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Abstract

We first study the asymptotic behavior of a time-discrete and space-continuous polymer

model of a random walk in a random potential. We formulate the straightness estimate for

the polymer measures and prove almost sure existence and uniqueness of polymer measures

on one-sided infinite paths with given endpoint and slope, and interpretation of these infinite-

volume Gibbs measures as thermodynamic limits. Moreover, we prove that marginals of

polymer measures with the same slope and different endpoints are asymptotic to each other.

Next we develop ergodic theory of the Burgers equation with positive viscosity and random

kick forcing on the real line without any compactness assumptions. Namely, we prove a One

Force – One Solution principle, using the infinite-volume polymer measures to construct a

family of stationary global solutions for this system, and proving that each of those solutions

is a one-point pullback attractor on the initial conditions with the same spatial average.

Using a straightness estimate uniform in temperature, we also prove that in the zero-

temperature limit, the infinite-volume polymer measures concentrate on the one-sided mini-

mizers and that the associated global solutions of the viscous Burgers equation with random

kick forcing converge to the global solutions of the inviscid equation.

Finally, we present two examples of mixing stationary random smooth planar vector field

with bounded nonnegative components such that, with probability one, none of the associated

integral curves possess an asymptotic direction.
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Chapter 1

Burgers polymers

1.1 Introduction

The Burgers equation is one of the most basic nonlinear evolutionary PDEs. It was

introduced by Burgers himself as a simplified fluid dynamics model to study turbulence (see

[Bur40], [Bur73]). In one dimension, the equation can be written as:

∂tu+ u∂xu =
κ

2
∂xxu+ f. (1.1.1)

Under the fluid dynamics interpretation, the equation describes the evolution of a velocity

profile u of particles moving along the real line. The velocity of the particle located at

time t ∈ R and at point x ∈ R is denoted by u(t, x) ∈ R. The left-hand side of (1.1.1)

represents the acceleration of the particle, and the right-hand side contains all the forces

acting on the particle, i.e., the external forcing f = f(t, x) and the friction forces κ
2
∂xxu(t, x).

Here, κ ≥ 0 is the viscosity constant.

1



The following Hamilton–Jacobi–Bellman (HJB) equation

∂tU +
(∂xU)

2

2
=
κ

2
∂xxU + F. (1.1.2)

is tightly connected to the Burgers equation (1.1.1). Namely, if U is a solution of (1.1.2),

then u = ∂xU solves (1.1.1) with f = ∂xF . One can obtain a more general HJB equation by

replacing the quadratic Hamiltonian in (1.1.2) by a convex function H : R → R:

∂tU +H(∂xU) =
κ

2
∂xxU + F. (1.1.3)

In this chapter, the forcing f = fω(t, x) will be a space-time stationary random field, the

argument ω being an element in some probability space. We are interested in the invariant

measures and other ergodic properties of the resulting SPDE. More details on our assumptions

on the forcing will be given in section 1.2.

Before we go into the development of the ergodic programs of the Burgers equation

and general HJB equations with random forcing, it is helpful to briefly discuss the general

ideas and methods in the field of the ergodic theories for nonlinear SPDEs, which has been

extensively studied in the past 20 years; see for example [EMS01], [KS00], [BKL01], [KS01],

[KPS02], [MY02], [HM06], [HM11], [CGHV14], [GHMR17], [KNS18]. A very important

example is the stochastic 2D Navier–Stokes equation.

Most of the time, the random forces in these SPDEs have zero- or finite-range dependence

in time, which allows viewing the SPDEs as Markov processes in some infinite-dimensional

functional spaces. On the other hand, in the spatial variables the forces are “degenerate”, in

the sense that they belong to some finite-dimensional subsets of the state spaces. Compared

with SPDEs forced by “white” noise, where forces are pumped into the system at all scales at

equal strengths, models with degenerate forcing are more physical, but are also more difficult
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to develop ergodic theories.

A central part in many of these problems is the existence and uniqueness of the invariant

measures. The existence is usually a consequence of the energy balance between the random

force entering into the system and the dissipation effect of the PDE; the Markov processes

mostly stay on compact subsets of the state space and hence arguments of Krylov–Bogolyubov

type can apply. The question of the uniqueness is more difficult due to the degeneracy

of the forcing. Many techniques have been developed to overcome this difficulty. For

example, in [HM06], [HM11], [CGHV14], the so-called “asymptotic strong Feller” property

was established for models with Brownian forces, where the author used Malliavin calculus

to obtain smoothing estimates of the transition probability at the infinite-time horizon.

In [GHMR17], an abstract framework named “asymptotic coupling” was raised and applied

to several nonlinear SPDEs. In [KNS18], the authors proposed a general coupling scheme to

get exponential mixing for models with bounded forces of the type of random Haar series

that satisfy a certain controllability condition.

In contrast with turbulence described by the Navier–Stokes system and similar models, the

dynamics generated by Burgers equation and its generalizations is dominated by contraction,

so the random dynamical system approach turns out to be more fruitful and gives more

detailed information about the pathwise behavior of the system. Namely, it is natural and

beneficial to study the stochastic flow, i.e., the self-consistent (satisfying the so called cocycle

property) family of random operators Φs,t
ω constructing the solution Φs,t

ω u at time t given the

initial condition u at time s. For various settings, one can describe ergodic components as

follows: for two velocity profiles u1 and u2 in the same ergodic component, Φs,t
ω u

1 and Φs,t
ω u

2

get close to each other as t− s→ ∞. Moreover, with probability one, there is a limit

ut,ω = Φ−∞,t
ω u0 = lim

s→−∞
Φs,t

ω u
0, (1.1.4)
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and it does not depend on the initial condition u0 within an ergodic component. The resulting

family (ut,ω) of velocity profiles forms a global solution, i.e.,

ut,ω = Φs,t
ω us,ω, s < t,

and is non-anticipating, i.e., ut depends only on the history of the forcing up to time t.

Moreover, for almost every ω, (ut,ω) is a unique global solution with values in the given

ergodic component. This statement along with the pullback attraction property (1.1.4) is

often called One Force — One Solution Principle (1F1S).

The study of ergodic properties of solutions of (1.1.1) with random forcing began in [Sin91],

where the evolution was considered on the circle (one-dimensional torus) T1 = R1/Z1 (i.e.,

all the functions involved were assumed or required to be space-periodic). The forcing was

assumed to be white in time and smooth in the space variable, and a mixing statement

showing loss of memory in the system was proved. The key consideration in this paper is

the view at the iterative application of the Feynman–Kac formula as the product of positive

operators.

In [Kif97], the connection with the directed polymers in random environments was noticed

and used for the first time. With the help of the Hopf–Cole transform and Feynman–Kac

formula, it was shown that for the high-dimensional version of (1.1.1) and sufficiently small

forcing (this situation is known as weak disorder in the studies of directed polymers in random

environments), certain series in the spirit of perturbation theory converge and can be used to

define global attracting solutions of the Burgers equation.

In [EKMS00], the zero viscosity case on the circle was considered. Solutions of the Burgers

equation with zero viscosity admit a variational Hamilton–Jacobi–Bellman–Hopf–Lax–Oleinik

representation. The minimizing paths in the variational principle can be identified with

particle trajectories, and the analysis of solutions over long time intervals involves the study
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of asymptotic properties of those minimizers. Since the mean velocity is preserved by the

Burgers system, all velocity profiles in one ergodic component have the same mean. One

of the main results of [EKMS00] is that all functions with the same mean form one ergodic

component, i.e., there is a unique invariant measure for the corresponding Markov dynamics

on this set. Moreover, for each mean velocity, 1F1S holds on the associated ergodic component.

