HW13

May 22, 2024

Exercise 1 (Le Gall, Ex 9.16) Let $f : \mathbb{R} \to \mathbb{R}$ be a monotone increasing function, and assume that f is a difference of convex functions. Let X be a continuous semi-martingale and consider the continuous semi-martingale $Y_t = f(X_t)$.

1. Recall that for any continuous semi-martingale Z ,

$$
L_t^a(Z) = \lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \int_0^t \mathbb{1}_{\{a \le X_s \le a + \varepsilon\}} d\langle Z \rangle_s, \quad L_t^{a-}(Z) = \lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \int_0^t \mathbb{1}_{\{a - \varepsilon \le X_s \le a\}} d\langle Z \rangle_s
$$

Show that for every $a \in \mathbb{R}$, $L_t^a(Y) = f'_{+}(a)L_t^a(X)$, $L_t^{a-} = f'_{-}(a)L_t^{a-}(X)$.

Proof. By lineority and the condition f is increasing as a difference of convex functions, we hove there exists a process $(V_4)_{270}$ of finite variation such that for $t > 0$: $Y_t = f(x_t) = f(x_0)$ + $\int_{b}^{t} f_{+}^{2}(x_{s})dX_{s} + V_{t}$, which means $d < Y_{s} = (f_{+}^{2}(x_{s}))d < x_{s}$. Then by approximation $fmmula$, $\downarrow^{a}_{t}(Y) = \downarrow^{a}_{t}(f(X)) = \lim_{\Delta\setminus^{a}_{t}D} \frac{1}{\epsilon} \int_{0}^{t} 1_{\{a \leq f(X_{s}) \leq a+\epsilon\}} d < f(X) \leq$ $= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^t 1_{\{\alpha \leq f(X_s) \leq a+\epsilon\}} (f'_+(X_s))^2 d < \times \int_s = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_m 1_{\{\alpha \leq f(b) \leq \alpha + \epsilon\}} (f'_+(b))^2 d^b(x) dx$ = $\lim_{\epsilon\downarrow 0} \frac{1}{\epsilon} \int_{\mathbb{R}} \int_{\mathcal{I}} a \leq f(b+)\leq a+\epsilon$ $\int_{\mathcal{I}}^{b} f(b) \int_{\mathcal{I}}^{b} f(\chi) d f(b) = f'_{+}(a) \int_{\mathcal{I}}^{a} f(\chi)$. Similarly, there exists a F.V. process \tilde{v} ($\tilde{v}_{k_{z0}}$ s.t. $Y_t = f(x_0) + \int_a^t f'(x_0) dX_s + \tilde{V}_t$, which means that $d < Y_{\delta} =$ $(f'_{-}(\chi_{s}))^{2}d<\chi_{\zeta}$. By opportimation formula, $L_{t}^{a-}(\gamma)=L_{t}^{a-}(\gamma)=\lim_{\epsilon\lambda_{s}0}\frac{1}{\epsilon}\int_{0}^{t}1_{\{a-\epsilon\leq f(\chi_{s})\leq\epsilon\gamma\}}$ $(f'_{-}(X_{s}))^{2}d<\!\!\times\!\!\times_{S}=\lim_{\epsilon\rightarrow0}\frac{1}{\epsilon}\int_{\{R}\right\} \{a-\epsilon\leq f(b)\leq\epsilon\} \left(f'_{-}(b)\right)^{2}\!\!\int_{-t}^{b}\left(X\right)db=\lim_{\epsilon\rightarrow0}\frac{1}{\epsilon}\int_{\{D}\}}\!\!1_{\{a-\epsilon\leq f(b\rightarrow\leq\epsilon\}}$ $f'_2(b) \cdot \int_a^b f(x) d f(b-)= f'(a-) \int_a^a f(x) = f'_2(a) \int_a^a f(x)$.

> 2. Show that if $X = B$ is a Brownian motion, $L_t^a(f(B))$ is continuous if and only if f is continuously differentiable.

Proof.

