HW13

May 22, 2024

Exercise 1 (Le Gall, Ex 9.16) Let $f : \mathbb{R} \to \mathbb{R}$ be a monotone increasing function, and assume that f is a difference of convex functions. Let X be a continuous semi-martingale and consider the continuous semi-martingale $Y_t = f(X_t)$.

1. Recall that for any continuous semi-martingale Z,

$$L_t^a(Z) = \lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \int_0^t \mathbb{1}_{\{a \le X_s \le a + \varepsilon\}} d\langle Z \rangle_s, \quad L_t^{a-}(Z) = \lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \int_0^t \mathbb{1}_{\{a - \varepsilon \le X_s \le a\}} d\langle Z \rangle_s.$$

Show that for every $a \in \mathbb{R}$, $L_t^a(Y) = f'_+(a)L_t^a(X)$, $L_t^{a-} = f'_-(a)L_t^{a-}(X)$.

First. By linearity and the condition f is increasing as a difference of convex functions, we have then exists a process $(V_{t})_{t \neq 0}$ of finite variation such that for $t \ge 0$: $Y_{t} = f(X_{t}) = f(X_{0})$ $+ \int_{0}^{t} f'_{+}(X_{s}) dX_{s} + V_{t}$, which means $d < Y_{7_{s}} = (f'_{+}(X_{s}))d < X_{7_{s}}$. Then by approximation formula, $L_{t}^{a}(Y) = L_{t}^{a}(f(X_{s})) = \lim_{e \neq 0} \frac{1}{2} \int_{0}^{t} 1_{\{a \le f(X_{s}) \le a + e^{2}\}} d < f(X_{s})_{s}$ $= \lim_{e \neq 0} \frac{1}{2} \int_{0}^{t} 1_{\{a \le f(X_{s}) \le a + e^{2}\}} (f'_{+}(X_{s}))^{2} d < X_{7_{s}} = \lim_{e \neq 0} \frac{1}{2} \int_{R} 1_{\{a \le f(c_{s}) \le a + e^{2}\}} (f'_{+}(b_{s}))^{2} L_{t}^{b}(X_{s}) d < X_{7_{s}} = \lim_{e \neq 0} \frac{1}{2} \int_{R} 1_{\{a \le f(c_{s}) \le a + e^{2}\}} (f'_{+}(b_{s}))^{2} L_{t}^{b}(X_{s}) d < X_{7_{s}} = \lim_{e \neq 0} \frac{1}{2} \int_{R} 1_{\{a \le f(c_{s}) \le a + e^{2}\}} (f'_{+}(b_{s}))^{2} L_{t}^{b}(X_{s}) d < X_{7_{s}} = \lim_{e \neq 0} \frac{1}{2} \int_{R} 1_{\{a \le f(c_{s}) \le a + e^{2}\}} (f'_{+}(b_{s}))^{2} L_{t}^{b}(X_{s}) d < X_{7_{s}} = \lim_{e \neq 0} \frac{1}{2} \int_{R} 1_{\{a \le f(c_{s}) \le a + e^{2}\}} (f'_{+}(b_{s}))^{2} L_{t}^{b}(X_{s}) d < X_{7_{s}} = \lim_{e \neq 0} \frac{1}{2} \int_{R} 1_{\{a \le f(c_{s}) \le a + e^{2}\}} (f'_{+}(b_{s}))^{2} L_{t}^{b}(X_{s}) d < X_{7_{s}} = \lim_{e \neq 0} \frac{1}{2} \int_{R} 1_{\{a \ge f(c_{s}) < b_{s} < b_$

2. Show that if X = B is a Brownian motion, $L_t^a(f(B))$ is continuous if and only if f is continuously differentiable.

Proof. Since
$$L^{a}(f(B))$$
 is right-continuous in $a \in IR$, then
 $L^{a}_{t}(f(B))$ is continuous $\iff L^{a}_{t}(f(B)) = L^{a-}_{t}(f(B))$, $a \in IR$.
 $(by 1)$
 $\iff f'_{t}(a) L^{a}_{t}(B) = f'_{t}(a) L^{a-}_{t}(B)$, $a \in IR$. And $f'_{t}(\cdot)$ is continuous.
 $(B(\cdot) is a c \cdot Q \cdot m \cdot)$
 $\iff f'_{t}(a) = f'_{t}(a)$, $a \in IR$. And $f'_{t}(\cdot)$ is continuous.
 $\iff f \in C^{1}(IR)$.

