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Exercise 1 (Le Gall, Ex 9.16) Let f : R — R be a monotone increasing function, and assume that f is
a difference of convex functions. Let X be a continuous semi-martingale and consider the continuous
semi-martingale Y; = f(X}).

1. Recall that for any continuous semi-martingale Z,
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2. Show that if X = B is a Brownian motion, Lf( f(B )) is continuous if and only if f is continuously
differentiable.
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Exercise 2 (Le Gall, Ex 9.25) Let p : [0,00) — [0,00) be a non-decreasing function such that the
1
du
improper integral / % diverges. Consider the SDE
Jo plu

dXt = C"(Xt) dBt + b(Xt) dt

where
lo(2) —o()? < plz—y)), |b(z) = b(y)| < |z -yl

1. Let Y be a continuous semi-martingale such that for every ¢t > 0,
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Prove that L(Y) = 0 for every ¢ > 0, a.s.
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2. Let X, X’ be two solutions of the SDE on the same probability space with the same driven
Brownian motion. Use Generalized It6’s formula to show that
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3. Show that pathwise uniqueness holds for the SDE.

me Tt isa dinct comegience of Exlof Hwlo. OR vecould opply resuds
in 2-) above lo\j makmg some [ocal ization Pnccdurcs Hen +°'k"“7 expectation , Lue ohtain

EIXeXel < [EbXe-bexdlds < (FEIXs=Xilds,  Thn 4o poofiis
lone Lj Gromwel| s ineguatﬂ:j .



A—M Here s @ Sﬂﬂ»ﬁeoe eafutim To thece twp exercises Lj Te- Chun Wamj
.fwm MNetioma\ Chico —ﬁ»j uhiW?f'bj.

9.1 Exercise 9.16

Let f: R+— R be a monotone increasing function, and assume that f is a difference of convex functions. Let X be
a semimartingale and consider the semimartingale Y; = f(X;). Prove that, for every a € R,

LY(Y) = fi(a)L{(X) and LY~ (Y) = f_(a) Ly~ (X).

In particular, if X is a Brownian motion, the local times of f(X) are continuous in the space variable if and only if
f is continuously differentiable.

Remark.
Note that (L*(X),a € R) is the cadlag modification of local time of X. The formula

Li(Y) = fi(a)L{(X)

doesn’t hold for all increasing function f = @1 — o, where @; is a convex function on R. For example, if p1(x) = 2e*
and pa(x) = €*, and if X is a continuous semimartingale such that P(L{(X) # 0) > 0 for some a < 0 and t > 0,
then f(z)=e" and so

Li(Y) = L{(f(X)) = 0 # e"L{(X) = f'(a) L§(X)
on {L{(X) # 0}.
To avoid this problem, we restatement Exercise 9.16 as following: Let f : R +— R be a strictly increasing function such

that f = 1 — o, where @; is a convex function on R. Let X be a semimartingale and consider the semimartingale
Y, = f(X4). Prove that, a.s.

LI(Y) = f(@)L{(X) and LI (V) = fL(a)L§™(X) Va€R,t>0

In particular, if X is a Brownian motion and (u,v) C R(f) :={a € R| f(a)}, we have, a.s. a € (u,v) — L*(Y) is
continuous if and only if a € (u,v) — f(a) is continuously differentiable.

Proof.

1. Since f = @1 — g2, we see that f is continuous and f/ is right continuous. We show that, a.s.
LI“(Y) = f' (o) LH(X) Vt>0,a€R.

To show this, it suffices to show that P(L{(a) (Y) = fl(a)L(X)) = 1 for all t > 0 and a € R. Indeed, since
a € R— fl(a)L§(X) is right continuous for ¢ > 0 and

Ey = {L{'"(Y) = fi(a)L{(X) Vt>0}= () Eas Va€R,

s€Q4
where
Eos:={LI(Y) = f (a)L%X)} VYacR,s>0,
we see that
P(LI™(Y) = fl(a)L{(X) VaeR,t>0)=P([E,)=1
q€Q
Fix a € R and t > 0. Now, we show that P(Ltf(a)(Y) = fi(a)L}(X)) = 1. By generalized It6 formula, we see
that

d(Y, Y)s = f/— (Xs)2d<X7X>s~



By Proposition 9.9 and Corollary 9.7, we have, a.s.
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We show that, a.s.
1 .
) Ls(a s <@+ f1 (0 Ly (X)db = £ (a) L§ (X).

Fix w. Given n > 0. Choose h > 0 such that
(@) LE(X) = FL(B)LA(X)| <7
whenever a < b < a+ h. Note that f is a continuous strictly increasing function. For € > 0, define
ac == inf{b e R| f(b) = f(a)+ €}.

