HW7: Review

October 30, 2025

Exercise 1 Consider the following initial value problem for Burgers equation.

$$\partial_t u(t,x) + u(t,x) \cdot \partial_x u(t,x) = 0, \quad u(0,x) = \varphi(x), \quad (t,x) \in [0,\infty) \times \mathbb{R}.$$

1. Let

$$\varphi(x) = \begin{cases} 0, & x \le 0, \\ x, & x > 0. \end{cases}$$

Find a solution $u(t,x) \in \mathcal{C}^{1,1}((0,\infty) \times \mathbb{R}) \cap \mathcal{C}([0,\infty) \times \mathbb{R})$.

2. Let

$$\varphi(x) = \begin{cases} 1, & x \le 0, \\ 1 - \frac{1}{2}x, & 0 < x \le 2, \\ 0, & x > 2. \end{cases}$$

Find the largest time t_s such that all characteristics do not intersect.

3. Find the expression of u(t, x) for $t < t_s$.

Exercise 2 1. Find all the eigenvalues and eigenfunctions of the Sturm–Liouville problem:

$$X''(x) + \lambda X(x) = 0$$
, $X(0) = 0$, $X'(\pi) = 0$.

2. Use Separation of Variables to solve the homogeneous heat equation:

$$\begin{cases} \partial_t u - \partial_{xx} u = 0, & x \in (0, \pi), \ t > 0, \\ u(0, x) = \sin \frac{x}{2}, & x \in [0, \pi], \\ u(t, 0) = \partial_x u(t, \pi) = 0, \ t \ge 0. \end{cases}$$

3. Use Duhamel's principle to solve the inhomogeneous heat equation:

$$\begin{cases} \partial_t u - \partial_{xx} u = 0, & x \in (0, \pi), \ t > 0, \\ u(0, x) = \sin \frac{x}{2}, & x \in [0, \pi], \\ u(t, 0) = \partial_x u(t, \pi) = 0, \ t \ge 0. \end{cases}$$

1

Exercise 3 Let $\Omega = B_1(0) \subset \mathbb{R}^2$ and $\Omega_T = (0, T] \times \Omega$.

1. Prove the following comparison principle: if $v \in \mathcal{C}^{1,2}(\Omega_T) \cap \mathcal{C}^{0,1}(\overline{\Omega_T})$ satisfies

$$\begin{cases} \partial_t v - \Delta v \ge 0, & (t, x) \in \Omega_T, \\ v(0, x) \ge 0, & x \in \Omega, \\ \frac{\partial v}{\partial n}(t, x) > 0, & t > 0, x \in \partial\Omega, \end{cases}$$

then $v(t,x) \geq 0$ on $\overline{\Omega_T}$.

- 2. Assume instead that $\frac{\partial}{\partial n}v(t,x) \geq 0$ for all t > 0 and $x \in \partial\Omega$. Show that $v(t,x) \geq 0$ on $\overline{\Omega_T}$. Hint: consider $v_{\varepsilon}(t,x) = v(t,x) + \varepsilon(4t + x_1^2 + x_2^2 1)$.
- 3. Let $u \in \mathcal{C}^{1,2}(\Omega_T) \cap \mathcal{C}^{0,1}(\overline{\Omega_T})$ solve

$$\begin{cases} \partial_t u - \Delta u = f(t, x), & (t, x) \in \Omega_T, \\ u(0, x) = \varphi(x), & x \in \Omega, \\ \frac{\partial u}{\partial n}(t, x) = 0, & t > 0, \ x \in \partial \Omega. \end{cases}$$

Show that there exists a constant C = C(T) such that

$$\sup_{\overline{\Omega_T}} |u| \le C \left(\sup_{\Omega_T} |f| + \sup_{\Omega} |\varphi| \right).$$

Exercise 4 Let $K(x,y): \mathbb{R}^2_+ \times \mathbb{R} \to \mathbb{R}$ be defined by

$$K(x,y) = \frac{1}{\pi} \frac{x_1}{(x_2 - y)^2 + x_1^2}.$$

1. Show that $\int_{\mathbb{R}} K(x,y) dy = 1$, and for every $\varepsilon > 0$ and $z \in \mathbb{R}$,

$$\lim_{h \to 0+} \int_{z-\varepsilon}^{z+\varepsilon} K((h,z),y) \, dy = 1.$$

2. Let $g: \mathbb{R} \to \mathbb{R}$ be uniformly continuous with $|g| \leq 1$. Let

$$g_h(z) = \int_{\mathbb{R}} K((h, z), y)g(y) dy, \quad h > 0.$$

Show that $g_h \to g$ uniformly on \mathbb{R} .