HW5

March 20, 2024

Exercise 1 Recall that $(Z_t = e^{\lambda B_t - \frac{\lambda^2}{2}})$ $\sum_{i=1}^{n} t_{i\geq 0}$ is a martingale for every $\lambda \in \mathbb{R}$. It is a non-negative super-martingale so it has an almost sure limit Z_{∞} .

1. Let T_a be the hitting time of $a > 0$. Use the Optional Sampling Theorem to show that

$$
\mathsf{E}e^{-cT_a} = e^{-a\sqrt{2c}}, \quad c > 0.
$$

- 2. Show that $Z_{\infty} = 0$. Hint: One possible proof is to use Borel–Cantelli to show that for any $\varepsilon, M > 0, B_n \leq \varepsilon n + M$ for large enough n.
- 3. Let $S_a = \inf\{t \geq 0 : B_t \geq at + 1\}$, $a > 0$. Use the Optional Sampling Theorem to show that

$$
\mathsf{E}e^{2a}\mathbb{1}_{\{S_a\leq t\}} + \mathsf{E}e^{2aB_t - 2a^2t}\mathbb{1}_{\{S_a > t\}} = 1.
$$

Take the limit $t \to \infty$ and show that $P(S_a < \infty) = e^{-2a}$.

Exercise 2 Let $(X_t)_{t\geq0}$ be a (\mathcal{F}_t) -adapted, bounded continuous process. For any partition $\Delta: 0 =$ $t_0 < t_1 < \cdots < t_n = t$ we define X_s^{Δ} = \sum^{n-1} $_{k=0}$ $X_{t_k} \mathbb{1}_{[t_k,t_{k+1})}(s)$. By continuity of X, it is easy to see that the limit

$$
0.01 \pm 0.000
$$

$$
\lim_{|\Delta| \to 0} \int_0^t X_s^{\Delta} ds = \lim_{|\Delta| \to 0} \sum_{k=0}^{n-1} X_{t_k}(t_{k+1} - t_k) = \int_0^t X_s ds
$$

exists almost surely, so \int_0^t $\mathbf{0}$ $X_s ds$ is a well-defined r.v.

1. Show that for any sub– σ -field $\mathcal{G} \subset \mathcal{F}_{\infty}$, there exists a bounded continuous process $(Y_t)_{t\geq 0}$ such that for every $t \geq 0$, $Y_t = \mathsf{E}[X_t | \mathcal{G}]$ a.s.

Hint: define Y_t first for $t \in \mathbb{Q}$ and then consider the extension to $t \in \mathbb{R}$.

2. Show that

$$
\mathsf{E}\Big[\int_0^t X_s\,ds\mid\mathcal{G}\Big]=\int_0^t \mathsf{E}[X_s\mid\mathcal{G}]\,ds.
$$

Hint: The identity is true for X_t^{Δ} ; then justify the limit $|\Delta| \to 0$ carefully using boundedness and continuity.

3. Let $i =$ $\sqrt{-1}$. For any $\lambda \in \mathbb{R}$, show that

$$
e^{i\lambda B_t} + \int_0^t \frac{1}{2} \lambda^2 e^{i\lambda B_s} ds, \quad t \ge 0
$$

is a martingale.

Note: this implies $f(B_t) - \int_0^t$ 0 1 $\frac{1}{2}f''(B_s) dB_s$ is a martingale if f has a sufficiently nice Fourier transform representation $f(x) = \int e^{i2\pi x\xi} \hat{f}(\xi) d\xi$, since $f''(x) = -\int 4\pi^2 \xi^2 e^{i\lambda x\xi} \hat{f}(\xi) d\xi$.

Exercise 3 Let $t > 0$ and consider the partition $\Delta_n : t_i = it \cdot 2^{-n}, 0 \le i \le 2^n$. Show that

$$
\lim_{n \to \infty} \sum_{i=0}^{2^n - 1} (B_{t_{i+1}} - B_{t_i})^2 = t, \quad \text{a.s.}
$$

Hint: Compute the L^2 -distance, and then use Markov inequality and Borel–Cantelli.