The global solution is defined by a family of one-sided infinite action minimizers stretching

into the infinite past. Also, hyperbolicity holds, i.e., all these minimizers are exponentially

asymptotic to each other.

In [IK03], this program was repeated for the multi-dimensional version of the inviscid

Burgers equation on the torus Td = Rd/Zd, d ∈ N, and in [GIKP05], it was extended to the

positive viscosity case. Unlike [Sin91], the approach of [GIKP05] was based on stochastic

control. In fact, for a fixed mean velocity, a unique global solution is constructed using

optimal control of diffusions on semi-infinite time intervals stretching to the infinite past.

The variational character of the stochastic control approach allowed to show that as κ→ 0,

the optimally controlled diffusions converge to the one-sided action minimizers. This also

allowed to deduce the convergence of invariant distributions as κ→ 0.

In [Bak07], 1F1S was established for the Burgers equation with random boundary condi-

tions. Given an appropriate notion of generalized solutions and the associated variational

characterization, the argument is very simple. It turns out that it takes a finite random time

to erase all the memory about the initial condition, so the system exhibits an extreme form

of contraction.

In all the results discussed above (see also [DS05] and [DV15] that do not use variational

or stochastic representations and use PDE tools instead), the space was assumed to be

compact, being a torus or a segment, except [Kif97]. Extending those results to noncompact

situations turned out to be a nontrivial task. Quasi-compact settings where the system is

considered on the entire real line but the forcing is mostly concentrated in a compact part,
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were studied in [HK03], [Sui05] and [Bak13].

However, truly noncompact situations with space-time homogeneous random forcing in

one dimension for positive or zero viscosity presented serious difficulties. In the noncompact

case, there is much less rigidity in the behavior of optimal paths or diffusions used in the

representation of solutions, and they are much harder to control. Also, the approach of [Kif97]

is useful only in the weak disorder case and fails in dimension 1.

In the zero viscosity case, the ergodic theory of the Burgers equation on the real line

without compactness or periodicity assumptions was constructed in [BCK14] for forcing given

by a space-time Poisson point process, and in [Bak16] for kick forcing. Similarly to the

compact case, the ergodic components are essentially formed by velocity profiles with common

mean, but establishing 1F1S on each ergodic component required using methods originating

from studies of long geodesics in the last-passage percolation theory. In the Poissonian forcing

case, due to the discrete character of the forcing, all the one-sided minimizers giving rise

to the global solution coalesce, strengthening the hyperbolicity property for the spatially

smooth periodic forcing case. However, the behavior of minimizers in the kick forcing case is

more complicated. Although they are expected to be asymptotic to each other, only a much

weaker liminf substitute of hyperbolicity was proved in [Bak16].

In the first part of this chapter, we will consider the Burgers equation with random kick

forcing similar to what is considered in [Bak16], but extend the results to the positive-viscosity

case. A very important feature of this work is that in order to analyze the Burgers equation,

we rely on the Feynman–Kac formula and the associated directed polymer model. The

global solutions of the viscous Burgers equation will be given by some properly defined

infinite-volume polymer measures, the positive-temperature counterparts of the one-sided

infinite minimizers in the construction of the global solution for inviscid Burgers.

In the second part of this chapter, we will obtain the inviscid limit for the stationary

solutions of the Burgers equation, namely, we will prove that in (1.1.1), as the viscosity

6



vanishes the stationary solutions of the viscous Burgers equation converge to those of the

inviscid one. In the polymer language, we prove that the zero-temperature limits for infinite-

volume polymer measures are delta measures concentrated on one-sided infinite minimizers.

Of course, the PDE results of [GIKP05] can also be restated in the polymer language.

The inviscid limit of 2D stochastic Navier–Stokes equation was also considered in [Kuk04],

[Kuk07], [Kuk08] and [GHvV15]. However, as the viscosity tends to zero, one needs to scale

the forcing as
√
κ to obtain nontrivial behavior in the limit. This contradicts the Kraichnan

theory of 2D turbulence whose predictions can be interpreted as the existence of a nontrivial

inviscid limit under viscosity-independent forcing. This discrepancy can be explained by finite

size effects since the inverse cascades of Kraichnan theory are impossible in a compact domain.

It would be extremely interesting to see if this contradiction gets resolved in noncompact

setting. However, the only ergodic result for Navier–Stokes system in the entire space known

to us is [Bak06], where under certain conditions on the decay of the noise at infinity, a unique

invariant distribution on the Le Jan–Sznitman existence-uniqueness class is constructed for

SNS in R3, and this class of solutions neither allows for spatial stationarity nor survives the

inviscid limit.

In the rest of this chapter we will in fact reverse the direction of time and state our results

for the following “backward” Burgers equation:

−∂tu+ u∂xu =
κ

2
∂xxu+ f. (1.1.5)

The reason is that it is more natural to work with forward polymers and action minimizers.

We stress that we change the time direction in the Burgers equation just to make it easier to

translate results between minimizers/polymers and global solutions of the Burgers equation.

Restating any result obtained for equation (1.1.1) in terms of equation (1.1.5) and vice versa

is trivial.

7



This chapter is organized as follows. In section 1.2 we will discuss the kick forcing and

our assumptions; in section 1.3 we will state the 1F1S principle for the viscous Burgers; in

section 1.4 we will discuss the associated directed polymer model and state the results in

the polymer language; in section 1.5 we will state the results on the zero-temperature and

inviscid limit. In sections 1.6–1.11 we will give all the proofs.

1.2 The setting

1.2.1 Kick forcing

We will consider the (backward) Burgers equation with kick forcing of the following form:

f(t, x) =
∑
n∈Z

fn(x)δn(t).

This means that the additive forcing is applied only at integer times, namely, on each interval

(n, n+ 1] where n ∈ Z, the velocity field evolves from time (n+ 1) to time n according to the

unforced backward Burgers equation

−∂tu+ u∂xu =
κ

2
∂xxu, (1.2.1)

and at time n, the entire velocity profile u receives an instantaneous macroscopic increment

equal to fn:

u(n, x) = u(n+ 0, x) + fn(x), x ∈ R. (1.2.2)

We assume that the force potential F = Fn,ω(x)

fn(x) = fn,ω(x) = ∂xFn,ω(x), n ∈ Z, x ∈ R, ω ∈ Ω,
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is a stationary random field defined on some probability space (Ω,F ,P). More precisely,

the probability space and the potential process are constructed as follows. Let (Ω0,F0,P0)

be the canonical probability space of realizations of the potential, where Ω0 is the space of

continuous functions F : R×Z → R equipped with F0, the completion of the Borel σ-algebra

with respect to local uniform topology, and P0 is a probability measure preserved by the

group of shifts (θn,x)(n,x)∈Z×R defined by

(θn,xF )m(y) = Fn+m(x+ y), (n, x), (m, y) ∈ Z× R.

In this framework, F = Fω = ω, and we will use all these notations intermittently.