\n
$$
\int_{-\frac{1}{4}}^{\infty} (f(B)) \text{ is continuous in a e R, then}
$$
\n
$$
\begin{aligned}\n\left[\frac{a}{t} (f(B)) \text{ is continuous} &\iff \left[\frac{a}{t} (f(B)) \right] = \left[\frac{a}{t} (f(B)) \right] \text{ a e R,} \\
&\iff \left[\frac{b}{t} (a) \left[\frac{a}{t} (B) \right] = \frac{1}{t} (a) \left[\frac{a}{t} (B) \right] \text{ a e R, And } f(t) \text{ is continuous.} \\
&\iff \left[\frac{b}{t} (\text{is a c. } 1 \text{ m.}) \right] \\
&\iff \left[\frac{a}{t} (\text{a}) = \frac{1}{t} (\text{a}) \text{ a e R. And } f(t) \text{ is continuous.}\n\right]\n\end{aligned}
$$
\n
$$
\iff \left[\frac{b}{t} (\text{is a c. } 1 \text{ m.}) \right]
$$

Exercise 2 (Le Gall, Ex 9.25) Let $\rho : [0, \infty) \to [0, \infty)$ be a non-decreasing function such that the improper integral $\int_0^1 \frac{du}{\rho(u)}$ diverges. Consider the SDE

 $dX_t = \sigma(X_t) dB_t + b(X_t) dt$

where

$$
|\sigma(x) - \sigma(y)|^2 \le \rho(|x - y|), \quad |b(x) - b(y)| \le |x - y|.
$$

1. Let Y be a continuous semi-martingale such that for every $t > 0$,

$$
\int_0^t \frac{d\langle Y \rangle_s}{\rho(|Y_s|)} < \infty, \text{a.s.}
$$

Prove that $L_t^0(Y) = 0$ for every $t > 0$, a.s.

\n
$$
\int_{0}^{1} \frac{L_{t}^{a}(Y)}{\rho(\log t)} d\alpha \leq \int_{IR} \frac{L_{t}^{a}(Y)}{\rho(\log t)} d\alpha = \int_{0}^{t} \frac{d\langle Y \rangle}{\rho(Y_{s})} \leq \infty \text{ a.s. If the exist}
$$
\n

\n\n $\int_{0}^{\infty} \frac{d\langle Y \rangle}{\rho(\log t)} d\alpha = \int_{0}^{t} \frac{d\langle Y \rangle}{\rho(Y_{s})} \leq \infty \text{ a.s. If the exist}$ \n

\n\n $\int_{0}^{\infty} \frac{d}{\rho(Y_{s})} \cdot \frac{1}{\rho(X_{s})} \cdot \frac{1}{\rho(X_{$

2. Let X, X' be two solutions of the SDE on the same probability space with the same driven Brownian motion. Use Generalized Itô's formula to show that

$$
|X_t-X'_t| = |X_0-X'_0| + \int_0^t \left(\sigma(X_s) - \sigma(X'_s) \right) \; \text{sgn}(X_s-X'_s) \, dB_s + \int_0^t \left(b(X_s) - b(X'_s) \right) \text{sgn}(X_s-X'_s) \, ds.
$$

\n For example, By Genoalized Itô's formula, for
$$
t > 0
$$
, $|X_t - X_t| = |X_0 - X_0| + \int_{0}^{t} \frac{1}{3} \pi (X_s - X_s') \, dX_s + \int_{-t}^{0} (X - X') = |X_0 - X_0| + \int_{0}^{t} \frac{1}{3} \pi (X_s - X_s') \, dX_s - \frac{1}{3} \pi (X_s - X_s$

3. Show that pathwise uniqueness holds for the SDE.

Proof. It is a direct consequence of Ex1 of HW 10. OR we could apply results in 2.) above by making some localization procedures then taking expectation, we obtain $E|X_t - X'_t| \leq \int_t^t E|b(X_s-b(X'_s)|ds) \leq \int_t^t E|X_s - X'_s|ds$. Then the proof is done by Gronwall 's inequality.

And there is a suggested solution to these two exercises by Te-Chun Wang
from National Chico Tuny University.