Choose j > 0 such that a < a. < a+ h for every 0 < € < j. Let 0 < € < j. Then —0c0 < a < a. < o0,
o) = F(a) +e | o
| (@) Li(X) = fL () LX) <n Vb€ [a,ad,

{beR| fla) < f(b) < fla) + €} = [a,ad,

and so
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Therefore, we have, a.s.

a 1
LI“(Y) = lim = R1{f<a>5f<b>5f<a>+e}f’+(b)2Li’(X)db= fi(a) LE(X).

e—0 €
2. We show that, a.s.
LI~ (Y) = f (a)L¢"(X) Vt>0,a €R.
To show this, it suffices to show that limy;, f1.(b) = f/(a) for every a € R. Indeed, if w € E, where
E={L{'“%%) = f/.(a)L¥(X) Va €R,t >0}, then

L7 () = lm L{ (V) = lim fL())LY(X) = fL(a) {7 (X) Va Rt >0.



Fix a € R. Now, we show that limy;, f/(b) = f (a). Since f = @1 — o, it suffices to show that lim, (pgﬁ(b) =
¢; _(a) for i =1,2. We denote ¢; as p. It’s clear that

@) < ¢ (a) Vb<a.

Given 7 > 0. There exists ¢ < a such that

a) — p(c
o (a) < #la) — ¢(0)
a—c
By continuity, there exists ¢ < d < a such that
pla) —p(c) n< e(d) — ¢(c)
a—c d—c
and so J
o (a) —2n < Lf(c) <@l (b) Vd<b<a.
Thus, we get

¢ (a) —2n < ¢ (b) <@ (a) Vd<b<a
and, hence, limyy, f/, (b) = f/ (a).

9.10 Exercise 9.25 (Another look at the Yamada—Watanabe criterion)

Let p be a nondecreasing function from [0, 00) into [0, c0) such that, for every e > 0,

¢ du
INTRE
Consider then the one-dimensional stochastic differential equation
E(0,b) : dX; = o(X;)dB; + b(X,)dt
where one assumes that the functions o and b satisfy the conditions
(0(2) =) < plz—yl), [b(z) = b(y)| < K|z —yl,

for every z,y € R, with a constant K < co. Our goal is use local times to give a short proof of pathwise uniqueness
for E(o,b) (this is slightly stronger than the result of Exercise 8.14).

1. Let Y be a continuous semimartingale such that, for every t > 0,

t—d<Y:Y>S o0 a.s
/0 vy~ (@s)

Prove that LY(Y) = 0 for every ¢ > 0 (a.s.).

2. Let X and X{ be two solutions of E(o,b) on the same filtered probability space and with the same Brownian
motion B. By applying question 1. to Y = X — X', prove that LY(X — X”) for every ¢t > 0 (a.s.) and therefore,

1X: = X{| = [ Xo — X + / (0(X,) = o(X1)sgn(X, — XL)dB, + / (b(X.) — b(X1))sgn(X, — X])ds.

3. Using Gromwall’s lemma, prove that if Xy = X{), then X; = X/ for every t > 0 (a.s.).



Proof.

1. Since L{(Y) = u LY(Y) Vt>0 (as.), there exists C = C(w) > 0 and € = ¢(w) > 0 such that
LYY)>CLY(Y) Yo<a<e Vt>0 (as.).

By Density of occupation time formula (Corollary 9.7), we have

< ‘ “ ‘ eia a.s.).
/ S = Ly ioa = onim [ Gda iz (@)

Since [ % = oo for all € > 0, we get LY(Y) =0 for all t > 0 (a.s.).

2. Set Y = X — X’. Then

Vo= Xo - Xg+ [ (0(X) —o(X)aB.+ [ 05 - 0(X))ds

and so
dY,Y), = (0(Xs) — o(X}))?dt

CAYY), oK) —o (X)) A =X ws
/o p(|Ys]) _/o p(|Xs — X1|) d S/O p(!Xs—X;|)d =t< Vt>0 (a.s.).
)=

By question 1., we get LY(X — X’ 0 for every ¢t > 0 (a.s.). By Tanaka’s formula, we have

Thus,

| Xt — Xi| = [Xo — X +/0 (0(Xs) — o(X())sgn(Xs — X()dB, +/0 (b(Xs) — b(X())sgn(Xs — X{)ds

for every t > 0 (a.s.).
3. By continuity, it suffices to show that X; = X (a.s.) for every ¢t > 0. Fix ¢, > 0 and choose L > ty. Define
Ty =inf{s >0||Xs| > M or |X.| > M} VM >0.
Fix M > 0. Since
E[(/ (0(Xs) — o(X¢))sgn(Xs — X;)l[o,TM]st,/ (0(Xs) — o(X0))sgn(Xs — X)1jo,70,)dBs)¢]
0 0

t

t
= [/0 (0(Xs) = 0(X}))*Ljo,rp,)ds] < E[/O p(1Xs = X1, ryds] < p(2M)t < oo V>0,

and
9(t) = E[| X — X{[1p,1,,) ()] = E[/O (b(X) = b(XY))sgn(Xs — X)1jo,1,,)ds] < QK/O g(s)ds

for every t € [0, L]. By Gromwall’s lemma, we get g(t) = 0 in [0, L] and so E[| X1\, — X{ A7, || = 0. By

letting M 1 oo, we have E[|X;, — X/ || = 0 and so X;, = X{ .
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