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1 Lect 12 on 11/11

1.1 Perron’s method and Green’s function

For a bounded domain U with C? boundary and boundary condition g € C(QU), Perron’s method gives
a unique solution to the Dirichlet problem

—Au=0, U,
(1.1)
u=g, OU.
We will explain how to use this to find the Green’s function.
Let y € U. Recall that the Green’s function G(z,y) solves
_AxG(‘rvy) = 5(1U - y)v T e U7 (1 2)
G(z,y) =0, x € oU. '

The term §(z — y) is singular and thus problematic. We will use the fundamental function to remove
it as follows. Recall that the fundamental solution ®(z — y) solves

—D;®(x —y) = 0(z —y), (1.3)

in the sense that —A(® x f) = f for any bounded continuous function f. To find the Green’s function,
we write G(z,y) = ®(z —y) — v(y), and look for v that solves

Av(z)
v(x)
The resulting G be a solution to (1.2) by the principle of superposition.

Using the explicit form of ®, and that fact that dist(y, 0U) > 0 for y € U, the boundary condition in
(1.4) is C(0U). Hence, Perron’s method applies and there exists a classical solution v € C®(U)NC(U)
to (1.4).

Since G(z,y) = ®(z — y) — v(z) and ®(xr — y) is smooth when x # y, we immediately know
that G(-,y) € C*°(U\{y}). Using the equation (1.2) and integration by parts, one can further show that
the Green’s function is symmetric, that is, G(z,y) = G(y,z). Therefore, G(x,y) € C°(U?\ {x = y}).

Using the Green’s function we can solve the Poisson equation

{—Au =f U,

0, xzeU,

O(x—y), zedl. (1.4)

1.5
u=20, 09U, (15)



whose solution is

u(z) = /U G, y) f(y) dy, (1.6)

as long as the source term f is nice enough so that the integral (1.6) makes sense, for example,
fecU)ynL>e).

1.2 Dirichlet principle
Let I be a functional from X, := g + C3(U) to R, defined by

Iu] ::/U;\VUF — fu, (1.7)

where f € C(U)NL?(U) and g € C(OU). Assuming that there exists an extension of g to C?(U)NC(U),
still denoted by g, we say that u € X, if u — g € Cg(U).
Here, we will be more cautions about the distinction between C(I)“(U ), the space of functions that
vanish on QU, defined by
CE(U)={veckU): lim |v(z)| =0}, (1.8)

z—oU

and C¥(U), the space of functions with compact support in U, defined by
Ck(U)={vec*U):3 compact K C U s.t. u=0in K°}. (1.9)

These two spaces are different; for example, for U = [=1, 1], the function f = || — 1 is in C§°(U) but
not C°(U), since suppu = [—1,1] ¢ (—1,1). Although this distinction will not be so important later
on, we will keep this in mind at this moment.

The Dirichlet Principle states that the “minimizer” of to the variaton problem

inf 1 1.10
inf Iu] (1.10)

will correspond to the solution to the Poisson equation

{_Au_fv Ua

1.11
u=g, OU. ( )

It is not obvious at all why /[-] has a minimizer in X,;. However, in the rest of section we will explain
why the problem of minimizing (1.7) is related to (1.11).

First, /-] has a unique minimizer in X.
We claim that

Iu1] + =I[ug). (1.12)
that is, I[-] is “convex” on its domain. Indeed, writing w = (u1 + u2)/2, we have

1 1 1 1 1
L] + 2 1us] — Tw) = / Lyl + L vusl? - L1 + Vasl?
2 2 4 4 8 (11
1 .
= / *’V’ul — V’U,g‘z > 0.
8

The equality holds only if |Vu; — Vug| = 0, since |Vu; — Vug|? integrates to 0 and is continuous.
Since u; — us = 0 on QU, this implies u; = ug on U.



Suppose that u; and ug are two minimizers of I[-] in X}, that is,

Iuy) = Ifug] = uien)f(g Iu]. (1.14)
Then, by (1.12), we have I[w] < infx, Ifu], so w is also a minimizer, and the equality in (1.12) holds.
Hence, we have u; = ug on U, and this is the uniqueness.

