HW8

April 10, 2024

Exercise 1 (KS, Ex 3.5.18) Let $B = (B_t)_{0 \le t \le 1}$ be a Brownian motion. Define

 $T = \inf\{0 \le t \le 1: t + B_t^2 = 1\}$

and

$$X_t = -\frac{2}{(1-t)^2} B_t \mathbb{1}_{\{t \le T, t < 1\}}, \quad 0 \le t < 1.$$

1. Show that $\mathsf{P}(T < 1) = 1$, and hence $\int_0^1 X_t^2 dt < \infty$ a.s. proof . By definition of T, we know $0 \leq T(w) \leq 1$ for wED. Suppose those exists a subset $A \subseteq \Omega$ with P(A) > 0such that T(w)=1 for wEA, then by continuity of B(., w) we have for wEA. 1> Two + BT (w) = 1+B7 (w), which means that B1(w) = 0 for wEA. It contradicts the fact that B1 follows the distribution Normal (0,1) (which is absolutely continuous with respect to the Lebesgue measure on IR). Therefore P(T<1)=1. Then for a.s. w, Twos<1, which implies that = $\left| X_{t} \right|^{2} = \left[-\frac{2}{(1-t)^{2}} B_{t} 1_{\{t \leq T, t < i\}} \right]^{2} = \frac{4}{(1-t)^{4}} B_{t}^{2}(w) 1_{\{t \leq T, t < i\}} =$ $\frac{4}{(1-t)^4}B_t^{2(w)} I_{qt} \leq T_y^{(t,w)} \text{ is bounded in } t \in [0,1) \text{ for a.s. } w \in \Omega,$ which means that $\int_0^1 X_t^2 dt < \infty$ for a.s. $w \in \Omega$.

2. Apply Itô's formula to the process $(1-t)^{-2}B_t^2$ to conclude that

$$\int_0^1 X_t \, dB_t - \frac{1}{2} \int_0^1 X_t^2 \, dt = -1 - 2 \int_0^T \left[\frac{1}{(1-t)^4} - \frac{1}{(1-t)^3} \right] B_t^2 \, dt \le -1.$$

3. Show that the exponential super-martingale $Z_t(X)$, $0 \le t \le 1$ is not a martingale; however, for each $n \ge 1$ and $\sigma_n = 1 - (1/\sqrt{n})$, $Z_{t \land \sigma_n}(X)$, $0 \le t \le 1$ is a martingale.

Proof.
$$Z_{t}(X) = \exp\left(\int_{0}^{t} X_{s} dB_{s} - \frac{1}{2} \int_{0}^{t} X_{s}^{2} dS\right)$$
. Obviously we have
that $Z_{0}(X) = 1$, which implies that $EZ_{1}(X) = 1$. But by 2)
we obtain that $Z_{1}(X) \leq \exp(-1)$, which means that
 $EZ_{0}(X) = 1 > \exp(-1) \gg EZ_{1}(X)$, which implies
that $(Z_{t}(X))_{t \in [0,1)}$ is not a martingale.

To show that
$$(\mathbb{Z}_{t \wedge Gn})_{t \in [0,1]}$$
 is a martingale for each $n \ge 1$, by Novikov's contenion
it suffices to show $\mathbb{E}[\exp(\pm \int_{0}^{Gn} \chi_{t}^{2} dt)] < \infty$. We have
 $\mathbb{E}[\exp(\pm \int_{0}^{Gn} \chi_{t}^{2} dt)] = \mathbb{E}[\exp(\frac{1}{2} \int_{0}^{Gn} \frac{4}{(1-t)^{4}} B_{t}^{2} 1_{\{t \le T\}} dt)]$
 $\leq \mathbb{E}[\exp(2 \int_{0}^{Gn} \frac{1}{(1-t)^{3}} dt)] = \exp(2 \int_{0}^{Gn} \frac{1}{(1-t)^{3}} dt) < \infty$.
The proof is therefore done.

Exercise 2 (Le Gall, Ex 5.28) Let B be a Brownian motion started from 1. Fix $\varepsilon \in (0, 1)$ and set $T_{\varepsilon} = \inf\{t \ge 0 : B_t = \varepsilon\}$. Also let $\lambda > 0$ and $\alpha \in \mathbb{R} \setminus \{0\}$.

1. Show that $Z_t = (B_{t \wedge T_{\varepsilon}})^{\alpha}$ is a semi-martingale and give its canonical decomposition as the sum of a c.l.m. and a finite variation process.

-

Proof. For
$$t \ge 0$$
, $B_{t} \wedge T_{\varepsilon} = \int_{0}^{t \wedge T_{\varepsilon}} 1 dB_{s} = \int_{0}^{t} 1_{1} g \le T_{\varepsilon} g dB_{s}$
Then by Itô's formula,
 $Z_{t} = (B_{t} \wedge T_{\varepsilon})^{\alpha} = 1 + \int_{0}^{t} \alpha (B_{s} \wedge T_{\varepsilon})^{\alpha-1} 1_{\{s \le T_{\varepsilon}\}} dB_{s}$
 $+ \int_{0}^{t} \frac{1}{2} \alpha (\alpha - 1) (B_{s} \wedge T_{\varepsilon})^{\alpha-1} 1_{\{s \le T_{\varepsilon}\}} dS$. Set for $t \ge 0$ that
 $M_{t} := \int_{0}^{t} \alpha (B_{s} \wedge T_{\varepsilon})^{\alpha-1} 1_{\{s \le T_{\varepsilon}\}} dB_{s}$, which is a c.l.m. and
 $A_{t} := \int_{0}^{t} \frac{1}{2} \alpha (\alpha - 1) (B_{s} \wedge T_{\varepsilon})^{\alpha-2} 1_{\{s \le T_{\varepsilon}\}} dS$, which is a f.v. process.