Exercise 9.16 9.1

Let $f: \mathbb{R} \to \mathbb{R}$ be a monotone increasing function, and assume that f is a difference of convex functions. Let X be a semimartingale and consider the semimartingale $Y_t = f(X_t)$. Prove that, for every $a \in \mathbb{R}$,

$$
L_t^a(Y) = f'_{+}(a)L_t^a(X) \text{ and } L_t^{a-}(Y) = f'_{-}(a)L_t^{a-}(X).
$$

In particular, if X is a Brownian motion, the local times of $f(X)$ are continuous in the space variable if and only if f is continuously differentiable.

Remark.

Note that $(L^a(X), a \in \mathbb{R})$ is the càdlàq modification of local time of X. The formula

$$
L_t^a(Y) = f'_+(a)L_t^a(X)
$$

doesn't hold for all increasing function $f = \varphi_1 - \varphi_2$, where φ_i is a convex function on R. For example, if $\varphi_1(x) = 2e^x$ and $\varphi_2(x) = e^x$, and if X is a continuous semimartingale such that $P(L_t^a(X) \neq 0) > 0$ for some $a < 0$ and $t > 0$, then $f(x) = e^x$ and so

$$
L_t^a(Y) = L_t^a(f(X)) = 0 \neq e^a L_t^a(X) = f'(a)L_t^a(X)
$$

on $\{L_{\star}^{a}(X)\neq 0\}.$

To avoid this problem, we restatement Exercise 9.16 as following: Let $f : \mathbb{R} \to \mathbb{R}$ be a strictly increasing function such that $f = \varphi_1 - \varphi_2$, where φ_i is a convex function on R. Let X be a semimartingale and consider the semimartingale $Y_t = f(X_t)$. Prove that, a.s.

$$
L_t^{f(a)}(Y) = f'_+(a)L_t^a(X) \text{ and } L_t^{f(a)-}(Y) = f'_-(a)L_t^{a-}(X) \quad \forall a \in \mathbb{R}, t \ge 0
$$

In particular, if X is a Brownian motion and $(u, v) \subseteq R(f) := \{a \in \mathbb{R} \mid f(a)\}\$, we have, a.s. $a \in (u, v) \mapsto L^a(Y)$ is continuous if and only if $a \in (u, v) \mapsto f(a)$ is continuously differentiable.

Proof.

1. Since $f = \varphi_1 - \varphi_2$, we see that f is continuous and f'_+ is right continuous. We show that, a.s.

$$
L_t^{f(a)}(Y) = f'_+(a)L_t^a(X) \quad \forall t > 0, a \in \mathbb{R}.
$$

To show this, it suffices to show that $P(L_t^{f(a)}(Y) = f'_{+}(a)L_t^{a}(X)) = 1$ for all $t \geq 0$ and $a \in \mathbb{R}$. Indeed, since $a \in \mathbb{R} \mapsto f'_{+}(a)L_t^{a}(X)$ is right continuous for $t \geq 0$ and

$$
E_a := \{ L_t^{f(a)}(Y) = f'_+(a)L_t^a(X) \quad \forall t \ge 0 \} = \bigcap_{s \in \mathbb{Q}_+} E_{a,s} \quad \forall a \in \mathbb{R},
$$

where

$$
E_{a,s} := \{ L_s^{f(a)}(Y) = f'_+(a)L_s^a(X) \} \quad \forall a \in \mathbb{R}, s > 0,
$$

we see that

$$
\boldsymbol{P}(L_t^{f(a)}(Y) = f'_+(a)L_t^a(X) \quad \forall a \in \mathbb{R}, t \ge 0) = \boldsymbol{P}(\bigcap_{q \in \mathbb{Q}} E_q) = 1
$$

Fix $a \in \mathbb{R}$ and $t > 0$. Now, we show that $P(L_t^{f(a)}(Y) = f'_{+}(a)L_t^{a}(X)) = 1$. By generalized Itô formula, we see that

$$
d\langle Y, Y \rangle_s = f'_{-}(X_s)^2 d\langle X, X \rangle_s.
$$

By Proposition 9.9 and Corollary 9.7, we have, a.s.