Second, if u € X; is a minimizer, then u solves (1.11).
To establish this, we need to understand the “derivative” of I[-], which is the so-called “calculus
of variation”. Recall that for a C! function f, if f(xo) is the minimum, then by Fermat’s lemma

f'(x¢) = 0. So intuitively, if u is a minimizer of I, then %BL] =0.
But what is %? The issue here is that u € X, and X} is an infinite dimensional space, so much of

our intuition for a function on R is useless. Let us consider instead a multivariate function f : R — R.
The gradient V f(zg), is a vector, but it can also be seen as a linear map from R? to R, defined by
of f(@o +eh) — f(wo)

(V () () = V(o) - h = =5 () = lim - . (1.15)

This motivates us to define some kind of “directional derivative” on X.

Let v € C3(U). Then u + ev € X, for every e. The function v will serve as the “direction”.

Let i(e) = I[u + ev]. Let us compute i'(¢). Note that everything is smooth so we can interchange
the integral and differentiation. We have

drl
i/(e):/ —{7|Vu+5Vv|2—f(u+5v)} :/ Vu-Vv+5\Vv[2—fv:/ —Au-v+e|Vol|? - fv, (1.16)
U de L2 U U

where the boundary term |, oU g—ZU from the integration by parts in the last step is 0 since v = 0 on
OU. Hence,

i'(O)z/U(—Au—f)v. (1.17)

The quantity (1.17) is called the first variation of I[] (with respect to variation v). A necessary
condition for u being a minimizer in A&} is that the first variation vanishes with respect to every
variation v € C3(U).

Since —Au — f € C(U) and the first variation of I[-] is 0 for all v, by Lemma 1.1 below, we have

Au(z) + f(x) =0, VzeUl. (1.18)

The equation (1.18) is the Fuler—Langrange equation associated with the variational problem (1.17).
To summarize, a necessary condition for v to be a minimizer of a vairation problem is that u solves
the corresponding Euler—-Langrange equation.

Lemma 1.1 Let ¢ € C(U) be such that

/Ugo(z)v(x) dr =0, YveCU). (1.19)

Then p =0 in U.

Proof: We will prove by contradicition. If ¢ is not identitcally 0, without loss of generality we can
assume that ¢(zg) > 0 for some zy € U. Since U is open and ¢ is continuous, there exist €,J > 0 such
that ¢(z¢) > € in Bs(xg) C U. Let

-1
e 1P, ] <1,

1.20
0, |z| > 1. (1.20)

o() = =M (6-N (e — 20),  nle) = {
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Then )
/ o(x)v(x)de > E/ (6 e — x0)) = 8/ e =12 >0, (1.21)
U Bs (o) B1(0)
which is a contradiction. O

However, a priori the variation problem (1.10) may not have a minimizer, and even if a minimizer
exists, it can be outside of X, since from the expression of I[-], its definition should require ct
differentiability at most, rather than C2.

To illustrate, let us consider the variation problem

i1r1f{/01((8mu)2 — 1)2dx cu e CHo,1], w(0) =a, u(l) = b}, a<b<a+l (1.22)

Since a < b < a + 1, the function

T+ a, 0< < ttl=a
()—{ 2 (1.23)

b+ (1), He<a<l

is well-defined and achieves the smallest possible infimum 0 in (1.22), except that it is not C! at
T =x0 = b‘HT_“. But we can make change to v in an arbitrary small neighborhood around zg, so that
the resulting function is C! and makes (1.22) arbitrarily close to 0. On the other hand, if a function
u € C! taking slope £1, then by continuity of derivative, d,u = 1 or —1, so it cannot satisfy the
boundary condition in (1.22). Combining all these together, we can say that (1.22) does not have a
C' minimizer.

But if we include piecewise C! functions in the domain for (1.22), the minimizer will not be unique,
since there are an infinite number of polygon curves with slope +1 connecting (0,a) and (1,b).

1.3 Weak derivatives and solutions

How do we obtain a minimizer to (1.10)7 By definition of the infimum, there exists a sequence
(un) C X, such that I[u,] — inf Iu]; such sequence is called a “minimizing sequence”. We hope that
there exists some limit poiont u, of the minimizing sequence. However, as we have seen in (1.22),
the limit point u, may fall out of the original domain of the functional, due to lack of continuous
derivative.

