HW5

October 14, 2025

Exercise 1 Show that $\Delta u = 0$ is invariant under rotation, that is, if $\Delta u = 0$ and $O \in O(d)$ is a $d \times d$ orthogonal matrix, then

$$v(x) \coloneqq u(Ox), \quad x \in \mathbb{R}^d$$

also solves $\Delta v = 0$.

Exercise 2 Show that if there exists a solution $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\bar{\Omega})$ to the Neumann problem

$$\begin{cases} -\Delta u = f, & x \in \Omega, \\ \frac{\partial u}{\partial n} = g, & x \in \partial \Omega, \end{cases}$$

then

$$\int_{\Omega} f \, dx = -\int_{\partial \Omega} g \, dS.$$

Hint: use integration by parts on $\int_{\Omega} (\Delta u) v \, dx$ with $v \equiv 1$.

Exercise 3 Let $f \in \mathcal{C}^2(\mathbb{R}^3)$ be supported on $B_1(0)$.

1. Use the fundamental solution in \mathbb{R}^3 to find a solution to the equation

$$\begin{cases}
-\Delta u(x) = f(x), & x \in \mathbb{R}^3, \\
\lim_{|x| \to \infty} u(x) = 0.
\end{cases}$$

(You can leave the answer as an integral.)

- 2. Show that $u(x) \sim \frac{c}{|x|}$ for |x| large, and determine the constant c.
- 3. (Optional) Give a physical interpretation of the result.

Exercise 4 Let $\Omega = \{(x_1, x_2) : x_1, x_2 > 0\}$ be the first quadrant. Use reflection symmetry to find the Green's function in Ω , i.e., for each $y \in \Omega$, solve

$$\begin{cases} -\Delta G(x) = \delta(x - y), & x \in \Omega, \\ G(x) = 0, & x \in \partial \Omega. \end{cases}$$

1