Exercise 2 (Le Gall, Ex 9.25) Let $\rho : [0, \infty) \to [0, \infty)$ be a non-decreasing function such that the improper integral $\int_0^1 \frac{du}{\rho(u)}$ diverges. Consider the SDE

 $dX_t = \sigma(X_t) \, dB_t + b(X_t) \, dt$

where

$$|\sigma(x) - \sigma(y)|^2 \le \rho(|x - y|), \quad |b(x) - b(y)| \le |x - y|.$$

1. Let Y be a continuous semi-martingale such that for every t > 0,

$$\int_0^t \frac{d\langle Y\rangle_s}{\rho(|Y_s|)} < \infty, \text{a.s.}$$

Prove that $L_t^0(Y) = 0$ for every t > 0, a.s.

Proof. For each fixed t>0,
$$\int_{0}^{1} \frac{\lfloor \frac{1}{4}(Y)}{\rho(|a|)} da \leq \int_{RR}^{1} \frac{\lfloor \frac{1}{4}(Y)}{\rho(|a|)} da = \int_{0}^{t} \frac{d\langle Y \rangle_{s}}{\rho(|Y_{s}|)} < \infty \quad a.s. \quad If there exists forme to >0 s.t. $\lfloor \frac{1}{6}(Y) > 0$ on some measurable set A with $\rho(A) > 0$, then for $\omega \in A$, $\exists \in (\omega) > 0$ s.t. $\lfloor \frac{1}{4}(Y)(\omega) > \frac{1}{2} \lfloor \frac{1}{4}(Y)(\omega) > 0$ for $a \in [0, \in (\omega)]$, which implies that $\int_{0}^{1} \frac{\lfloor \frac{1}{4}(Y)}{\rho(|a|)} da \geq \frac{1}{2} \lfloor \frac{1}{4}(Y) \int_{0}^{1} \frac{da}{\rho(|a|)} = +\infty$ on A, which contradicts the result above.$$

2. Let X, X' be two solutions of the SDE on the same probability space with the same driven Brownian motion. Use Generalized Itô's formula to show that

$$|X_t - X'_t| = |X_0 - X'_0| + \int_0^t \left(\sigma(X_s) - \sigma(X'_s)\right) \operatorname{sgn}(X_s - X'_s) dB_s + \int_0^t \left(b(X_s) - b(X'_s)\right) \operatorname{sgn}(X_s - X'_s) ds.$$

Front. By Generalized Itô's formula, for two,
$$|X_t - X_t| = |X_0 - X_0'| + \int_0^t syn(X_s - X_s') dX_s + \int_t^0 (X - X') = |X_0 - X_0'| + \int_0^t syn(X_s - X_s')(\sigma(X_s) - \sigma(X_s')) dB_s + \int_0^t syn(X_s - X_s')(b(X_s) - b(X_s)) ds + \int_0^t (X - X') = |X_0 - X_0'| + \int_0^t syn(X_s - X_s')(b(X_s) - b(X_s)) ds + \int_0^t (X - X') = 0$$
 for two. Actually $d < X - X'$, $d < \int_0^t (\sigma(X_s) - \sigma(X_s')) dB_s + \int_0^t syn(X_s - X_s')(b(X_s) - b(X_s)) ds + \int_0^t syn(X_s - X_s')(b(X_s) - b(X_s'))^2 ds + \int_0^t syn(X_s - X_s')(b(X_s - X_s')) ds + \int_0^t syn(X_s - X_s')(b(X_s - X_s')) ds + \int_0^t syn(X_s - X_s')(b(X_s - X_s'))^2 ds + \int_0^t syn(X_s - X_s')(b(X_s - X_s'))^2 ds + \int_0^t syn(X_s - X_s') ds + \int_0^t s$

3. Show that pathwise uniqueness holds for the SDE.

Proof. It is a direct consequence of Ex1 of HW10. OR we could apply results in 2-) above by moleing some localization procedures then taking expectation, we obtain $\mathbb{E}|X_t - X_t'| \leq \int_0^t \mathbb{E}|b(X_d) - b(X_d')| ds \leq \int_0^t \mathbb{E}|X_s - X_s'| ds$. Then the proof is done by Gronwall's inequality.

