HW1

September 11, 2025

Exercise 1 Solve $\partial_t u + \partial_x u + u = e^{x+2t}$ with initial condition u(0,x) = 0.

Exercise 2 Consider the following initial value problem for Burgers equation

$$\begin{cases}
\partial_t u + u \partial_x u = 0, \\
u(0, x) = \phi(x) = \begin{cases}
1, & x \le 0, \\
1 - x, & 0 < x \le 1, \\
0, & x > 1.
\end{cases}$$

- 1. Find the largest time t_s such that all characteristics do not intersect.
- 2. Find an expression of u(t, x) for $t < t_s$.

Exercise 3 Use the method of characteristics to solve the following PDEs.

- 1. $x_1 \partial_{x_1} u + x_2 u_{x_2} = 2u$, $u(x_1, 1) = g(x_1)$.
- 2. $u\partial_{x_1}u + \partial_{x_2}u = 1$, $u(x_1, x_1) = \frac{1}{2}x_1$.

Exercise 4 Suppose that u is smooth and solves $u_t - \Delta u = 0$ in $(0, \infty) \times \mathbb{R}^d$.

- 1. Show that $u_{\lambda}(t,x) := u(\lambda^2 t, \lambda x)$ solves the heat equation for every $\lambda \in \mathbb{R}$.
- 2. Use the above to derive that $v(t,x) := x \cdot \nabla u(t,x) + 2tu_t(t,x)$ also solves the heat equation. Hint: take derivative in λ .