In addition, we impose the following requirements:

(A1) The flow (θ0,x)x∈R is ergodic. In particular, for every n ∈ Z, Fn(·) is ergodic with

respect to the spatial shifts.

(A2) The sequence of processes
(
Fn(·)

)
n∈Z is i.i.d.

(A3) With probability 1, for all n ∈ Z, Fn(·) ∈ C1(R).

(A4) For all (n, x) ∈ Z× R and all κ > 0,

Ee−κ−1Fn(x) <∞.

(A5) There are φ, η > 0 such that for all (n, j) ∈ Z× Z,

eφ = EeηF
∗
n,ω(j) <∞,

where

F ∗
n,ω(j) = sup{|Fn,ω(x)| : x ∈ [j, j + 1]}. (1.2.3)

9



Stationarity and (A5) imply that

lim
|x|→∞

Fn,ω(x)

|x|
= 0 (1.2.4)

holds with probability 1 on Ω0. We can then define

Ω =

{
F ∈ Ω0 : lim

|x|→∞

Fn(x)

|x|
= 0, n ∈ Z

}
∈ F0, (1.2.5)

and denote the restrictions of F0 and P0 onto Ω by F and P. This finishes the construction

of the probability space (Ω,F ,P). Under this modification, all the distributional properties

of the potential are preserved.

We will use these standing assumptions throughout this chapter. However, many of our

results will hold true if one removes (A3) because (A5) guarantees that F is locally bounded

which is sufficient for most of our results. Of course, differentiability of F guarantees that

f = ∂xF in the Burgers equation is defined as a function, but even this is not necessary for

some of our claims on the Burgers equation.

A sufficient condition on distributional properties of F at any fixed time, say, time 0,

for existence of an appropriate probability space satisfying (A1) and (A2) is mixing of F0

with respect to spatial shifts. This (along the other requirements from the list above) holds,

for example, for Gaussian processes with decaying correlations and processes with finite

dependence range. Also, processes obtained from Poissonian noise (or any other space-

time ergodic processes) via spatial smoothening are compatible with probability spaces

satisfying (A1)–(A2). So, the conditions that we impose define a very broad class of processes.

We note that the shot-noise potential used for the entire inviscid Burgers equation program

developed in [Bak16], also falls into this class of potentials.

Besides the space-time stationarity, it is important to note that the potential process is
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also invariant under the following Galilean space-time shear transformations Lv, v ∈ R:

(LvF )n(x) = Fn(x+ vn), (n, x) ∈ Z× R. (1.2.6)

1.2.2 Solution of the Burgers equation

With deterministic forcing, the Cauchy problem for (1.1.5) has smooth classical solutions

for κ > 0 under mild assumptions on f and the initial conditions. In fact, the Hopf–Cole

logarithmic transformation reduces the problem to the linear heat equation with multiplicative

forcing. This latter equation can be solved using the classical Feynman–Kac formula. Another

way to represent solutions of viscous HJB equations is via stochastic control, see [FS06] for

systematic treatment of stochastic control.

If κ = 0, then even smooth initial velocity profiles result in formation of discontinuities,

called shock waves. In this important case, one has to work with appropriate generalized

solutions, known in this case the “entropy solution”, which can be obtained from the smooth

solutions via a limiting (κ→ 0) procedure. The solutions can also be characterized through

a variational principle.

For the Burgers equation with the random forcing described in section 1.2.1, the solution

can be defined configuration-wise, namely, for each realization of the forcing, we solve the

equation deterministically using the Feynman–Kac formula (κ > 0) or the variational principle

(κ = 0) with proper discretization. This is what will be described below.

For every m,n ∈ Z satisfying m < n, we denote the set of all paths

γ : [m,n]Z = {m,m+ 1, . . . , n} → R

by Sm,n
∗,∗ . If in addition a point x ∈ R is given, then Sm,n

x,∗ denotes the set of all such paths that

satisfy γm = x. If n = ∞, then we understand the above spaces as the spaces of one-sided

11



infinite paths. If two points x, y ∈ R are given, then Sm,n
x,y denotes the set of all paths in Sm,n

∗,∗

that satisfy γm = x and γn = y.

Let m < n. Given a path γ defined on [m′, n′]Z ⊃ [m,n]Z, its kinetic energy Im,n(γ),

potential energy Hm,n
ω (γ) and total action Am,n

ω (γ) are given by

Im,n(γ) =
1

2

n∑
k=m+1

(γk − γk−1)
2, Hm,n

ω (γ) =
n∑

k=m+1

Fk,ω(γk),

Am,n
ω (γ) = Im,n(γ) +Hm,n

ω (γ).

(1.2.7)

Note the asymmetry in the definition of Hm,n
ω : we have to include k = n, but exclude k = m.

All our results are proved for this choice of path energy, but it is straightforward to obtain

their counterparts for the version of energy where the k = n is excluded and k = m is

included. For the inviscid case, we can now define the random backward evolution operator

on potentials by

[Ψm,n
0,ω U ](x) = inf

γ∈Sm,n
x,∗

{U
(
γn
)
+ Am,n

ω (γ)}, x ∈ R, m < n. (1.2.8)

For the viscous case, one can introduce the Hopf–Cole transformation φ by

φ(t, x) = e−
U(t,x)

κ . (1.2.9)

An application of the discrete Feynman–Kac formula will lead to the following backward

evolution operator on φ:

[Ξm,n
κ,ω φ](x) =

∫
R
Ẑm,n

x,y;κ,ωφ(y) dx, x ∈ R, m < n, (1.2.10)
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where

Ẑm,n
x,y;κ,ω

=

∫
R
· · ·
∫
R

n∏
k=m+1

[
gκ(xk − xk−1)e

−
Fk,ω(xk)

κ

]
δx(dxm)dxm+1 . . . dxn−1δy(dxn) (1.2.11)

and gκ(x) =
1√
2πκ

e−
x2

2κ . With the inverse of the Hopf–Cole transform (1.2.9), we can define

evolution on potentials by

Φm,n
κ,ω U = −κ ln Ξm,n

κ,ω e
−U

κ .

The space of velocity potentials that we will consider will be H, the space of all locally

Lipschitz functions W : R → R satisfying

lim inf
x→±∞

W (x)

|x|
> −∞.

We will also need a family of spaces

H(v−, v+) =

{
W ∈ H : lim

x→±∞

W (x)

x
= v±

}
, v−, v+ ∈ R.

Lemma 1.2.1. For every κ ≥ 0 and any ω ∈ Ω, for any l, n,m ∈ Z with l < n < m and

W ∈ H,

1. Φn,m
κ,ω W is well-defined and belongs to H;

2. if W ∈ H(v−, v+) for some v−, v+, then Φn,m
κ,ω W ∈ H(v−, v+);

3. (cocycle property) Φl,m
κ,ωW = Φl,n

κ,ωΦ
n,m
κ,ω W .

Proof of Lemma 1.2.1: Let us check that if W ∈ H, then Φn,n+1
ω W ∈ H for all n and ω.