And there is a suggested solution to these two exercises by Te-Chun Wang from National Chico Tuny University.

9.1 Exercise 9.16

Let $f : \mathbb{R} \to \mathbb{R}$ be a monotone increasing function, and assume that f is a difference of convex functions. Let X be a semimartingale and consider the semimartingale $Y_t = f(X_t)$. Prove that, for every $a \in \mathbb{R}$,

$$L_t^a(Y) = f'_+(a)L_t^a(X)$$
 and $L_t^{a-}(Y) = f'_-(a)L_t^{a-}(X)$.

In particular, if X is a Brownian motion, the local times of f(X) are continuous in the space variable if and only if f is continuously differentiable.

Remark.

Note that $(L^a(X), a \in \mathbb{R})$ is the càdlàg modification of local time of X. The formula

$$L^a_t(Y) = f'_+(a)L^a_t(X)$$

doesn't hold for all increasing function $f = \varphi_1 - \varphi_2$, where φ_i is a convex function on \mathbb{R} . For example, if $\varphi_1(x) = 2e^x$ and $\varphi_2(x) = e^x$, and if X is a continuous semimartingale such that $\mathbf{P}(L_t^a(X) \neq 0) > 0$ for some a < 0 and t > 0, then $f(x) = e^x$ and so

$$L_t^a(Y) = L_t^a(f(X)) = 0 \neq e^a L_t^a(X) = f'(a) L_t^a(X)$$

on $\{L_t^a(X) \neq 0\}$.

To avoid this problem, we restatement Exercise 9.16 as following: Let $f : \mathbb{R} \to \mathbb{R}$ be a strictly increasing function such that $f = \varphi_1 - \varphi_2$, where φ_i is a convex function on \mathbb{R} . Let X be a semimartingale and consider the semimartingale $Y_t = f(X_t)$. Prove that, a.s.

$$L_t^{f(a)}(Y) = f'_+(a)L_t^a(X) \text{ and } L_t^{f(a)-}(Y) = f'_-(a)L_t^{a-}(X) \quad \forall a \in \mathbb{R}, t \ge 0$$

In particular, if X is a Brownian motion and $(u, v) \subseteq R(f) := \{a \in \mathbb{R} \mid f(a)\}$, we have, a.s. $a \in (u, v) \mapsto L^{a}(Y)$ is continuous if and only if $a \in (u, v) \mapsto f(a)$ is continuously differentiable.

Proof.

1. Since $f = \varphi_1 - \varphi_2$, we see that f is continuous and f'_+ is right continuous. We show that, a.s.

$$L_t^{f(a)}(Y) = f'_+(a)L_t^a(X) \quad \forall t > 0, a \in \mathbb{R}.$$

To show this, it suffices to show that $\mathbf{P}(L_t^{f(a)}(Y) = f'_+(a)L_t^a(X)) = 1$ for all $t \ge 0$ and $a \in \mathbb{R}$. Indeed, since $a \in \mathbb{R} \mapsto f'_+(a)L_t^a(X)$ is right continuous for $t \ge 0$ and

$$E_a := \{ L_t^{f(a)}(Y) = f'_+(a) L_t^a(X) \quad \forall t \ge 0 \} = \bigcap_{s \in \mathbb{Q}_+} E_{a,s} \quad \forall a \in \mathbb{R},$$

where

$$E_{a,s} := \{ L_s^{f(a)}(Y) = f'_+(a) L_s^a(X) \} \quad \forall a \in \mathbb{R}, s > 0,$$

we see that

$$\boldsymbol{P}(L_t^{f(a)}(Y) = f'_+(a)L_t^a(X) \quad \forall a \in \mathbb{R}, t \ge 0) = \boldsymbol{P}(\bigcap_{q \in \mathbb{Q}} E_q) = 1$$

