HW4

November 13, 2024

Exercise 1 Let $a, b \in \mathbb{R}$. Consider the variation problem inf $I[u]$ where

$$
I[u] := \int_0^1 (1 + u'(x))^{1/2} dx, \quad u \in \mathcal{C}^1[0, 1], \ u(0) = a, \ u(1) = b.
$$

- Show that I[·] is convex, that is, $I[\lambda u + (1 \lambda)v] \leq \lambda I[u] + (1 \lambda)I[v]$ for $\lambda \in (0, 1)$.
- Compute the first variation of I and find the Euler–Langrange equation.
- Solve the Euler–Langrange equation. Hint: the solution should be a straight line!

Exercise 2 In this problem we look at Poincaré-type inequalities in 1d.

1. Let $p \geq 1$. Show that there exists a universal constant C_p such that

$$
\int_0^1 |u(x)|^p dx \le C_p \int_0^1 |u'(x)|^p dx,
$$

for any $u \in C^1[0,1]$ with $u(0) = 1$.

2. Find the best constant C such that

$$
\int_0^{\pi} |u(x)|^2 dx \le C \int_0^{\pi} |u'(x)|^2 dx, \quad u \in \mathcal{C}^1[0, \pi], \ u(0) = u(\pi) = 0.
$$

Hint: use the Fourier series expansion $u(x) = \sum_{n=0}^{\infty}$ $n=1$ $a_n \sin(nx)$.

Exercise 3 Let $f \in \mathcal{C}[0,1]$.

• Show that

$$
\lim_{n \to \infty} \int_0^1 f(x) \sin(nx) \, dx = 0.
$$

Hint: one possible approach is to first assume $f \in C^1$ and use integration by parts, and then to use C^1 function to approximate continuous functions.

 \bullet Let

$$
u_n(x) = \begin{cases} 1, & x \in (k/n, (k+1/2)/n), \ k = 0, 1, \dots, n-1, j \\ 0, & \text{otherwise.} \end{cases}
$$

Show that

$$
\lim_{n \to \infty} \int_0^1 f(x) u_n(x) = \frac{1}{2} \int_0^1 f(x) \, dx.
$$

In fact, $u_n \rightharpoonup \frac{1}{2}$ in $L^2(0, 1)$.
Hint: use Riemann sum.