Due to (1.2.4), there is a number k = k(n, ω) > 0 such that Fn(x) +W (x) ≥ −k(|x|+ 1) for

13



all x ∈ R. Since

∫
R
gκ(y − x)e−

Fn(x)
κ

−W (x)
κ dx ≤

∫
R
gκ(y − x)e

k|x|+1
κ dx <∞,

Φn,n+1
ω W (y) is well-defined for all y ∈ R, and

lim inf
y→+∞

Φn,n+1
ω W (y)

y
≥ − lim inf

y→+∞

κ

y
ln

∫
R
gκ(y − x)e

k|x|+1
κ dx

= − lim inf
y→+∞

κ

y
ln

∫
R
gκ(y − x)e

kx+1
κ dx

= − lim inf
y→+∞

κ

y
ln(e

ky
κ
+ k2

4κ
2
+ 1

κ ) = −k > −∞.

In the second line, we used that the contribution from the negative values of x is asymptotically

negligible due to the fast decay of the Gaussian kernel. For the last line, we used the Gaussian

moment generating function. The behavior as y → −∞ is treated similarly. The local

Lipschitz property follows from the C1 property that can be obtained by differentiating the

integrand in the definition of Φ. Iterating this, we obtain parts 1 and 3 of the lemma. The

proof of part 2 is similar to that of part 1. □

We can also introduce the Burgers dynamics on the space H′ of velocities w such that

for some function W ∈ H and Lebesgue almost every x, w(x) = W ′(x) = ∂xW (x). For all

v−, v+ ∈ R, H′(v−, v+) is the space of velocity profile with well-defined one-sided averages v−

and v+, it consists of functions w such that the potential W defined by W (x) =
∫ x

0
w(y)dy

belongs to H(v−, v+).

We will write w1 = Ψn0,n1
κ,ω w0 if w0 = W ′

0, w1 = W ′
1, and W1 = Φn0,n1

κ,ω W0 for some

W0,W1 ∈ H.

Having introduced the shifts θn,x, we can also rewrite the cocycle property as

Φn+m
ω W = Φm

θnωΦ
n
ωW, n,m ≤ 0, ω ∈ Ω,

14



where θn = θn,0 and Φn
ω = Φn,0

ω . The cocycle property of Ψ and Ξ can also be expressed

similarly.

1.3 1F1S for viscous Burgers

Our main results for the positive viscosity Burgers equation are parallel to those of [Bak16]

for the inviscid case. In this section, for brevity we suppress all the κ-dependence of the

evolution operators and functions.

We say that u(n, x) = uω(n, x), (n, x) ∈ Z × R is a global solution for the cocycle Ψ if

there is a set Ω′ ∈ F with P(Ω′) = 1 such that for all ω ∈ Ω′, all m and n with m < n, we

have Ψm,n
ω uω(n, ·) = uω(m, ·).

A function uω(x), ω ∈ Ω, x ∈ R is called skew-invariant if there is a set Ω′ ∈ F with

P(Ω′) = 1 such that for any n ∈ Z, θnΩ′ = Ω′, and for any n ≤ 0 and ω ∈ Ω′, Ψn
ωuω = uθnω.

If uω(x) is a skew-invariant function, then uω(n, x) = uθnω(x) is a stationary global

solution. One can naturally view the potentials of uω(x) and uω(n, x) as a skew-invariant

function and global solution for the cocycle Φ̂.

To state our first result, a description of stationary global solutions, we need more notation.

For a subset A of Z × R, we denote by FA the σ-sub-algebra of F generated by random

variables (Fn(x))(n,x)∈A.

Theorem 1.3.1. For every v ∈ R and κ > 0, there is a unique skew-invariant function

uv = uv;κ : Ω → H′ such that for almost every ω ∈ Ω, uv;ω ∈ H′(v, v). The process

uv;ω(n, ·) = uv;θnω(·) is a unique stationary global solution in H′(v, v).

The potential Uv;ω defined by Uv;ω(x) =
∫ x

uv;ω(y)dy is a unique skew-invariant function

for Φ̂ in Ĥ(v, v). It defines a unique stationary global solution Uv;ω(n, ·) = Uv,θnω(·) for Φ̂ in

Ĥ(v, v). The skew-invariant functions Uv;ω and uv;ω are measurable w.r.t. F|N×R, i.e., they

depend only on the “history” of the forcing (noting the direction of time is reversed). The
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spatial random process (uv;ω(x))x∈R is stationary and ergodic with respect to space shifts.

Remark 1.3.1. All uniqueness statements in this theorem are understood up to zero-measure

modifications. We say that a process u is a unique (up to a zero-measure modification)

process with certain properties if for every process ũ defined on the same probability space

and possessing these properties, u and ũ coincide with probability 1.

This theorem can be interpreted as a 1F1S Principle: for any velocity value v, the

solution at time 0 with mean velocity v is uniquely determined by the history of the forcing:

uv;ω
a.s.
= χv(F |N×R) for some deterministic functional χv of the forcing in the future, i.e.,

in N × R. We actually describe χv in the proof, which is constructed via infinite-volume

polymer measures on one-sided infinite paths. Since the forcing is stationary in time, we

obtain that uv;θnω is a stationary process in n, and that the distribution of uv;ω is an invariant

distribution for the corresponding Markov semi-group, concentrated on H′(v, v).

The next result shows that each of the global solutions constructed in Theorem 1.3.1 plays

the role of a one-point pullback attractor. To describe the domains of attraction we need to

introduce several assumptions on the initial potentials W ∈ H. Namely, we will assume that

there is v ∈ R such that W and v satisfy one of the following sets of conditions:

v = 0,

lim inf
x→+∞

W (x)

x
≥ 0, (1.3.1)

lim sup
x→−∞

W (x)

x
≤ 0,

16



or

v > 0,

lim
x→−∞

W (x)

x
= v, (1.3.2)

lim inf
x→+∞

W (x)

x
> −v,

or

v < 0,

lim
x→+∞

W (x)

x
= v, (1.3.3)

lim sup
x→−∞

W (x)

x
< −v.

Condition (1.3.1) means that there is no macroscopic flux of particles from infinity

toward the origin for the initial velocity profile W ′. In particular, any W ∈ H(0, 0) or any

W ∈ H(v−, v+) with v− ≤ 0 and v+ ≥ 0 satisfies (1.3.1). If, additionally, v+ > 0 and v− < 0,

then it is natural to call this situation a rarefaction fan. We will see that in this case the

long-term behavior is described by the global solution u0 with mean velocity v = 0.

Condition (1.3.2) means that the initial velocity profile W ′ creates an influx of particles

from −∞ with effective velocity v ≥ 0, and the influence of the particles at +∞ is not as strong.

In particular, any W ∈ H(v, v+) with v ≥ 0 and v+ > −v (e.g., v+ = v) satisfies (1.3.2). We

will see that in this case the long-term behavior is described by the global solution uv.

Condition (1.3.3) describes a situation symmetric to (1.3.2), where in the long run the

system is dominated by the flux of particles from +∞.

The following precise statement supplements Theorem 1.3.1 and describes the basins of

attraction of the global solutions uv in terms of conditions (1.3.1)–(1.3.3).
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Theorem 1.3.2. For every v ∈ R and κ > 0, there is a set Ω̂ ∈ F with P(Ω̂) = 1 such that

if ω ∈ Ω̂, W ∈ H, and one of conditions (1.3.1),(1.3.2),(1.3.3) holds, then w = W ′ belongs to

the domain of pullback attraction of uv: for any m ∈ R and any x ∈ R,

lim
n→∞

Ψm,n
ω w(x) = uv;ω(m,x),

and the convergence is uniform on compact sets.