Fix $a \in \mathbb{R}$ and t > 0. Now, we show that $P(L_t^{f(a)}(Y) = f'_+(a)L_t^a(X)) = 1$. By generalized Itô formula, we see that

$$d\langle Y, Y \rangle_s = f'_{-}(X_s)^2 d\langle X, X \rangle_s.$$

By Proposition 9.9 and Corollary 9.7, we have, a.s.

$$L_t^{f(a)}(Y) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^t \mathbb{1}_{\{f(a) \le f(X_s) \le f(a) + \epsilon\}} f'_-(X_s)^2 d\langle X, X \rangle_s$$
$$= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\mathbb{R}} \mathbb{1}_{\{f(a) \le f(b) \le f(a) + \epsilon\}} f'_-(b)^2 L_t^b(X) db$$
$$= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\mathbb{R}} \mathbb{1}_{\{f(a) \le f(b) \le f(a) + \epsilon\}} f'_+(b)^2 L_t^b(X) db.$$

We show that, a.s.

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\mathbb{R}} \mathbb{1}_{\{f(a) \le f(b) \le f(a) + \epsilon\}} f'_{+}(b)^{2} L^{b}_{t}(X) db = f'_{+}(a) L^{a}_{t}(X)$$

Fix w. Given $\eta > 0$. Choose h > 0 such that

$$|f'_{+}(a)L^{a}_{t}(X) - f'_{+}(b)L^{b}_{t}(X)| < \eta$$

whenever $a \leq b < a + h$. Note that f is a continuous strictly increasing function. For $\epsilon > 0$, define

$$a_{\epsilon} := \inf\{b \in \mathbb{R} \mid f(b) = f(a) + \epsilon\}.$$

Choose j > 0 such that $a < a_{\epsilon} < a + h$ for every $0 < \epsilon < j$. Let $0 < \epsilon < j$. Then $-\infty < a < a_{\epsilon} < \infty$, $f(a_{\epsilon}) = f(a) + \epsilon$,

$$|f'_{+}(a)L^{a}_{t}(X) - f'_{+}(b)L^{b}_{t}(X)| < \eta \quad \forall b \in [a, a_{\epsilon}],$$
$$\{b \in \mathbb{R} \mid f(a) \le f(b) \le f(a) + \epsilon\} = [a, a_{\epsilon}],$$

and so

$$\frac{1}{\epsilon} \int 1_{\{f(a) \le f(b) \le f(a) + \epsilon\}} f'_+(b) db = \frac{1}{\epsilon} \int_a^{a_{\epsilon}} f'_+(b) db = \frac{f(a_{\epsilon}) - f(a)}{\epsilon} = 1.$$

Thus,

$$\begin{split} &|\frac{1}{\epsilon} \int_{\mathbb{R}} \mathbf{1}_{\{a \le f(b) \le a + \epsilon\}} f'_{+}(b)^{2} L^{b}_{t}(X) db - f'_{+}(a) L^{a}_{t}(X)| \\ &= |\frac{1}{\epsilon} \int_{a}^{a_{\epsilon}} f'_{+}(b)^{2} L^{b}_{t}(X) db - \frac{1}{\epsilon} \int_{a}^{a_{\epsilon}} f'_{+}(b) f'_{+}(a) L^{a}_{t}(X) db| \\ &\le \frac{1}{\epsilon} \int_{a}^{a_{\epsilon}} f'_{+}(b) |f'_{+}(b) L^{b}_{t}(X) - f'_{+}(a) L^{a}_{t}(X)| db \\ &< \eta \frac{1}{\epsilon} \int_{a}^{a_{\epsilon}} f'_{+}(b) db = \eta \frac{1}{\epsilon} (f(a_{\epsilon}) - f(a)) = \eta \frac{1}{\epsilon} \epsilon = \eta. \end{split}$$

Therefore, we have, a.s.

$$L_t^{f(a)}(Y) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\mathbb{R}} \mathbb{1}_{\{f(a) \le f(b) \le f(a) + \epsilon\}} f'_+(b)^2 L_t^b(X) db = f'_+(a) L_t^a(X)$$