To overcome the above mentioned issue, we need to generalize our notion of derivatives, as well as
our notion of solutions. This is done by the introduction of weak derivatives and weak solutions.

Recall the multi-index notion for derivative:

DYf=0g!---074f, a=(ai,as,...,aq). (1.24)

d

Also recall that Llla .(U) is the space of functions that are absolutely integrable on any compact sets
K C U; for example, 271 is in L} (0,1) but not L} (—1,1).

Let u,v € L}, (U). We say that v = D*u in the weak sense, or v is the a-th weak derivative of u,

if
/ o0 = / (—1)el(Dg)u, Vi € CP(U). (1.25)
U U

To see motivation, (1.25) is integration by parts (with no boundary terms since ¢ vanishes at the
boundary), if v is a classical derivative of u. For the Poisson equation (1.11), we say that u is a weak
solution if —Awu = f holds in the weak sense, that it,

/U(Ago)u Fof =0, Ve lX(U). (1.26)
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Example 1.1 Let u(z) = |z| € L}, .(R). Then

loc
1 x>0
w(x)=<" ’ 1.27
(@) {—1, T (127)

is the first-order weak derivative of wu.
But v’ is not further differentiable in the weak sense. Otherwise, suppose v = v/, then for any ¢ € C§°(R),

/w(m)v(m) dr = —/@'(m)u’(m) dx. (1.28)
For a < b and any n > 1, it is not hard to construct ¢,, € C2°(R) so that
=0, € ¢ (av b)a
on(z){ =1, x €la+1/n,b—1/n], (1.29)
€ (0,1), otherwise.

The function ¢, will approximate 1(,4), the indicator function of the interval (a,b). Then taking ¢ = ¢, in
(1.28) and letting n — oo, we obtain in the limit

b at+1l/n b
/ v(x)dr = — lim o' (z)u/ (z) dz + / o' (x)u' (z) do = v’ (b) — v/ (a). (1.30)

n=oo Jo b—1/n
Now take (a,b) = (—¢,¢) and let € — 0. On the one hand the right hand side in (1.30) is 1 — (—1) = 2, on the
other hand since [1(_. .yv| < |v[ and v is locally integrable, by dominated convergence theorem

€

€£%1+ B v(z)de = 513& Rl(,s’g)(m)v(x) dx = /]Rglirtr)l+ Lo o(@)v(z)dr = /R()dx = 0. (1.31)

This gives a contradiction.

In PDE theories, weak solutions allow more flexibility to obtain a solution, and after that there
are other means to show that the so obtained solution has the desired smoothness, and thus the weak
solution becomes the classical solution. These two parts will rely on different sets of tools. In this
note we will focus on the existence part. The following result gives an example of the other part.

Proposition 1.2 If Au = 0 in the weak sense, then u is a harmonic function and C*.

Proof: Let 7. € C*°(R?) be the standard smooth mollifiers. We will use the fact that (1.) is also an
approximate identity, so that . * f — f a.e. and in L} for any f € L}

loc loc*

Let ue = u*n.. Then u, € C* and for every ¢ € C°,

/(Do‘cp)uE = /Do‘cp-(u*ng) = /(Dagp*ng)-u = /Da(gp*na)u == /(—1)'“'(90*775)D°‘u = /(—1)“'@-(D°‘u*ne),
(1.32)
where we use [ f(g*h) = [(f % h)g. Hence, D*u, = (D“u) * 1, in the weak sense. But u. € C*, so
the weak derivative is strong derivative. In particular, Au. = 0 and wu, is harmonic.
Using the derivative estimate for harmonic function, for any compact set K, there exists K1 D K
and constant C' depending on K, K1, such that

suplue ()] sup| Ve ()| < Cluel ) < Clulsay. (1.33)

Since wu is locally integrable, (u.) is uniformly bounded and equi-continuous on K. By Arzela—Ascoli,
there exists a subsequence u., and u, such that u., — u. uniformly on K, and due to the mean-value
property for harmonic function, the limiting function w, is also harmonic. On the other hand, the
sequence (u¢) has a unique possible limit point which is u itself. Therefore, u is harmonic. O



1.4 Sobolev spaces and weak convergence

With the weak derivative, we can define the functional (1.10) on a largest possible domain. This leads
to the introduction of certain Sobolev spaces.
For k£ > 0, let us define

H*U) ={ue L, . (U): D*u e L*(U), Y|a| < k}. (1.34)
There is a natural norm on H*(U):
lull ey = D IDull 2, (1.35)
loo| <k

and under this norm, H*(U) becomes a complete space, meaning that every Cauchy sequence under
this norm admits a limit in H*(U).

