proposition 12.21 Almost surely, for all b > 0,

e
lim = N§ = b.
c0 2 b

Proof: It suffices to prove it for a fixed b > 0. Then it simultaneously holds for all b € Q, and the
conclusion follows from the monotonicity of b — Nj.
2
Let Q; = v([0,b] x [t%,00)). Then Q; is a Poisson process with parameter EQ; = \/7b. Let
T
&1,&2, . .. be the exponential r.v.’s that build (Q;). For Q; = n, we have

n n
e

S +&+ -+ &+t T §£1+£2+"'+£n'

By strong law of large numbers, we have almost surely,

. Oy 1 2
lim — = —==14/-b
t—oo ¢ E¢ i
Hence,
Ny 2
640 1 /5 ™
This completes the proof. O

As corollary, we obtain a description of the local time using only the zero set:

e

LB(0) = B*(t) = lim 5 v ((0,8] x [¢,9))
= lim == . #{ jumps > ¢ made by (Sp)p<p* }
elo 2 =
— lim X #{ excursion interval > ¢ made by (Bs)s<s,. }
el0 2 ="k
= liiIOl %6 - #{ excursion interval > ¢ made by B before time t¢}.
[

12.4 Ray—Knight Theorem

In this section we state the Ray—Knight Theorems, which give information of the joint distribution of
local time at different levels.
The square Bessel process, denoted by BESQ5 (z), is the unique strong solution to the SDE

t
Zt:x+/ \ Zs dWg + dt.
0

1
172
Note that the pathwise uniqueness holds for this SDE since / (—) de = oco. If 6 € Zy,
0

N
then Z; = (Bt(l))2 4+ -+ (Béé))2 is a solution. If 4 = 0, we do not have such representation, but
it is easy to see that Z; = 0 is always a solution. So pathwise uniqueness implies that 0 is an absorbing

state, i.e., if Z;, = 0 for some to, then Z; = 0 for all ¢ > .

Theorem 12.22 (First Ray Knight Theorem) Let B be Brownian motion and Ts = inf{t : B; = 1}.
Let Zy = Ly *(B). Then (Z4,0 < a < 1) is BESQ?(0).
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Intuitively, after the Brownian motion hits 1, the local time L* should increase as a decreases from
1. This monotonicity is captured by the BESQ? (0) process, which is a sub-martingale starting from
0.

Theorem 12.23 (Second Ray-Knight Theorem) Let 7, = inf{t : L{(B) > z}. Then (L% (B),a > 0)
is BESQ"(z).

The second Ray—Knight Theorem views the local time using the a “different clock”, i.e., the local
time at 0.

13 Stratonovich integral

Let us consider the SDE . .
X; = £+/ b(Xs)ds +/ o(Xs) dWs.
0 0

For simplicity, in this section we assume that b is bounded Lipschitz, and o € C? (o, ¢, ¢” bounded
continuous).

Note that if s — W; has finite variation, the we can define the last integral as a Riemann—Stieltjes
integral and the integral equation can make sense. But we know that Brownian motion does not have
finite variation, and that is the reason why we need to develop the theory of stochastic integral with
the help of martingale theory. However, this is not the only approach; in problems such as singular
SPDEs and Gaussian free field, Liouville quantum gravity, etc, it is common to smooth a rough object
like the Brownian motion and study the limit when the smoothing is removed.

In our context, it is natural ask the following question. If W& — W locally uniformly and W%
has finite variation, and XV solves the integral equation

t t
XtN—er/ b(X;V)der/ o(XM)dw?,
0 0

what can be said about the limit lim X~?
N—oo

The answer is that Xy — X where X solves

t t
X, :§+/0 b(Xs)ds+/0 o(X,) o dWs. (13.1)

