HW2

February 27, 2024

Exercise 1 Let X and Y be i.i.d. with $EX = EY = 0$ and $EX^2 = EY^2 = 1$. Suppose that the distribution of (X, Y) is rotational invariant, i.e.,

$$
\mathcal{L}(X, Y) = \mathcal{L}(X \cos \theta + Y \sin \theta, -X \sin \theta + Y \cos \theta), \quad \forall \theta \in \mathbb{R}.
$$

Show that $\mathcal{L}(X) = \mathcal{L}(Y) = \mathcal{N}(0, 1)$.

Hint: rotational invariance implies that the ch.f. takes the form $\varphi_{X,Y}(\xi,\eta) = F(\xi^2 + \eta^2)$.

Exercise 2 Let $f(t) = \lambda((t, 1)).$

1. Suppose that $\lambda(dt) = \rho(t) dt$ for some $\rho \in \mathcal{C}[0,1]$. Show that

$$
\int_0^1 \int_0^1 (s \wedge t) \,\lambda(ds)\lambda(dt) = \int_0^1 |f(t)|^2\,dt.
$$

Hint: use integration by parts.

2. (Optional) Prove the same identity for an arbitrary signed measure $\lambda(dt)$. Hint: if $\lambda(dt)$ is a signed measure, then f defined as above has bounded variation and $\lambda(dt) = d(-f(t))$. Use integration by parts for Riemann–Stieltjes integrals.

Exercise 3 The Brown sheet $(\mathbb{B}_{s,t})_{s,t\in[0,1]}$ is a centered Gaussian process with covariance

 $\mathsf{EB}_{s,t} \mathbb{B}_{s',t'} = (s \wedge s')(t \wedge t'), \quad s,t,s',t' \in [0,1].$

It can be constructed via GWN with $H = L^2([0,1]^2, \mathcal{B}([0,1]^2), ds \times dt)$ and $\mathbb{B}_{s,t} = G(\mathbb{1}_{[0,s] \times [0,t]})$.

1. Show that for each $p \ge 1$, there is some constant $K_p > 0$,

$$
\mathsf{E}|\mathbb{B}_{s,t} - \mathbb{B}_{s',t'}|^{2p} \le K_p(|s-s'|^p + |t-t'|^p), \quad s,t,s',t' \in [0,1].
$$

2. Let $0 < \gamma < 1/2$. Show that with probability one, there is a random constant $n_0 = n_0(\omega)$ such that for all $n \geq n_0$,

$$
\left| \mathbb{B}_{\frac{k}{2^n},\frac{\ell}{2^n}} - \mathbb{B}_{\frac{k'}{2^n},\frac{\ell'}{2^n}} \right| \leq 2^{-\gamma n}, \quad 0 \leq k, \ell, k', \ell' \leq 2^n, \ |k - k'| + |\ell - \ell'| \leq 1.
$$

Exercise 4 For $n \ge 0$ and $0 \le k \le 2^n - 1$, let

$$
e_{n,k}(x) = \begin{cases} 2^{\frac{n}{2}}, & \frac{k}{2^n} \leq x < \frac{2k+1}{2^{n+1}}, \\ -2^{\frac{n}{2}}, & \frac{2k+1}{2^{n+1}} \leq x < \frac{k+1}{2^n}, \\ 0, & \text{otherwise}, \end{cases} \quad \beta_{n,k}(t) = \langle e_{n,k}, \mathbb{1}_{[0,t]} \rangle,
$$

and $\xi_{n,k} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$. Define $\Delta B_t^n =$ $\sum_{ }^{2^n-1}$ $_{k=0}$ $\xi_{n,k}\beta_{n,k}(t)$ and $B_t^N = \sum$ N $n=0$ ΔB_t^n . 1. Show that ${e_{n,k}}$ is orthonormal, i.e.,

$$
\int_0^1 e_{n,k}(x)e_{n',k'}(x) dx = \mathbb{1}_{n=n'}\mathbb{1}_{k=k'}.
$$

2. Show that

$$
\sup_{t \in [0,1]} |\Delta B_t^n| \le 2^{-n/2} \cdot \max_{0 \le k \le 2^n - 1} |\xi_{n,k}|.
$$

Hint: note that for fixed n, $e_{n,k}$ has disjoint support for different k.

3. Use $P(|\mathcal{N}(0,1)| \ge a) \le e^{-a^2/2}$ and Borel–Cantelli Lemma to show that with probability one, there is a random constant $n_0 = n_0(\omega)$ such that

$$
|\xi_{n,k}| \le n, \quad \forall 0 \le k \le 2^n - 1, \ n \ge n_0.
$$

4. Conclude that with probability 1, ${B_t^N(\omega), t \in [0,1]}_{N \ge 1}$ is Cauchy in $\mathcal{C}[0,1]$, that is,

$$
\lim_{N,N'\to\infty}\sup_{t\in[0,1]}|B_t^N(\omega)-B_t^{N'}(\omega)|=0,\quad\text{a.e. }\omega.
$$