Next, we try to define the boundary condition on H k(U). As the simplest example we will treat
the zero boundary condition. We define

HE(U) = closure of C>° under 11 £5 07y - (1.36)

Note that C3°(U) € HE(U), but there are more functions in (1.36). We say that u € g + HE(U) if
u— g€ HE(U), where g € C*(U) NC(AU).

The function I[-] in (1.7) will make sense for all u € g + HZ(U), where f € L*(U) and g €

CL(U)NC(dU): for the first term [|Vul?, the gradient Vu is a weak derivative and is in L?(U); for
the second term, by Cauchy—Schwartz, we have

[l <[ A0 (1.37)

so u > [;; fu is a linear functional on L*(U) 2 g+ Hg(U).

1.4.1 Weak convergence

Now that our functional is defined on the largest possible space. The next problem is how to extract
limit points for a minimizing sequence. Recall that a sequence (x,,) in R? has a limit point if and only
if z,, are bounded. We can rephrase it as “a set K € R? is sequentially pre-compact if and only if K
is bounded”. One naturally expects similar results in H*. Unforturnately, this is false.

Example 1.2 Consider X = L?(0,27) = H{(0,27) and f, = ﬁ sin(nx). Note that f,, are orthornormal, so

”h—mwz/ﬁ—wﬁwwﬁ:/ﬁ+ﬁzz vn #m. (1.38)
Hence f, is bounded in X but cannot have any limit point since any of its subsequences fails to be Cauchy.
We need a more general notion of convergence. We say that u,, converges to H*(U) weakly, dentoed
by u, — u, if
lim [ oD%, —/ oD%, Vo eCX(U), Y|a| <k. (1.39)
U U

n—oo
For weak convergence we have the following powerful result.
Theorem 1.3 A set in H*(U) is weakly sequentially pre-compact if and only if it is bounded in the
|1l gk 0y morm.

Example 1.3 In the previous example, f, — 0. This follows from the Riemann—Lebesgue Lemma, which states
for any g € L'(R),

lim [ g(z)sin(nx)dz = 0. (1.40)

n—r oo



1.4.2 Poincaré inequality

Recall that the H{(U) norm is given by
g = [ 1#@)F + 194 da. (1.41)

Theorem 1.4 Let U is bounded and uw € H}(U). There exists a constant K depending on the diameter
of U such that

2 2
/U|u(a:)| d:ch/U|vu| da. (1.42)

Proof: It suffices to establish (1.42) for u € C2°(U). Indeed, since C°(U) is dense in HE(U), for any
u € H}(U), there exist u,, € C2°(U) that converge to u in Hg(U). Then

lull 2y = lim [[unl 2y < € lim [[Vug|| 20y = ClIVullz2w).- (1.43)

Now assume that v € C°(U). Without loss of generality, we assume that U C [0, L] x R~ for
some L > 0. Then, there exists an extension of u to R?, still denoted by u. For z; € (0, L), by
Cauchy—Schwartz, we have

u(z1, @2, . .., xq) > = |u(z1, 3o, ... ) — w(0, @2, . . ., 2q)|?

< [/0961 |(81u)(s,a:2,...,xd)| ds}2

e o1 1.44
§/ ld:n-/ |(81u)(s,x2,...,:vd)|2ds ( )
0 0
3 2
<L-/ |Vu(s,xa,...,xq)|" ds.
0
Integrating over (z3,...,24) € Re! we obtain (1.42) with K = /L. O

2 Lect 13 on 11/18

2.1 Review

Recall we want to solve the equation (1.11). Let g € C(9U), f € C(U) and X, = g + C5(U). We can
define the functional I[u] by (1.7). The “Dirichlet principle” says that the minimizer of I{u] in X, will
solve (1.11).

