HW10

April 23, 2024

Exercise 1 Consider the one-dimensional SDE

$$dX_t = b(t, X_t)dt + \sigma(t, X_t) dB_t$$

where b, σ satisfy:

• b is bounded, measurable, and

$$|b(t,x) - b(t,y)| \le g(|x-y|)$$

for some continuous, strictly increasing, concave function $g : \mathbb{R}_+ \to \mathbb{R}_+$ with g(0) = 0 and $\int_{-\infty}^{1} \frac{du}{dt} = \infty$.

$$\int_0 \frac{1}{g(u)} = \infty$$

• σ is bounded, measurable and

$$|\sigma(t,x) - \sigma(t,y)| \le h(|x-y|)$$

for some continuous, strictly increasing function $h : \mathbb{R}_+ \to \mathbb{R}_+$ with h(0) = 0 and $\int_0^1 \frac{du}{h^2(u)} = \infty$.

Show that pathwise uniqueness holds for this SDE.

Hint: You may use the following result: for g given above, if f is a non-negative continuous function, then

$$f(t) \le \int_0^t g(f(s)) \, ds, \quad t \ge 0 \qquad \Rightarrow \qquad f(t) \equiv 0, \quad t \ge 0$$

If $X^{(j)}$, j = 1, 2 are two weak solutions, you are aiming at $f(t) = \mathsf{E}|X_t^{(1)} - X_t^{(2)}|$ satisfying the above integral inequality.

Exercise 2 Let $d \ge 2$ and let $W = (W_t^{(1)}, \dots, W_t^{(d)})$ be a *d*-dimensional Brownian motion starting from $x \ne 0$. Let $\tau = \inf\{t : |W_t| = 0\}$. Recall that $\mathsf{P}^x(\tau = \infty) = 1$.

1. Show that
$$(|W_t|, \beta_t)$$
 where $\beta_t = \sum_{i=1}^d \int_0^t \frac{W_s^{(i)}}{|W_s|} ds$ is a weak solution to
 $dX_t = \frac{d-1}{2} \frac{dt}{X_t} + dB_t, \quad X_0 = |x| > 0.$
(1)

2. Show that if (X_t, B_t) is a weak solution to Eq. (1), then $(|X_t|^2, B_t)$ is a weak solution to

$$dY_t = 2\sqrt{|Y_t|} \, dB_t + d \cdot dt \tag{2}$$

3. Explain why pathwise uniqueness holds for Eq. (1) and Eq. (2).

Exercise 3 Let $b_{1,2}(t,x), a(t,x) : \mathbb{R}_+ \times \mathbb{R}^2$ be locally bounded measurable functions. Let $X_t = (X_t^{(1)}, X_t^{(2)})$ be a progressively measurable process in \mathbb{R}^2 , such that

$$M_t^{(j)} = X_t^{(j)} - X_0^{(j)} - \int_0^t b_j(s, X_s) \, ds, \quad j = 1, 2,$$

and

$$M_t^{(12)} = X_t^{(1)} X_t^{(2)} - X_0^{(1)} X_0^{(2)} - \int_0^t \left[X_s^{(1)} b_2(s, X_s) + X_s^{(2)} b_1(s, X_s) + a(s, X_s) \right] ds$$

are all c.l.m.'s.

Show that

$$\langle M^{(1)}, M^{(2)} \rangle_t = \int_0^t a(s, X_s) \, ds.$$