The last statement of the theorem implies that for every v ∈ R, the invariant measure

on H′(v, v) described in Theorem 1.3.1 is unique and for any initial condition w = W ′ ∈ H′

satisfying one of conditions (1.3.1),(1.3.2) and (1.3.3), the distribution of the random velocity

profile at time n weakly converges to the unique stationary distribution on H′(v, v) as n→ ∞,

in the local uniform topology. However, our approach does not produce any estimates on

convergence rates.

We also note that, due to the following Lemma 1.3.1, proving uniform convergence in this

theorem amounts to proving pointwise convergence.

Lemma 1.3.1. For any w ∈ H′, ω ∈ Ω, m,n ∈ Z satisfying m < n and all κ ≥ 0, the

function x 7→ x−Ψm,n
κ w(x) is nondecreasing.

The proof of this lemma will be given at the end of section 1.10.3.

1.4 Directed polymers

1.4.1 Polymer measures

Directed polymers in random environment are a class of random media models given by

random Boltzmann–Gibbs distributions on paths with (i) free measure describing classical
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random walks and (ii) the energy function given by the potential accumulated from the

random environment by the random walk.

In the Burgers equation context, the directed polymers emerge naturally through the

Feynman–Kac formula (1.2.10). It can be understood as integration over the space of paths

endowed with appropriate polymer measures. The viscosity constant κ will play the role of

temperature.

For m,n ∈ Z with m < n and x, y ∈ R, µm,n
x,y;κ,ω, the point-to-point polymer measure at

temperature κ, is a probability measure on Sm,n
x,y that has density

µm,n
x,y;κ,ω(xm, . . . , xn) =

n∏
k=m+1

[
gκ(xk − xk−1)e

−Fk(xk)

κ

]
Ẑm,n

x,y;κ,ω

,

with respect to δx × Lebn−m−1 × δy, where Ẑ
m,n
x,y;κ,ω is defined in (1.2.11).

Let us introduce

Zm,n
x,y;κ,ω =

(
2πκ

)n/2
Ẑm,n

x,y;κ,ω =

∫
γ∈Sm,n

x,y

e−κ−1Am,n
ω (γ) dγ

=

∫
e
−κ−1

n∑
k=m+1

[
1
2
(xk−xk−1)

2+Fk(xk)
]
δx(dxm)dxm+1...dxn−1δ(dxn), (1.4.1)

where Am,n
ω is defined in (1.2.7). The polymer density can also be expressed as

µm,n
x,y;κ,ω(γm, . . . , γn) =

e−κ−1Am,n
ω (γ)

Zm,n
x,y;κ,ω

.

We often omit the ω argument in all the notations used above. We also often write Zm,n
κ (x, y)

for Zm,n
x,y;κ.
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1.4.2 Asymptotic properties

Asymptotic properties of directed polymer models similar to ours have been extensively

studied in the literature, see, e.g., surveys [CSY04], [dH09], [Gia07] and [Com17]. Here, we

will mention only results most tightly related to ours.

One of our first results is the existence of the infinite-volume quenched density of the free

energy or the shape function.

Theorem 1.4.1. There are constants α0;κ ∈ R such that for any v ∈ R and κ ∈ (0, 1],

lim
n→∞

κ lnZ0,n
κ (0, vn)

n
a.s.
=ακ(v) := α0;κ −

v2

2
. (1.4.2)

The quadratic term −v2

2
comes from the shear-invariance symmetry (see (1.2.6)) of our

model.

Subadditivity arguments have been used to establish the existence of infinite-volume

normalized quenched free energy for our model and also for a variety of other polymer models;

see [CH02], [CSY03], [Var07], [CFNY15] for lattice polymers under various assumptions and

[CY05], [CC13], [CY13] for some continuous models. Variational characterizations of the free

energy in terms of auxiliary skew-invariant functions (cocycles) were developed in [Yil09],

[RAS14], [RASY13], [GRAS16], [RSY16]. It is also related to the effective Hamiltonian in

the homogenization of stochastic HJB equation; see [KRV06], [KRV06].

The next result concerns the concentration of the finite volume free energy. Let us define

pn(κ) =


κ lnZ0,n

κ (0, 0), κ ∈ (0, 1],

−A0,n(0, 0), κ = 0.

(1.4.3)
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The definition of p(·) at κ = 0 is a continuous extension since

lim
κ↓0

κ lnZm,n
κ (x, y) = −Am,n(x, y). (1.4.4)

Theorem 1.4.2. There are positive constants c0, c1, c2, c3 such that for all n > c0 and all

u ∈ (c3n
1/2 ln3/2 n, n lnn],

P
{
|pn(κ)− α0;κn| ≤ u, κ ∈ [0, 1]

}
≥ 1− c1 exp

{
−c2

u2

n ln2 n

}
.

Such inequalities have been obtained for various polymer and FPP/LPP models with

different tails. The first such result appeared in [Kes93] on FPP, with a tail of e−cu/
√
n. Using

Talagrand’s inequality, this can be improved to e−cu2/n. In [BKS03], the authors proved that

for FPP with edge weight distribution P(we = a) = P(we = b) = 1/2, the variance of lnZn is

O( n
logn

), which is sublinear. The result was later strengthened to a concentration inequality

with a tail e−cu
√

lnn/n for more general distributions, see [BR08] and [DHS14]. In [AZ13],

similar concentration inequality was obtained for a polymer model. See also [Mej04], [CH04]

and [RT05] for similar concentration inequality for some other polymer models.

All these estimates imply that the fluctuation of the quenched energy for polymer or the

action of minimizing paths of length n in random environment are (roughly) bounded by n1/2

and the typical transversal fluctuations for the paths themselves in those settings are smaller

than (roughly) n3/4, although it is believed that for a large class of models including ours

(KPZ universality class, see, e.g., [Cor12]), the true scalings are n1/3 and n2/3, respectively.

Our method in proving the concentration is more elementary and will not lead to a sharper

subgaussian concentration as mentioned above, but it is sufficient, in conjunction with the

quadratic form of the shape function, to help us to establish straightness estimates in order

to obtain infinite-volume limits.
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Moreover, our concentration estimate is uniform in the temperature/viscosity parameter κ,

which is the key point in the study of the zero-temperature limit of the infinite-volume

polymer measures or the inviscid limit of the global solutions of Burgers. As a corollary, one

can also obtain that the constant α0;κ introduced in Theorem 1.4.1 is continuous in κ.

The last result we will discuss in this section is the straightness estimate for the polymer

measures. Known as δ-straightness, the notion goes back to [New95]. It can be derived from

the concentration of finite volume free energy and the uniform curvature assumption on the

shape function that was first introduced in [New95]. It was later used in [LN96], [HN01],

[Wüt02], [FP05], [CP11], [BCK14] and [Bak16] in the context of optimal paths in random

environments. In these papers, either the curvature assumption was assumed (as in [LN96])

or the shape functions were explicitly known so that the curvature assumption was satisfied.

Based on the straightness estimate, we obtain tightness of the finite-volume polymer

measures and gain compactness for the solutions of randomly forced Burgers equation. This

overcomes one of the main difficulties for the ergodic program in non-compact setting. Simi-

larly to our concentration estimate, the straightness estimate is also uniform in temperature,

and thus can be used to study the zero-temperature limit. Also, the argument in proving the

straightness estimate is independent of the dimension and can be immediately generalized to

higher dimensions.

