HW2

September 18, 2025

Exercise 1 Let Ω be a bounded \mathcal{C}^1 -domain. Show that there is at most one solution $u \in \mathcal{C}^{1,2}((0,\infty) \times \Omega) \cap \mathcal{C}^{0,1}([0,\infty) \times \overline{\Omega})$ that solves

$$\begin{cases} \partial_t u(t,x) = \Delta u(t,x) + f(t,x), & t > 0, \ x \in \Omega, \\ \frac{\partial u(t,x)}{\partial n} = g(x), & x \in \partial\Omega, \\ u(0,x) = h(x), & x \in \Omega. \end{cases}$$

Hint: for two solutions u_1, u_2 , compute $\phi'(t)$ where $\phi(t) = \int_{\Omega} |\nabla(u_1 - u_2)|^2 dx$.

Exercise 2 Compute the Fourier transform of the following functions defined on \mathbb{R} .

1.

$$f_1(x) = \begin{cases} 1, & |x| \le A, \\ 0, & |x| > A, \end{cases} \quad A > 0.$$

2.

$$f_2(x) = \begin{cases} e^{-ax}, & x > 0, \\ 0, & x < 0, \end{cases} \quad a > 0.$$

- 3. $f_3(x) = e^{-a|x|}$, a > 0.
- 4. $f_4(x) = \frac{1}{a^2 + x^2}, a > 0.$

Exercise 3 Let $f \in L^1(\mathbb{R}^d)$. Use Fourier transform to solve the equation

$$-\Delta u(x) + u(x) = f(x), \quad x \in \mathbb{R}^d.$$

Exercise 4 1. Show that

$$\left[\frac{1}{2}\mathbb{1}_{(-t,t)}(x)\right]^{\wedge} = \frac{\sin(2\pi\xi t)}{2\pi\xi}.$$

2. Show that

$$\left[\delta(x-t) + \delta(x+t)\right]^{\wedge} = 2\cos(2\pi\xi t).$$

You can treat $\delta(x)$ as a function such that $\int \delta(x) f(x) dx = f(0)$ for any continuous f.

3. Use Fourier transform to solve the wave equation in \mathbb{R}^1 :

$$\begin{cases} \partial_{tt}u = \partial_{xx}u, & t > 0, \ x \in \mathbb{R}, \\ u(0, x) = \phi(x), & x \in \mathbb{R}, \\ \partial_{t}(0, x) = \psi(x), & x \in \mathbb{R}. \end{cases}$$