The o symbol denotes the Stratonovich integral, which is defined as follows: if Y, Z are two continuous
semi-martingale, then

t t
1
/ Y,o0dZ, = / Y. dZ, + §<Y, Z), (13.2)
0 0

where the first integral is the It6 integral. We will rigorously establish this approximation result in

one dimension in Section 13.11
A notable feature for the Stratonovich integral is that normal chain rule holds, i.e., without 1t6’s
correction term:

t 4 A f
f(Xy) = / Z(Bif)(Xt) o dXt(Z), Xt(z) continuous semi-martingale, f € C3. (13.3)
0

The C? condition is unnatural since the chain rule only involves the first derivative. The assumption
cannot be removed here if we rely on since we need to apply Itd’s formula to 0; f(X) to obtain
their cross variation.
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In [Section 13.2] we will see another definition of the Stratonovich integrals, with which we can
establish the chain rule under the assumption f € C*. The alternative approach also explains why 1 /2
comes out from smooth approximation but not other factors 1/3, 2/3, etc.

13.1 One-dimension result

Let V; be a function with bounded variation. Consider the integral equation

Xi=x+ /Ot b(Xs)ds + /OtJ(XS)dV;. (13.4)

Proposition 13.1 There exists a unique solution to|(13.4), and is given by a continuous functional
P:RxCR)—=CMR), (z,(Vi)izo0)— (Xt)e>0-

For the uniqueness, one just looks at the difference of two solutions | X} — X7?| and finds a way to
apply the Gronwall’s inequality. Let us illustrate how to solve the integral equation and construct the
functional ®.

To motivate, let us look at the simplest case where o(X;) = c¢. To solve the equation

dXt = b(Xt) dt + Cd‘/t,
a simple idea is to define the substitution X; = Y; 4+ ¢V4, and then solves
dY; = b(Y; + cVp) dt

which is a normal ODE. The gain here is for the Y-ODE, the dependence on V; is no longer through
the Riemann—Stieltjes integral dV;, but V; becomes a part of the ODE coefficient.
In the general case, let u(z,y) solves

Oru(z,y) = o*(u(ac,y)), u(0,y) = v,

and let Y; solves

Vi= (R, Y=o, (o) = 5tb(utey).

The solution to|(13.4)|is then given by X; = u(V;,Y;). It is not hard to check the continuous depen-
dency of X; on x, V.
To see that X; is indeed a solution, we have

dX; = 0yu(V, Yy) dV; + (9yu) (Vi, Vi) Y
= o (u(Vs, Y2)) dV; + b(u(V;, V7)) di

as desired.
Now what is Xy = ®(z, W;) where W is a Brownian motion? We have

1
dX; = aa:u(Wta }/t) dW; + §axmu(Wta Y;‘/) dt + ayu(Wta }/t)f(Wta Y;t) dt
1
Note that 0y,u = (Oyu) - 0o and

o(Xy) = /a’(Xt)dXt+;/J”(Xt)d<X>t,
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d(o(X.), W), = o' (X)o(Xy) dt.

Therefore, X; = ®(x, W;) solves|(13.1)|
In higher dimension, the integral equation |[(13.4)| no longer has such nice presentation as
The approximation result only holds for linear interpolation.

13.2 Alternative construction of Stratonovich integrals

The goal of this section is to give an alternative construction of the Stratonovich integral so that the
chain rule holds for f € C'.
Fix T'> 0. For N > 1 and a process Z, we define the linear interpolation process

gN _ )b t=2"N kT,
© ) linear interpolation betweenZy— Zy-N@ps1)rs tE Q2 NET, 27Nk + 1)T).