1.4.3 Thermodynamic limit

In this section we will discuss the thermodynamic results. We will need some notation

first.

We recall the point-to-point polymer measure defined in section 1.4 and the path spaces

(e.g., Sm,n
x,y ) introduced in section 1.2.2. A measure µ on Sm,n

x,∗ is called a polymer measure (at
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temperature κ) if there is a probability measure ν on R such that µ = µm,n
x,ν;κ where

µm,n
x,ν;κ =

∫
R
µm,n
x,y;κν(dy).

We call ν the terminal measure for µ = µm,n
x,ν;κ. It is also natural to call µ a point-to-measure

polymer measure associated to x and ν.

A measure µ on Sm,+∞
x,∗ is called an infinite volume polymer measure if for any n ≥ m

the projection of µ on Sm,n
x,∗ is a polymer measure. This condition is equivalent to the

Dobrushin–Lanford–Ruelle (DLR) condition on the measure µ.

We say that the strong law of large numbers (SLLN) with slope v ∈ R holds for a

measure µ on Sm,+∞
x,∗ if µ(Sm,+∞

x,∗ (v)) = 1. We say that LLN with slope v ∈ R holds for a

sequence of Borel measures (νn) on R if for all δ > 0,

lim
n→∞

νn([(v − δ)n, (v + δ)n]) = 1.

Finally, for any (m,x) ∈ Z× R, we say that a measure µ on Sm,+∞
x,∗ satisfies LLN with slope

v if the sequence of its marginals νk(·) = µ{γ : γk ∈ ·} does.

We denote by Pm,+∞
x;κ (v) the set of all polymer measures at temperature κ on Sm,+∞

x,∗

satisfying SLLN with slope v. The set of all polymer measures at temperature κ on Sm,+∞
x,∗

satisfying LLN with slope v is denoted by P̃m,+∞
x;κ (v). These sets are random since they

depend on the realization of the environment, but we suppress the dependence on ω ∈ Ω in

this notation.

Theorem 1.4.3. Let v ∈ R and κ > 0. Then there is a full-measure set Ωv;κ ∈ F such that

1. For all ω ∈ Ωv;κ and all (m,x) ∈ Z× R, there is a polymer measure µm,+∞
x;κ (v) such that

Pm,+∞
x;κ (v) = P̃m,+∞

x;κ (v) = {µm,+∞
x;κ (v)}.
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The finite-dimensional distributions of µm,+∞
x;κ (v) are absolutely continuous.

2. For all ω ∈ Ωv;κ, all (m,x) ∈ Z× R, and for every sequence of measures (νn) satisfying

LLN with slope v, finite-dimensional distributions of µm,n
x,νn;κ converge to µm,+∞

x;κ (v) in total

variation.

In other words, with probability one, there is a unique infinite-volume polymer measure

with prescribed endpoint and slope. Moreover, this infinite-volume measure can be obtained

via a thermodynamic limit, i.e., as a limit of finite volume polymer measures.

A similar result was obtained in [GRASY15] for a model called log-gamma polymers.

The log-gamma polymer describes a random walk in a certain random potential on the

lattice Z2. Compared to that model, the one that we study has several features that make

the analysis harder. Namely, in our model, the space is continuous and the increments of

the polymer paths are not uniformly bounded. Moreover, our model does not give rise to

explicit computations that are possible for the log-gamma polymer, so we have to rely only

on estimates. Of course, a very useful feature of our model is that the free energy function is

exactly computed in Theorem 1.4.1 (except an unknown additive constant), it is quadratic

and thus strongly convex.

Note that we prove the thermodynamic limit not just for point-to-point polymers, but also

for more general point-to-measure polymers. This can be done for the log-gamma polymers

as well. In [GRASY15], similar results on point-to-line polymers are established for terminal

conditions on the line given by a linear tilt function. Our results on pullback attraction in

Section 1.10 allow to state a version of such a result in our setting, with more general tilt

functions that are required to be only asymptotically linear.

Tightly connected to the thermodynamic limit results in [GRASY15] are results on

the limits of ratios of partition functions. Logarithms of these limiting ratios are polymer

counterparts of Busemann functions that compare actions of infinite geodesics to each other
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in zero-temperature models such as FPP/LPP or zero-viscosity Burgers equation, see [HN01],

[CP12], [BCK14], [Bak16], [GRAS16], [GRS15], [DH14], [DH17] and [AHD15], which is

a recent survey on FPP. In [GRAS16] and [RSY16], a variational approach to ratios of

partition functions is described. It should be noted that in [GRS15] and [DH14], [DH17],

some differentiablity assumptions on the shape function were used to study the semi-infinite

geodesic and the Busemann function.

We also prove a result on limits of partition function ratios for our model:

Theorem 1.4.4. For every v ∈ R and κ > 0, there is a full measure set Ω′
v,κ such that

for all ω ∈ Ω′
v,κ, for all (n1, x1), (n2, x2) ∈ Z × R, and for every sequence of numbers (yN)

with lim
N→∞

yN/N = v, we have

lim
N→∞

Zn1,N
x1,yN ;κ

Zn2,N
x2,yN ;κ

= G,

where G = Gv,κ,ω

(
(n1, x1), (n2, x1)

)
∈ (0,∞) does not depend on the sequence (yN ). Moreover,

G has the property that that for any (ni, xi) ∈ Z× R, i = 1, 2, 3,

Gv,κ

(
(n1, x1), (n2, x2)

)
Gv,κ

(
(n2, x2), (n3, x3)

)
= Gv,κ

(
(n1, x1), (n3, x3)

)
, (1.4.5)

Gv,κ

(
(n1, x1), (n2, x2)

)
=
[
Gv,κ

(
(n2, x2), (n1, x1)

)]−1

.

These infinite-volume polymer measures and partition function ratios give the global

solutions for the viscous Burgers as the following theorem states. We will use πn to denote

the projection of a polymer measure onto the n-th coordinate.

Theorem 1.4.5. The function Gv;κ satisfies the following relation: fixing (n0, x0) ∈ Z× R,

Gv;κ

(
(n, x), (n0, x0)

)
=

∫
R
Zn,m

x,y;κGv;κ

(
(m, y), (n0, x0)

)
, m > n, x ∈ R. (1.4.6)

Moreover, the logarithmic derivative of G gives the global solutions for the viscous Burgers.
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Namely, let Uv;κ(n, ·) = −κ lnGv,κ

(
(n, ·), (n, 0)

)
. Then

uv;κ(n, x) :=
d

dx
Uv;κ(n, x) =

∫
(x− y)µn,+∞

x;v,κ π
−1
n+1(dy), (n, x) ∈ Z× R, (1.4.7)

is a global solution of (1.1.5) on H′(v, v) and satisfies all the properties stated in Theorem 1.3.1.

In Section 1.10.5, we use the result on convergence of partition function ratios to derive a

version of hyperbolicity property for the polymer case. Namely, we show that the marginals

of any two polymer measures with the same slope are asymptotic to each other:

Theorem 1.4.6. Let v ∈ R. On a full measure event Ω′
v,κ, for any (n1, x1), (n2, x2) ∈ Z×R,

we have

lim
N→∞

∥µn1,+∞
x1;κ

(v)π−1
N − µn2,+∞

x2;κ
(v)π−1

N ∥TV = 0,

where ∥ · ∥TV denotes the total variation distance.