2. Show that the process

$$Z_t = (B_{t \wedge T_{\varepsilon}})^{\alpha} \exp\left(-\lambda \int_0^{t \wedge T_{\varepsilon}} \frac{ds}{B_s^2}\right)$$

is a c.l.m. if α and λ satisfy a polynomial equation to be determined.

Proof For
$$t \ge 0$$
, $Z_t = (B_{t \land T_E})^{\alpha} \exp\left(-\lambda \int_0^t \frac{1}{B_s^2} ds\right)$

$$= 1 + \int_0^t (B_{s \land T_E})^{\alpha} \exp\left(-\lambda \int_0^s \frac{1}{B_t^2} d\tau\right) \cdot (-\lambda \cdot 1_{f \le T_E y} \cdot \frac{1}{B_s^2}) ds$$

$$+ \int_0^t \exp\left(\lambda \int_0^s \frac{1}{B_t^2} d\tau\right) \cdot \alpha (B_{s \land T_E})^{\alpha-1} 1_{f \le T_E y} dB_s$$

$$+ \int_0^t \exp\left(\lambda \int_0^s \frac{1}{B_t^2} (\tau \le T_E y) d\tau\right) \cdot \alpha (B_{s \land T_E})^{\alpha-1} 1_{f \le T_E y} dB_s$$

$$+ \int_0^t \exp\left(\lambda \int_0^s \frac{1}{B_t^2} (\tau \le T_E y) d\tau\right) \cdot \alpha (B_{s \land T_E})^{\alpha-1} 1_{f \le T_E y} dB_s$$

$$T_0 \text{ make } (Z_t)_{t \ge 0} a \quad c \cdot I \cdot m. \text{, it's equivalent to have : For $s \ge 0$, (B_{s \land T_E})^{\alpha} (-\lambda) 1_{f \le T_E y} \cdot \frac{1}{B_{s \land T_E}} + \frac{1}{2} \alpha (\alpha-1) (B_{s \land T_E})^{\alpha-2} 1_{f \le T_E y} = 0$$
, which means that $\lambda = \frac{1}{2} \alpha (\alpha-1)$.

3. Compute

$$\mathsf{E}\Big[\exp\big(-\lambda\int_0^{T_\varepsilon}\frac{ds}{B_s^2}\big)\Big].$$

Proof. Let Z_t be the same as in 2). And let
$$\alpha \in \operatorname{IR}(\operatorname{for})$$

such that $\lambda = \frac{1}{2}\alpha(\alpha - 1)$. (It always exists such a since $\lambda > 0$). There exists
a localizing sequence $(S_n)_{n \ge 1}$ such that for each $n \ge 1$, $(\mathbb{Z} + A S_n)_{\substack{t \ge 0 \\ n \ge 1}}$
is a uniformly integrable martingale. Since T_e is a stopping-time,
by 0.5.T. We have $\mathbf{1} = \mathbb{E}\mathbb{Z}_0 = \mathbb{E}\mathbb{Z}_{0AS_n} = \mathbb{E}\mathbb{Z}_{TeAS_n} =$
 $\mathbb{E}[(B_{TeAS_n})^{\alpha} \exp(-\lambda \int_0^{TeAS_n} \frac{1}{B_s^2} ds)]$. Note that
 $\lim_{n \to +\infty} (B_{TeAS_n})^{\alpha} \exp(-\lambda \int_0^{TeAS_n} \frac{1}{B_s^2} ds) = B_{Te}^{\alpha} \exp(-\lambda \int_0^{Te} \frac{1}{B_s^2} ds)$,
and for each $n \ge 1$, $|(B_{TeAS_n})^{\alpha} \exp(-\lambda \int_0^{TeAS_n} \frac{ds}{B_e^2})| \le (B_{TeAS_n})^{\alpha}$.
By the equation $\lambda = \frac{1}{2}\alpha(\alpha - 1)$, we have $\alpha = \frac{1 \pm \sqrt{1 + 8\lambda}}{2}$.
If we take $\alpha = \frac{1 - \sqrt{1 + 8\lambda}}{2} < 0$, then we have $(B_{TeAS_n})^{\alpha} \le B_{Te}^{\alpha} = \varepsilon^{\alpha}$ and by D.C.T. we have that $1 = \mathbb{E}[B_{Te}^{\alpha} \exp(-\lambda \int_{0}^{Te} \frac{ds}{B_s^2})]$
 $= \varepsilon^{\alpha} \mathbb{E}[\exp(-\lambda \int_{0}^{Te} \frac{ds}{B_s^2}] = \varepsilon^{-\alpha}$, where $\alpha = \frac{1 - \sqrt{1 + 8\lambda}}{2}$.

.