We find minimizers through a “minimizing sequence”, as we did for continuous functions. Let
un € Xy be such that I[u,] — inf I[-]. We hope that there exists some u, such that

Up — Uy, (2.1a)

Tun] — I[us]. (2.1b)

Issue 1. The sequence u, may have no limit point in Xj, as in the variational problem (1.22).
This is because the space X is too restrictive. For this reason we introduce the concepts of the weak
convergence and weak solutions.

Issue 2. If u, is a weak solution, is u, a classical solution? The answer is yes in most cases, but
we omit the discussion here. We presented an example in this direction, Proposition 1.2.

We point out that a special case of Theorem 1.3 is the following.



Proposition 2.1 Let u, € H*(U) be such that
/ lul? + |Vu|> < M, VYn>1 (2.2)
U

for some M > 0. Then, there exists u. € H'(U) and a subsequence (un,) such that u,, — us in

HY(U), that is,
/unkv%/u*v, /Oxiunkvé/ﬁxiu*v, Yo € LA(U). (2.3)
U U U U

2.2 Existence of weak solution

Since I[-] includes the term [;;|Vu|? which is part of the H'(U)-norm, it is no hard to see that I[/]
is continuous in the norm of ||-|| g1, that is, I[u,] — I[u] if u, — u in HY(U). But we cannot expect
I[-] to be continuous w.r.t. the weak convergence, But it is NOT continuous in the topology of weak
convergence. To show that the weak limit attains the minimum of I[-], we will establish the weakly
lower semi-continuity of the functional.

Proposition 2.2 [Lower semi-continuity in weak topology] If um, — u in H', then

lgri}or(ljff[um] > I[ul. (2.4)

/Uumf—>/qu, (2.5)

Proof: We have

since u,y, — u in L2.
For the other term, we have

/|wm2 — |Vul? = /|vum — Vul® + 2V (Vuy, — Vu) > /2vu- (Vg — Vu). (2.6)
Since Vu € L? and Vu,, — Vu in L?, we have
hmmf/|vum|2 — |Vu? > lim /2Vu- (Vn, — Vu) = 0. (2.7)
m—r0o0 m—r0o0
This completes the proof. O

We are ready to prove the following. We assume f € L2(U) in (1.7).
Proposition 2.3 There exists a minimizer of I[-] in X, = g+ H}(U).

Proof: Let u, € X, be a minimizing sequence of I[-]. Then I[u,] < M for some M > 0, and
Up = Up — UL € H&(U).

To apply Proposition 2.1, we need to bound ||v,|| g1 uniformly from above. By Poincaré inequality
Theorem 1.4, it suffices to bound |Vuy,|p2.

Below C' will stand for a generic constants independent of v,,, which may change from line to line.
we have

I[uy) :/;’Vul —i—an}Q — fur +vy)

1
> 5 [Vl + 190 = [19u]- Vol = [ = [17]-fol
1 2 1 2 ¢ 2 1/ 2 5/ 2
> - _ _ - _ _ -
>Coo g [ = o [Ivaf =5 1w = 5 (152 =5 [l

> O+ (% - 5(12”{)) /IanF,

(2.8)
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where we use ab < %cﬂ + %bz in the third line, and K in the last line is the constant from Theorem 1.4.
By choosing € > 0 small enough so that

1 e(1+K)
55 >0 (2.9)
we obtain
/\an\Q < C(Iun) +1). (2.10)

Since I[uy,] is uniformly bounded from above, we have a uniform upper bound on ||v,| ;1 as desired.
By Proposition 2.1, there exists v, and a subsequence v, such that v, — v, in H', and hence
Up, — UL + Vs = Uy In H'.
By Proposition 2.2 we have

lim inf Iuy,, ] > Iu.]. (2.11)
k—ro0
But the LHS is inf I[-] on A, so I[u] achieves the minimum of I. This completes the proof. O

2.3 Free boundary condition
Next we brief discuss the Neumann boundary condition,

—Au = f7 Ua
9 2.12
ah_, aU. (212)
on

The first important thing is that a “compatibility condition” has to be satisfied for (2.12) to have
any solutions at all.
Proposition 2.4 There can exist a solution for (2.12) only if [, f = 0.