$$
L_t^{f(a)}(Y) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^t \mathbf{1}_{\{f(a) \le f(X_s) \le f(a) + \epsilon\}} f'_{-}(X_s)^2 d\langle X, X \rangle_s
$$

$$
= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\mathbb{R}} \mathbf{1}_{\{f(a) \le f(b) \le f(a) + \epsilon\}} f'_{-}(b)^2 L_t^b(X) db
$$

$$
= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\mathbb{R}} \mathbf{1}_{\{f(a) \le f(b) \le f(a) + \epsilon\}} f'_{+}(b)^2 L_t^b(X) db.
$$

We show that, a.s.

$$
\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\mathbb{R}} 1_{\{f(a) \le f(b) \le f(a) + \epsilon\}} f'_{+}(b)^{2} L_{t}^{b}(X) db = f'_{+}(a) L_{t}^{a}(X).
$$

Fix w. Given $\eta > 0$. Choose $h > 0$ such that

$$
|f'_{+}(a)L_{t}^{a}(X) - f'_{+}(b)L_{t}^{b}(X)| < \eta
$$

whenever $a \leq b < a + h$. Note that f is a continuous strictly increasing function. For $\epsilon > 0$, define

$$
a_{\epsilon} := \inf\{b \in \mathbb{R} \mid f(b) = f(a) + \epsilon\}.
$$

Choose $j > 0$ such that $a < a_{\epsilon} < a + h$ for every $0 < \epsilon < j$. Let $0 < \epsilon < j$. Then $-\infty < a < a_{\epsilon} < \infty$, $f(a_{\epsilon}) = f(a) + \epsilon,$ \overline{a}

$$
|f'_{+}(a)L_{t}^{a}(X) - f'_{+}(b)L_{t}^{b}(X)| < \eta \quad \forall b \in [a, a_{\epsilon}],
$$

$$
\{b \in \mathbb{R} \mid f(a) \le f(b) \le f(a) + \epsilon\} = [a, a_{\epsilon}],
$$

and so

$$
\frac{1}{\epsilon} \int 1_{\{f(a) \le f(b) \le f(a) + \epsilon\}} f'_+(b) db = \frac{1}{\epsilon} \int_a^{a_{\epsilon}} f'_+(b) db = \frac{f(a_{\epsilon}) - f(a)}{\epsilon} = 1.
$$

Thus,

$$
\begin{split}\n&\left|\frac{1}{\epsilon}\int_{\mathbb{R}}1_{\{a\leq f(b)\leq a+\epsilon\}}f'_{+}(b)^{2}L_{t}^{b}(X)db - f'_{+}(a)L_{t}^{a}(X)\right| \\
&= \left|\frac{1}{\epsilon}\int_{a}^{a_{\epsilon}}f'_{+}(b)^{2}L_{t}^{b}(X)db - \frac{1}{\epsilon}\int_{a}^{a_{\epsilon}}f'_{+}(b)f'_{+}(a)L_{t}^{a}(X)db\right| \\
&\leq \frac{1}{\epsilon}\int_{a}^{a_{\epsilon}}f'_{+}(b)|f'_{+}(b)L_{t}^{b}(X) - f'_{+}(a)L_{t}^{a}(X)|db \\
&< \eta\frac{1}{\epsilon}\int_{a}^{a_{\epsilon}}f'_{+}(b)db = \eta\frac{1}{\epsilon}(f(a_{\epsilon}) - f(a)) = \eta\frac{1}{\epsilon}\epsilon = \eta.\n\end{split}
$$

Therefore, we have, a.s.

$$
L_t^{f(a)}(Y) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\mathbb{R}} 1_{\{f(a) \le f(b) \le f(a) + \epsilon\}} f'_+(b)^2 L_t^b(X) db = f'_+(a) L_t^a(X)
$$

2. We show that, a.s.

$$
L_t^{f(a)-}(Y) = f'_{-}(a)L_t^{a-}(X) \quad \forall t > 0, a \in \mathbb{R}
$$

