HW9

November 27, 2025

Exercise 1 Prove the following form of Gronwall's inequality.

Let $\eta(t)$ be non-negative and absolutely continuous on [0,T]. Assume that the differential inequality

$$\eta'(t) \le \phi(t)\eta(t) + \psi(t)$$
, a.e. $t \in [0, T]$,

holds, where ϕ, ψ are non-negative and integrable on [0, T]. Show that

$$\eta(t) \leq e^{\int_0^t \phi(s) \, ds} \left[\eta(0) + \int_0^t \psi(s) \, ds \right], \quad \forall t \in [0, T].$$

Note: η being absolutely continuous means that $\eta'(t)$ exists for a.e. $t \in [0,T]$ and

$$\eta(t) - \eta(0) = \int_0^t \eta(s) ds, \quad \forall t \in [0, T].$$

If you are not comfortable with this part of real analysis, you can do this exercise assuming $\eta \in C^1$ and ignoring all the "a.e." above.

Exercise 2 Let Ω be a bounded domain and $u \in \mathcal{C}^{1,2}(\overline{\Omega_T})$ solve the equation

$$\begin{cases} \partial_t u(t,x) - \Delta u(t,x) + \sum_{i=1}^d b^i(t,x) \partial_{x_i} u(t,x) = f(t,x), & (t,x) \in \Omega_T, \\ u(t,x) = 0, & x \in \partial\Omega, \ t \ge 0, \\ u(0,x) = g(x), & x \in \bar{\Omega}. \end{cases}$$

Let $b^i(t,x), f \in \mathcal{C}(\overline{\Omega_T})$ and $g \in \mathcal{C}(\bar{\Omega})$

1. For $u, v \in \mathcal{C}_0^2(\Omega)$, let

$$B[u, v; t] := \int_{\Omega} \nabla u \cdot \nabla v + \sum_{i=1}^{d} b^{i} \partial_{x_{i}} u \cdot v.$$

Show that

$$\left|B[u,v;t]\right| \leq M \|u\|_{H^1_0} \|v\|_{H^1_0}$$

and

$$B[u,u;t] \geq \theta \|u\|_{H^1_0}^2 - M \|u\|_{L^2}^2$$

for some $M, \theta > 0$.

Hint: for the second one, note that

$$||u||_{L^2}||u||_{H_0^1} \le \frac{\varepsilon}{2}||u||_{H_0^1}^2 + \frac{1}{2\varepsilon}||u||_{L^2}^2$$

for every $\varepsilon > 0$ and choose ε properly.

2. Establish the energy estimate: for some C,

$$\max_{0 \le t \le T} \|u(t, \cdot)\|_{L^2} + \|u\|_{L^2(0, T; H_0^1)} \le C \left[\|f\|_{L^2(0, T; L^2)} + \|g\|_{L^2} \right].$$

Hint: You should start with

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}u^{2}\,dx - \int_{\Omega}u\Delta u\,dx + \sum_{i=1}^{d}\int_{\Omega}b^{i}\partial_{x_{i}}u\,dx = \int_{\Omega}fu\,dx.$$

3. (optional) Also estimate the H^{-1} norm of u_t :

$$||u_t||_{L^2(0,T;H^{-1})} \le C[||f||_{L^2(0,T;L^2)} + ||g||_{L^2}].$$

You can use the following definition: for $\varphi \in C^2(\bar{\Omega})$,

$$\|\varphi\|_{H^{-1}} = \sup_{v \in \mathcal{C}_0^{\infty}} \frac{\int_{\Omega} \varphi(x)v(x) dx}{\|\varphi\|_{H_0^1}}.$$