Since the marginals µni,+∞
xi;κ

(v)π−1
N define the entire measure µni,+∞

xi;κ
(v) uniquely due to

the Markovian character of nearest neighbor interactions encoded in the action functional, a

stronger statement on overlap of measures on paths also follows immediately.

1.5 Inviscid limit

In this section we will state our results on the zero-temperature limit of the infinite-volume

polymer measures and the inviscid limit of the global solutions of viscous Burgers. Let us

first summarize the results on semi-infinite minimizers established in [Bak16] in the following

theorem. They are parallel to Theorems 1.4.3, 1.4.4 and 1.4.5 in section 1.4.2. Originally,

these results were established in [Bak16] for a specific random potential of shot-noise type,

but it is easy to see that they hold true for any potential satisfying assumptions (A1)–(A5)

26



under the additional requirement of finite dependence range. It is also natural to expect that

they hold for a much broader class of mixing potentials.

Theorem 1.5.1 (Theorem 3.3, Lemma 9.3 in [Bak16]). Suppose that assumptions (A1)–(A5)

are satisfied and F has finite dependence range. Then for every v ∈ R, there is a full measure

set Ωv,0 such that the following properties hold:

1. For all ω ∈ Ωv,0, there is an at most countable set N = Nω ∈ Z × R such that for

all (m,x) ̸∈ N , there is a unique minimizer γm,+∞
x (v) ∈ Sm,+∞

x,∗ (v).

2. (Busemann function) Let ω ∈ Ωv,0. For (n1, x1), (n2, x2) ∈ Z × R, there is sequence

Nk ↑ +∞ such that the limit

Bv

(
(n1, x1), (n2, x2)

)
= lim

k→∞
An1,Nk

(
γn1
x1
(v)
)
− An2,Nk

(
γn2
x2
(v)
)

(1.5.1)

exists. Here, if the semi-infinite minimizer is not unique at (ni, xi), then γni
xi
(v) can be

any minimizer in Sni,∞
xi,∗ (v), i = 1, 2. Moreover, if the limit in (1.5.1) exists for some

other sequence (N ′
k), then it is independent of the choice of (N ′

k). The function Bv has the

property that for any (ni, xi) ∈ Z× R,

Bv

(
(n1, x1), (n2, x2)

)
+Bv

(
(n2, x2), (n3, x3)

)
= Bv

(
(n1, x1), (n3, x3)

)
, (1.5.2)

Bv

(
(n1, x1), (n2, x2)

)
= −Bv

(
(n2, x2), (n1, x1)

)
.

3. The function Uv;0(n, ·) = −Bv

(
(n, ·), (n, 0)

)
is Lipschitz, and is differentiable at all

(n, x) ̸∈ N . The derivative is given by

uv;0(n, x) :=
d

dx
Uv;0(x) = x−

(
γn,+∞
x (v)

)
n+1

. (1.5.3)
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4. (Solution to inviscid Burgers and HJB equations) The function Bv solves the following

variational problem: for m > n and fixed (n0, x0) ∈ Z× R,

Bv

(
(n, x), (n0, x0)

)
= min

y∈R
{Bv

(
(m, y), (n0, x0)

)
+ An,m(x, y)}. (1.5.4)

In particular, the function uv;0 introduced in (1.5.3) solves the inviscid Burgers equation.

Our first result concerns the zero-temperature limit of infinite-volume polymer measures:

Theorem 1.5.2. Let v ∈ R. With probability one, the following holds true:

1. For all v ∈ R, all κ ∈ (0, 1] and all (m,x) ∈ Z× R, Pm,+∞
x;κ (v) ̸= ∅.

2. Let v ∈ R and (m,x) ∈ Z×R. Then the family of probability measures (Pm,+∞
x;κ (v))κ∈(0,1]

on Sm,+∞
x,∗

∼= RN is tight.

3. (Zero-temperature limit) For fixed v ∈ R and (m,x) ∈ Z × R, let µκ ∈ Pm,+∞
x;κ (v),

κ ∈ (0, 1]. Then, any limit point µ of
(
µκ

)
as κ ↓ 0 concentrates on semi-infinite

minimizers on Sm,+∞
x,∗ (v). In particular, if Sm,+∞

x,∗ contains only one element γ, then µ is

the δ-measure on γ.

Given v ∈ R, Theorem 1.4.3 says that at every fixed temperature κ > 0, there is a

full measure set Ωv;κ on which Pm,+∞
x,κ (v) contains a unique element. However, we cannot

guarantee the existence of a common full measure set on which this holds for all values of κ

simultaneously. Nevertheless, in Theorem 1.5.2, using a compactness argument we are able

to find a full measure set on which Pm,+∞
x,κ (v) is always nonempty for all v ∈ R, but may

potentially contain more than one element. If one considers only countably many values of κ,

then this difficulty with common exceptional sets does not arise. This approach is used in

the next result.
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Let us now state our main theorem on the inviscid limit of the global solutions of Burgers

equation. In addition to (A1)–(A5), in this section we also assume the potential F has

the property such that conclusions of Theorem 1.5.1 hold true (see the discussion before

Theorem 1.5.1), so that the global solution for inviscid Burgers is unique. To state this

result, we need to specify the topology in which the solutions converge. We recall from

Lemma 1.3.1 that if u(n, x) is a solution to the Burgers equation with viscosity κ ≥ 0,

then x− u(n, x) is non-decreasing. For this reason, it is natural to consider the space G of

cadlag (i.e., right-continuous with left limits) functions u such that x−u(x) is non-decreasing.

The monotonicity allows to define G-convergence of a sequence of functions un ∈ G to a

function u ∈ G as convergence un(x) → u(x), n→ ∞, for every continuity point x of u. The

space G was first introduced in [Bak16].

Theorem 1.5.3. Let v ∈ R and fix a countable set D ⊂ (0, 1] that has 0 as its limit point.

Then there exists a full measure set Ω̂v ⊂ Ωv;0 ∩
⋂

κ∈D Ωv;κ such that the following holds true:

1. Zero-temperature limit for directed polymers. For every (m,x) ̸∈ N , as D ∋ κ→ 0,

µm,+∞
x;v,κ converge to δγm

x (v) weakly. Here, N is the random subset of Z× R introduced in

part (1) of Theorem 1.5.1.

2. Inviscid limit for stationary solutions of the Burgers equation. For every n ∈ Z,

uv;κ(n, ·) → uv;0(n, ·) in G as D ∋ κ → 0, where uv;κ are the global solutions defined

in (1.4.7) for κ > 0 and in (1.5.3) for κ = 0.

3. Inviscid limit for Busemann functions and global solutions of the HJB equation.

For all (n1, x1), (n2, x2) ∈ Z× R,

lim
D∋κ→0

−κ lnGv;κ

(
(n1, x1), (n2, x2)

)
= Bv

(
(n1, x1), (n2, x2)

)
.