To show this, it suffices to show that $\lim_{b\uparrow a} f'_{+}(b) = f'_{-}(a)$ for every $a \in \mathbb{R}$. Indeed, if $w \in E$, where $E = \{L_t^{f(a)}(Y) = f'_{+}(a)L_t^{a}(X) \quad \forall a \in \mathbb{R}, t \ge 0\},\$ then

$$
L_t^{f(a)-}(Y) = \lim_{b \uparrow a} L_t^{f(b)}(Y) = \lim_{b \uparrow a} f'_+(b) L_t^b(X) = f'_-(a) L_t^{a-}(X) \quad \forall a \in \mathbb{R}, t \ge 0.
$$

Fix $a \in \mathbb{R}$. Now, we show that $\lim_{b \uparrow a} f'_{+}(b) = f'_{-}(a)$. Since $f = \varphi_1 - \varphi_2$, it suffices to show that $\lim_{b \uparrow a} \varphi'_{i,+}(b) =$ $\varphi'_{i,-}(a)$ for $i = 1,2$. We denote φ_i as φ . It's clear that

$$
\varphi'_+(b) \le \varphi'_-(a) \quad \forall b < a
$$

Given $\eta > 0$. There exists $c < a$ such that

$$
\varphi'_{-}(a) - \eta \le \frac{\varphi(a) - \varphi(c)}{a - c}
$$

By continuity, there exists $c < d < a$ such that

$$
\frac{\varphi(a)-\varphi(c)}{a-c}-\eta\leq \frac{\varphi(d)-\varphi(c)}{d-c}
$$

and so

$$
\varphi'_{-}(a) - 2\eta \le \frac{\varphi(d) - \varphi(c)}{d - c} \le \varphi'_{+}(b) \quad \forall d < b < a.
$$

Thus, we get

$$
\varphi'_{-}(a) - 2\eta \le \varphi'_{+}(b) \le \varphi'_{-}(a) \quad \forall d < b < a
$$

and, hence, $\lim_{b \uparrow a} f'_{+}(b) = f'_{-}(a)$.

9.10 Exercise 9.25 (Another look at the Yamada–Watanabe criterion)

Let ρ be a nondecreasing function from $[0, \infty)$ into $[0, \infty)$ such that, for every $\epsilon > 0$,

$$
\int_0^{\epsilon} \frac{du}{\rho(u)} = \infty
$$

Consider then the one-dimensional stochastic differential equation

$$
E(\sigma, b): \qquad dX_t = \sigma(X_t)dB_t + b(X_t)dt
$$

where one assumes that the functions σ and b satisfy the conditions

$$
(\sigma(x) - \sigma(y))^2 \le \rho(|x - y|), \quad |b(x) - b(y)| \le K|x - y|,
$$

for every $x, y \in \mathbb{R}$, with a constant $K < \infty$. Our goal is use local times to give a short proof of pathwise uniqueness for $E(\sigma, b)$ (this is slightly stronger than the result of Exercise 8.14).

1. Let Y be a continuous semimartingale such that, for every $t > 0$,

$$
\int_0^t \frac{d\langle Y, Y \rangle_s}{\rho(|Y_s|)} < \infty \quad (a.s.)
$$

Prove that $L_t^0(Y) = 0$ for every $t \geq 0$ (a.s.).

2. Let X and X_0 be two solutions of $E(\sigma, b)$ on the same filtered probability space and with the same Brownian motion B. By applying question 1. to $Y = X - X'$, prove that $L_t^0(X - X')$ for every $t \ge 0$ (a.s.) and therefore,

$$
|X_t - X'_t| = |X_0 - X'_0| + \int_0^t (\sigma(X_s) - \sigma(X'_s))sgn(X_s - X'_s)dB_s + \int_0^t (b(X_s) - b(X'_s))sgn(X_s - X'_s)ds.
$$

3. Using Gromwall's lemma, prove that if $X_0 = X'_0$, then $X_t = X'_t$ for every $t \ge 0$ (a.s.).

Proof.