2. We show that, a.s.

$$L_t^{f(a)-}(Y) = f'_-(a)L_t^{a-}(X) \quad \forall t > 0, a \in \mathbb{R}$$

To show this, it suffices to show that $\lim_{b\uparrow a} f'_+(b) = f'_-(a)$ for every $a \in \mathbb{R}$. Indeed, if $w \in E$, where $E = \{L_t^{f(a)}(Y) = f'_+(a)L_t^a(X) \mid \forall a \in \mathbb{R}, t \ge 0\}$, then

$$L_t^{f(a)-}(Y) = \lim_{b \uparrow a} L_t^{f(b)}(Y) = \lim_{b \uparrow a} f'_+(b) L_t^b(X) = f'_-(a) L_t^{a-}(X) \quad \forall a \in \mathbb{R}, t \ge 0.$$

Fix $a \in \mathbb{R}$. Now, we show that $\lim_{b\uparrow a} f'_+(b) = f'_-(a)$. Since $f = \varphi_1 - \varphi_2$, it suffices to show that $\lim_{b\uparrow a} \varphi'_{i,+}(b) = \varphi'_{i,-}(a)$ for i = 1, 2. We denote φ_i as φ . It's clear that

$$\varphi'_+(b) \le \varphi'_-(a) \quad \forall b < a$$

Given $\eta > 0$. There exists c < a such that

$$\varphi'_{-}(a) - \eta \le \frac{\varphi(a) - \varphi(c)}{a - c}$$

By continuity, there exists c < d < a such that

$$\frac{\varphi(a) - \varphi(c)}{a - c} - \eta \le \frac{\varphi(d) - \varphi(c)}{d - c}$$

and so

$$\varphi'_{-}(a) - 2\eta \le \frac{\varphi(d) - \varphi(c)}{d - c} \le \varphi'_{+}(b) \quad \forall d < b < a.$$

Thus, we get

$$\varphi'_{-}(a) - 2\eta \le \varphi'_{+}(b) \le \varphi'_{-}(a) \quad \forall d < b < a$$

and, hence, $\lim_{b \uparrow a} f'_{+}(b) = f'_{-}(a)$.

9.10 Exercise 9.25 (Another look at the Yamada–Watanabe criterion)

Let ρ be a nondecreasing function from $[0,\infty)$ into $[0,\infty)$ such that, for every $\epsilon > 0$,

$$\int_0^\epsilon \frac{du}{\rho(u)} = \infty$$

Consider then the one-dimensional stochastic differential equation

$$E(\sigma, b)$$
: $dX_t = \sigma(X_t)dB_t + b(X_t)dt$

where one assumes that the functions σ and b satisfy the conditions

$$(\sigma(x) - \sigma(y))^2 \le \rho(|x - y|), \quad |b(x) - b(y)| \le K|x - y|,$$

for every $x, y \in \mathbb{R}$, with a constant $K < \infty$. Our goal is use local times to give a short proof of pathwise uniqueness for $E(\sigma, b)$ (this is slightly stronger than the result of Exercise 8.14).

1. Let Y be a continuous semimartingale such that, for every t > 0,

$$\int_0^t \frac{d\langle Y,Y\rangle_s}{\rho(|Y_s|)} < \infty \quad (a.s.)$$

Prove that $L_t^0(Y) = 0$ for every $t \ge 0$ (a.s.).

2. Let X and X_0 be two solutions of $E(\sigma, b)$ on the same filtered probability space and with the same Brownian motion B. By applying question 1. to Y = X - X', prove that $L_t^0(X - X')$ for every $t \ge 0$ (a.s.) and therefore,

$$|X_t - X'_t| = |X_0 - X'_0| + \int_0^t (\sigma(X_s) - \sigma(X'_s)) sgn(X_s - X'_s) dB_s + \int_0^t (b(X_s) - b(X'_s)) sgn(X_s - X'_s) ds.$$

3. Using Gromwall's lemma, prove that if $X_0 = X'_0$, then $X_t = X'_t$ for every $t \ge 0$ (a.s.).

Proof.