Proof: From integration by parts, we have

ou /
0= — 1= (Au)~1:/—f. (2.13)
ou On U U
O
As a conseqeunce, the functional I[u] is invariant under addition of a constant to w, namely,
Iu+C|=I[u], VvCeR. (2.14)

To define the variational problem, the functional I takes the same form, but the domain changes
to H'(U), that is, no boundary condition is imposed at all. That is why the boundary condition in
(2.12) is also called “free boundary condition”.

Proposition 2.5 u is a minimizer of Iu] in C*(U) N CY(U) if and only if it solves (2.12).

Proof: The “if” direction is similar as before. We will prove the “only i_f” part here.
Let u be a minimizer. Then for any ¢ € C°(U), u + ¢ € C2(U) N CY(U) and hence

i(e) = Iu+ep] > Iu], Ve>D0. (2.15)

As before, we can derive the first variation of I[-] by computing i'(0):

i'(O):/Uvu.w—f@:/U(—Au—f)gH/ ngo. (2.16)

ou

9



Since ¢ = 0 on QU, the second term is 0, so by Lemma 1.1, Au+ f =0 in U.

Now let ¢ € C*®(U) be arbitrary. (2.16) still holds, but the first term is zero since Au+ f =0 in
U. Therefore,

ou _
—p=0, VpelC>®U). 2.17
o =0 Ve U) (2.17)
This will imply g—z = 0 on U, similar to Lemma 1.1. O

As before, let u,, be a minimizing sequence. We want to use Proposition 2.1 to extract a convergent
subsequence. But (1.42) cannot be true for any u € H!(U), since by adding a constant to u, the RHS is
the same but the LHS can get arbitrarily large. On the other hand, by Proposition 2.4, the functional
I[u] is invariant under addition of constants. We may take advantage of that.

Proposition 2.6 Let U be a bounded domain. There exists K = K(U) such that

/\u—uP gK/]Vu\Q, . él/ " (2.18)
U U U

Proof: To illustrate the idea, we treat the case in one dimension.

Let U = (a,b). Then H'(a,b) coincides with the space of absolutely continuous function on (a, b)
with L2(U) derivative.

By the intermediate value theorem, there exists xg € (a,b) such that u(z¢) = u. For any = € (a,b),
by Cauchy—Schwartz, we have

x 2 b
lu(z) — ulzo)2 < [/ ol (s) ds] < (b - a)/ Wl (5) 2 ds. (2.19)
o a
Integrating over = we obtain (2.18) with K = (b —a). O
Now we can prove the existence of minimizer of I[-] in HY(U).

Proposition 2.7 There exists u, € H'(U) such that

Tu,| = inf Tlul. 2.20
w) = inf Il (2:20)

Proof: Let w, be a minimizing sequence. Since I[-] does not change after adding a contant to
u, We can assume fU uy = 0, otherwise we can subtract @, from u,. Hence, by Proposition 2.6,
llunllr2 < K||Vuyl| 2. The rest follows the same argument as in Proposition 2.3. O

2.4 [*-stability
Proposition 2.8 Let u € C2(U)NC(U) solve

{—Au +cu=f U, (2.21)

u=20, 9OU,

where ¢(x) >0 in U and f € L*(U). Then if U is bounded,

/U|u]2—}—/U|Vu|2 gC/Uf2. (2.22)

If in addition c(x) > co > 0, then for any U,

/\vu|2+c20/yu|2 < c/ £ (2.23)
U U U
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Proof: Multiplying u to both sides of (2.21), and using integration by parts, we have

/|Vu|2+c ul2 = /fu (2.24)

If U is bounded, we have Theorem 1.4, and

1 € 1 eK
R 2 / 2</ 2 / 2, 2.2
fiv <o [ [ g [P [0 (2.25)

By choosing ¢ > 0 small enough, we have [;;|Vu|? < C [;; f?, and using Theorem 1.4 again we obtain
(2.22).
Now assume that ¢ > ¢3. We have

1
Jivutsa [P <o [ 7245 [ (2.26)
U U 2e Ju 2 Ju

Choosing € = ¢p > 0, we obtain (2.22). O

3 Lect 14: a note on Fourier transform

This section will give a brief introduction to the Fourier transform.
Fourier transform is first defined for functions. The Fourier transform of a function g € L*(R) is
defined by

(Eq)(©) = [ €g(a) da. (31)
The integrability condition g € L!(R) is to ensure the integral in (3.1) to be defined.