Note that ZY will have bounded variation, and for continuous semi-martingales X,Y, we have

t Y, . +Y,
/OYsNdXéV_ZW(Xti+1_Xti)

= V(X — Xi) + Z ”1 - th+1 ~ X))
7

t
_>/ }/SdXs + §<X7Y>t7
0

where t; = 7 - 2N,
This motivates the following definition. Let X be a continuous semi-martingale. We say that

Yi(w) [0, 7] x @ - R
is Stratonovich integrable w.r.t. X if and only if the limit

oN_1
lim Li“ + Y

N—o0 2
m=0

T
(Xti+1 - Xti) = / Yi 0 dXy
0
exists in probability. Note that here Y;(w) does not have to be a semi-martingale.
To perform calculation we still need to use the Ito’s theory. Let X,;‘F = ( +) and assume
that X7 is a continuous semi-martingale w.r.t. some filtration 7. If Y = (Yt( )) € C[0,T] a.s

and Y;(w) € F; N FF_,, then Y is Stratonovich integrable on [0, 7] w.r.t. X and

T 1 T 1 T .
/nodXt:/ Y(t)dXt—/ Y(T —t)dX].
0 2 Jo 2 Jo

Here, Y € C[0,T] so Y; is both (JF;)-progressively measurable and Y7 _; is F{ -progressively measurable,
and hence both It6 integrals make sense.
Now let W4, t € [0, be Brownian motion. Clearly, Wy = W (T’ — t)4) is semi-martingale, with

. WT
(W) =tAT, finite variation part V; = / ds
Here, the finite variation part is non-zero since the terminal condition Wy = Wy = 0 is enforced.

Then, g(W%) is Stratonovich integrable on [0,7T] w.r.t. W for every g € C(R). Moreover, we have the
following approximation result for Stratonovich integrals.
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Proposition 13.2 If g,,, g € C,(R) such that g, — g locally uniformly, then

T T
/ gn(Wt) o th — / g(Wt) o th
0 0

in probability.

Proof: Let W* = sup |Wi| = sup |W[|. We have
0<t<T 0<t<T

E\/OTgn(Wt)th—/Otg(Wt)th\ < [E/OT 90 (W3) — g(Wi) 2 ] i

T T 1/2
< [Etwecar [ lon(W0) — gWol e+ Ewsias [ 1ga(W) — oW at]
0 0

By standard argument we can show that the expectation on the left-hand side converges to 0 as n — oco.

W

It is similar for the other integral, but now AW, = dM, — dt O

Finally, we are ready to prove [(13.3)[for X being a multi—dlmensmnal Brownian motion, that is,
d T ]
Fovr) = f) = 3 [ @y cawl?, pec (1.5
i=1

Let f, € Cg such that f/ — f locally uniformly. We have

Z/ @i fa)(Wy) 0 W) = = Z/ (i fn) (W) AW Z/ (i fa) (W) AW

§{fn(WT) fn(WO /azjfn Wt)dt}

— S [ 0¥) — fa07) - / 033 (W2 di]
= (W) — Fu(W0).

Note that the two It6 correction terms cancel since W is just the time-reverse of W. This also explains
why 1/2 appears in front of (X,Y); in the definition of Stratonovich integral: this is the only factor
so that the Ito6 correction terms in the forward and backward integrals can cancel. Letting f, — f,
the chain rule follows from [Proposition 13.2|

14 Notations

14.1 Abbreviations

ii.d. independent, identically distributed
r.v. random variable

f.d.d. finite-dimensional distribution

ch.f. characteristic function

U.i. uniformly integrable

c.l.m. continuous local martingale

m.t. martingale term(s)
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14.2 Sets

Z set of integers

N set of natural numbers {0,1,2,...}

Q set of rational numbers

R set of real numbers

R (resp. R_) set of non-negative (resp. non-positive) real numbers

14.3 Relations

=q Oor = convergence in distribution/law

4 equal in law

14.4 Functional spaces

Cla,b] continuous function defined on the interval [a, b]
C%a, b] a-Holder continuous function defined on the interval [a, b]
M(E) probability measures on a metric space £

14.5 Operations

aNb min(a, b)
aVb max(a, b)
(a,b) inner product in a Euclidean space/Hilbert space

(or) a linear functional a in the dual space X'
acting on an element b in.a Banach space X
AAB = (A\ B)U the difference set.
(B\ A)

14.6 Miscellaneous

L(X) distribution/law of a random variable/element X
N (p,0?) normal distribution
Exp(\) exponential distribution
Poi(\) Poisson distribution
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