1. Since $L_t^a(Y) \xrightarrow{a \downarrow 0} L_t^0(Y) \quad \forall t \ge 0$ (a.s.), there exists C = C(w) > 0 and $\epsilon = \epsilon(w) > 0$ such that

$$L_t^a(Y) \ge CL_t^0(Y) \quad \forall 0 < a < \epsilon \quad \forall t \ge 0 \quad (a.s.).$$

By Density of occupation time formula (Corollary 9.7), we have

$$\infty > \int_0^t \frac{d\langle Y, Y \rangle_s}{\rho(|Y_s|)} = \int_{\mathbb{R}} \frac{1}{\rho(|a|)} L_t^a(Y) da \ge C L_t^0(Y) \int_0^\epsilon \frac{1}{\rho(a)} da \quad \forall t \ge 0 \quad (a.s.)$$

Since $\int_0^{\epsilon} \frac{du}{\rho(u)} = \infty$ for all $\epsilon > 0$, we get $L_t^0(Y) = 0$ for all $t \ge 0$ (a.s.).

2. Set Y = X - X'. Then

$$Y_t = X_0 - X'_0 + \int_0^t (\sigma(X_s) - \sigma(X'_s)) dB_s + \int_0^t (b(X_s) - b(X'_s)) ds$$

and so

$$d\langle Y, Y \rangle_t = (\sigma(X_t) - \sigma(X'_t))^2 dt.$$

Thus,

$$\int_{0}^{t} \frac{d\langle Y, Y \rangle_{s}}{\rho(|Y_{s}|)} = \int_{0}^{t} \frac{(\sigma(X_{s}) - \sigma(X_{s}'))^{2}}{\rho(|X_{s} - X_{s}'|)} ds \le \int_{0}^{t} \frac{\rho(|X_{s} - X_{s}'|)}{\rho(|X_{s} - X_{s}'|)} ds = t < \infty \quad \forall t \ge 0 \quad (a.s.).$$

By question 1., we get $L_t^0(X - X') = 0$ for every $t \ge 0$ (a.s.). By Tanaka's formula, we have

$$|X_t - X'_t| = |X_0 - X'_0| + \int_0^t (\sigma(X_s) - \sigma(X'_s)) sgn(X_s - X'_s) dB_s + \int_0^t (b(X_s) - b(X'_s)) sgn(X_s - X'_s) ds$$

for every $t \ge 0$ (a.s.).

3. By continuity, it suffices to show that $X_t = X'_t$ (a.s.) for every $t \ge 0$. Fix $t_0 > 0$ and choose $L > t_0$. Define

$$T_M = \inf\{s \ge 0 \mid |X_s| \ge M \text{ or } |X'_s| \ge M\} \quad \forall M > 0$$

Fix M > 0. Since

$$\boldsymbol{E}[\langle \int_{0}^{t} (\sigma(X_{s}) - \sigma(X'_{s})) sgn(X_{s} - X'_{s}) \mathbf{1}_{[0,T_{M}]} dB_{s}, \int_{0}^{t} (\sigma(X_{s}) - \sigma(X'_{s})) sgn(X_{s} - X'_{s}) \mathbf{1}_{[0,T_{M}]} dB_{s} \rangle_{t}]$$

$$= \boldsymbol{E}[\int_{0}^{t} (\sigma(X_{s}) - \sigma(X'_{s}))^{2} \mathbf{1}_{[0,T_{M}]} ds] \leq \boldsymbol{E}[\int_{0}^{t} \rho(|X_{s} - X'_{s}|) \mathbf{1}_{[0,T_{M}]} ds] \leq \rho(2M)t < \infty \quad \forall t > 0,$$

and

$$g(t) = \mathbf{E}[|X_t - X'_t| \mathbf{1}_{[0,T_M]}(t)] = \mathbf{E}[\int_0^t (b(X_s) - b(X'_s)) sgn(X_s - X'_s) \mathbf{1}_{[0,T_M]} ds] \le 2K \int_0^t g(s) ds$$

for every $t \in [0, L]$. By Gromwall's lemma, we get g(t) = 0 in [0, L] and so $\mathbf{E}[|X_{t_0 \wedge T_M} - X'_{t_0 \wedge T_M}|] = 0$. By letting $M \uparrow \infty$, we have $\mathbf{E}[|X_{t_0} - X'_{t_0}|] = 0$ and so $X_{t_0} = X'_{t_0}$.