1. Since $L_t^a(Y) \stackrel{a \downarrow 0}{\rightarrow} L_t^0(Y)$ $\forall t \ge 0$ (a.s.), there exists $C = C(w) > 0$ and $\epsilon = \epsilon(w) > 0$ such that

$$
L_t^a(Y) \geq CL_t^0(Y) \quad \forall 0 < a < \epsilon \quad \forall t \geq 0 \quad (a.s.).
$$

By Density of occupation time formula (Corollary 9.7), we have

$$
\infty > \int_0^t \frac{d\langle Y, Y \rangle_s}{\rho(|Y_s|)} = \int_{\mathbb{R}} \frac{1}{\rho(|a|)} L_t^a(Y) da \geq CL_t^0(Y) \int_0^{\epsilon} \frac{1}{\rho(a)} da \quad \forall t \geq 0 \quad (a.s.).
$$

Since $\int_0^{\epsilon} \frac{du}{\rho(u)} = \infty$ for all $\epsilon > 0$, we get $L_t^0(Y) = 0$ for all $t \ge 0$ (a.s.).

2. Set $Y = X - X'$. Then

$$
Y_t = X_0 - X'_0 + \int_0^t (\sigma(X_s) - \sigma(X'_s)) dB_s + \int_0^t (b(X_s) - b(X'_s)) ds
$$

and so

$$
d\langle Y, Y \rangle_t = (\sigma(X_t) - \sigma(X'_t))^2 dt.
$$

Thus,

$$
\int_0^t \frac{d\langle Y, Y \rangle_s}{\rho(|Y_s|)} = \int_0^t \frac{(\sigma(X_s) - \sigma(X'_s))^2}{\rho(|X_s - X'_s|)} ds \le \int_0^t \frac{\rho(|X_s - X'_s|)}{\rho(|X_s - X'_s|)} ds = t < \infty \quad \forall t \ge 0 \quad (a.s.).
$$

By question 1., we get $L_t^0(X - X') = 0$ for every $t \ge 0$ (a.s.). By Tanaka's formula, we have

$$
|X_t - X'_t| = |X_0 - X'_0| + \int_0^t (\sigma(X_s) - \sigma(X'_s))sgn(X_s - X'_s)dB_s + \int_0^t (b(X_s) - b(X'_s))sgn(X_s - X'_s)ds
$$

for every $t \geq 0$ (a.s.).

3. By continuity, it suffices to show that $X_t = X'_t$ (a.s.) for every $t \ge 0$. Fix $t_0 > 0$ and choose $L > t_0$. Define

$$
T_M = \inf\{s \ge 0 \mid |X_s| \ge M \text{ or } |X'_s| \ge M\} \quad \forall M > 0
$$

Fix $M > 0$. Since

$$
\mathbf{E}[\langle \int_0^t (\sigma(X_s) - \sigma(X'_s))sgn(X_s - X'_s)1_{[0,T_M]}dB_s, \int_0^t (\sigma(X_s) - \sigma(X'_s))sgn(X_s - X'_s)1_{[0,T_M]}dB_s \rangle_t]
$$

= $\mathbf{E}[\int_0^t (\sigma(X_s) - \sigma(X'_s))^21_{[0,T_M]}ds] \le \mathbf{E}[\int_0^t \rho(|X_s - X'_s|)1_{[0,T_M]}ds] \le \rho(2M)t < \infty \quad \forall t > 0,$

and

$$
g(t) = \mathbf{E}[|X_t - X'_t|1_{[0,T_M]}(t)] = \mathbf{E}[\int_0^t (b(X_s) - b(X'_s))sgn(X_s - X'_s)1_{[0,T_M]}ds] \le 2K \int_0^t g(s)ds
$$

for every $t \in [0, L]$. By Gromwall's lemma, we get $g(t) = 0$ in $[0, L]$ and so $\mathbf{E}[|X_{t_0 \wedge T_M} - X'_{t_0 \wedge T_M}|] = 0$. By letting $M \uparrow \infty$, we have $\mathbf{E}[|X_{t_0} - X'_{t_0}|] = 0$ and so $X_{t_0} = X'_{t_0}$.

 \Box