Remark 3.1 In general, one needs to decide where to put constants and plus/minus signs in defining the Fourier
transform; for example, more common definitions in harmonic analysis are

1 , ,
F = —— [ e %%g(x)dz, or (F = /6_27”& x)dz. 3.2
(Fa)(©) = o= [ o) (Fo)(©) o(x) (32)
But (3.1) agrees with the form of characteristic functions used in the probability theory so we will stick to it.

One can also define the inverse Fourier transform by

1 ,
(F~th)(z) = o / e~ h(€) dE. (3.3)
™
Note that like F, the natural domain for F~! are functions in L'(R). However, if g € L'(R), then
in general we merely have Fg € L>(R), so F~! is not a true “inverse” (but it will be after a proper
generalization). When it happens that Fg € L!(R), the map F~! indeed takes Fg back to g. Here, the
form of F~1 in (3.3) depends on the choice we made in (3.1) to define F.

Proposition 3.1 If g € L'(R) and Fg € L'(R), then (F~1oF)g = g.

The proof typically involves some integration tricks, and can be found in most analysis/PDE
textbooks that present the Fourier transform. We skip the proof here since the most important thing
for us is to know that the Fourier transform does have an inverse, at least in some sense.

The next question is that we need to define the Fourier transform for objects other than L' func-
tions, like the probability measures. One can say that probability measures are like L' functions, but
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we will see below that the Fourier transform can even be defined for unbounded functions/measures.
The key are the “Schwartz space” and its dual space, the “tempered distributions”.
The Schwartz space contains smooth functions that decays fast at co; more precisely,

S={geC®®): lim |z"|g")(z)| =0, Vk,m > 0}. (3.4)
|z|—o00

The functions in S are called Schwartz functions. We can talk about convergence in S: g, — ¢ in S
if for every k,m > 0, sup,|z|"| gt (z) — g™ (z)| — 0. The convergence can also characterized by the

metric
oo

|f_g|k,m/\ 1 m
d(f.9)= Y i Ihlem = suple/Fp (). (3.5)
k,m=0 r

A nice thing about the Fourier transform is that it turns differentiation 0% into multiplica-
tion (—i&)* and vise versa.

Proposition 3.2 Let g € S. Then fork > 1,
(Fg™)(€) = (=i&)*(Fg)(€), F((~ix)*g) =Fg™". (3.6)

Hence, the Schwartz space S is invariant under F. By Proposition 3.1, it is a bijection on S.

Proposition 3.3 The Fourier transform F: S — S is a bijection.

Another obvious fact is that F is linear: F(f + g) = Ff + Fg. It is natural to consider the action
of F on the dual of S, called the tempered distribution, defined by

S’ := {continuous, linear functional on S} (3.7)
= {{ linear : S = R, [£(g)}- < Cp k|9]k,m> Yk, m > 0}. (3.8)

The space S’ contains all probability measures s, identified with the linear functional
tulo) = [ 9(a) du(a). (39)
It also contains S itself, identified with the linear functionals defined by taking L? inner product:
lh(g) = /g(m)h(az) dx, heS. (3.10)

The Fourier transform can be defined on &’ by duality:
(Fl)(g) = ¢(Fg). (3.11)

For example, if u is a probability measure on R, then by Fubini’s Theorem,
Ewle) = uEg) = [ [ [ e da] du() = [[ [ % aute)]g(w)de = [ putmiglards, voes.
(3.12)
where ¢, is the ch.f. of u. Hence, the ch.f. ¢, is F(p), when p is treated as an element in S’

Since F : § — S is a bijection, it is also a bijection on &’. Therefore, a probability measure is uniquely
determined by its ch.f.

4 Notations
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