In the proof of these results, we utilize a uniform straightness estimate that eventually
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gives tightness of polymer measures at all temperatures, which is unclear a priori due to the

noncompactness of R. An essential feature of our model will be used in the argument, namely,

that our shape function ακ(v) (introduced in Theorem 1.4.1) is quadratic and hence it satisfies

the uniform curvature assumption. The uniform curvature assumption, first introduced in

[New95] (before the statement of Theorem 1.1 therein), is the following property in our

setting: for some constants c, σ > 0,

ακ(v) ≥ ακ(v0) + c(v − v0)
σ, v0, v ∈ R. (1.5.5)

Our approach can also work with a slightly weakened version of (1.5.5): for some constants

c, σ, h0 > 0, and 0 < λ ≤ λ̄ < 1,

λακ(v0 +
h

λ
) + (1− λ)ακ(v0 −

h

1− λ
) ≥ ακ(v0) + chσ, v0 ∈ R, λ ∈ [λ, λ̄], |h| < h0. (1.5.6)

If (1.5.6) is satisfied in the neighborhood of v0, then Theorem 1.5.2 holds true for v = v0;

if (1.5.6) is satisfied in the neighborhoods of v1 and v2 (v1 < v2), then the statement in

Theorem 1.5.2 holds true if we replace Pm,+∞
x;κ (v) by Pm,+∞

x;κ ([v1, v2]), where Pm,+∞
x;κ ([v1, v2]) is

the set of polymer measures at temperature κ satisfying

µ({γ : v1 ≤ lim inf
n→∞

γn/n ≤ lim sup
n→∞

γn/n ≤ v2}) = 1.

The assumption and method here can also be extended to higher dimensions.

Theorem 1.5.3 will follow from Theorem 1.5.2 and the uniqueness of semi-infinite mini-

mizers or polymer measures with given slope v, established in [Bak16] and in Theorem 1.4.3.

The proof of uniqueness is based on the shear invariance (due to the quadratic kinetic action

and the fact that the model is defined in continuous space) and the monotonicity available in

one dimension. Hence it is not clear how to generalize it to other models.
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From part (2) of Theorem 1.5.3, one can derive convergence of the invariant distributions

of the Markov semigroup associated with viscous stochastic Burgers equation to those for the

inviscid equation. Such convergence would have been easy to establish using a result in the

spirit of Proposition 1.2(3) in [You86] had there existed a foliation of G into closed ergodic

components such that each of them supports a unique invariant distribution for all values of κ

and tightness holds for these distributions. However, the situation is more difficult and to

follow this path one has to deal with problems stemming from the noncompactness of R. For

example, spaces H′(v, v) that the invariant measures are concentrated on are not closed in G

(in fact, each of them is dense in G). Also, the level of complexity of the required tightness

estimates is similar to that of the estimates we prove in this paper to establish more delicate

results such as Theorem 1.5.3.

1.6 Properties of the partition function

We begin with a lemma on the behavior of distributional properties of partition functions

under shift and shear transformations of space-time. We write
d
= to denote identity in

distribution.

Lemma 1.6.1. Let κ ∈ (0, 1]. For any m,n ∈ Z satisfying m < n and any points x, y ∈ R,

Zn+l,m+l
κ (x+∆, y +∆)

d
=Zn,m

κ (x, y).

Also, for any v ∈ R,

Z0,n
κ (0, vn)

d
=e−κ−1 v2

2
nZ0,n

κ (0, 0). (1.6.1)

Proof: The first statement of the lemma follows from the space-time stationarity of F . For

the second claim, let us make a change of variables xk = x′k + kv for k = 0, . . . , n in (1.4.1),

to obtain the following integral (x0 = 0 and xn = vn are fixed, i.e., x′ = 0 and x′n = 0 are
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fixed):

Z0,n
κ (0, vn) =

∫
e
−κ−1

n∑
k=1

[
1
2
(x′

k−x′
k−1+v)2+Fk(x

′
k+kv)

]
δ0(dx

′
0)dx

′
1 . . . dx

′
n−1δ0(dx

′
n)

d
=

∫
e
−κ−1

n∑
k=1

[
1
2
(x′

k−x′
k−1+v)2+Fk(x

′
k+kv)

]
δ0(dx

′
0)dx

′
1 . . . dx

′
n−1δ0(dx

′
n). (1.6.2)

due to the i.i.d. property and the spatial stationarity of F . Now notice that

n∑
k=1

1

2
(x′k − x′k−1 + v)2 =

1

2

n∑
k=1

(x′k − x′k−1)
2 + v

n∑
k=1

(x′k − x′k−1) +
n

2
n2

=
1

2

n∑
k=1

(x′k − x′k−1)
2 +

n

2
n2.

since
n∑

k=1

(x′k − x′k−1) = x′n − x′0 = 0.

Plugging this into (1.6.2), we obtain (2.3.48) and the proof is completed. □

It is easy to extend this lemma to obtain the following:

Lemma 1.6.2. Let κ ∈ (0, 1] and Zv;κ(n) = e
1
κ

v2

2
nZ0,n

κ (0, vn), n ∈ N, v ∈ R. Then the

distribution of the process Zv;κ(·) does not depend on v. Also, for every n ∈ N, the process

Z̄n;κ(x) = e
1
κ

x2

2
nZ0,n

κ (0, x), x ∈ R, is stationary in x.

Next we will prove Theorem 1.4.1. We will prove the statement for Ẑ instead. For the

proof of the theorem we will take κ = 1 and suppress all the dependency on κ. Let us

introduce an auxiliary function

Ẑm,n
∗ (x, y) = min

|∆x|,|∆y|<1/2
Ẑm,n(x+∆x, y +∆y).
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Lemma 1.6.3. The process Ẑ∗ is super-multiplicative, i.e.,

Ẑn1,n3
∗ (x, z) ≥ Ẑn1,n2

∗ (x, y)Ẑn2,n3
∗ (y, z).

Equivalently, ln Ẑ∗ is super-additive, i.e.,

ln Ẑn1,n3
∗ (x, z) ≥ ln Ẑn1,n2

∗ (x, y) + ln Ẑn2,n3
∗ (y, z).

Proof: Let |x′ − x|, |z′ − z| < 1/2. Then

Ẑn1,n3(x′, z′) =

∫
y′∈R

Ẑn1,n2(x′, y′)Ẑn2,n3(y′, z′)dy′

≥
∫
y′:|y′−y|<1/2

Ẑn1,n2(x′, y′)Ẑn2,n3(y′, z′)dy′

≥ Ẑn1,n2
∗ (x, y)Ẑn2,n3

∗ (y, z),

and the lemma follows. □

Lemma 1.6.4. For any m,n ∈ Z satisfying m < n and any x, y ∈ R,

EẐm,n(x, y) = λn−mgn−m(y − x),

where λ = Ee−F0(0) <∞ according to (A4).

Proof: We can use Fubini’s theorem and the i.i.d. property of (Fk) to write

EẐm,n(x, y) =

∫
R
· · ·
∫
R

n−1∏
k=m

[g(xk+1 − xk)Ee
−Fk(xk)]dxm+1 . . . dxn−1

= λn−mgn−m(y − x),

where we also used the convolution property of Gaussian densities. □
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Lemma 1.6.5. For any v ∈ R, there is α(v) ∈ R such that

ln Ẑ0,n
∗ (0, nv)

n

a.s.−→α(v), n→ ∞.

Proof: Due to Lemma 1.6.3 and Kingman’s sub-additive ergodic theorem, it suffices to

check that for every v ∈ R, there is C(v) > 0 such that

E ln Ẑ0,n
∗ (0, nv) < C(v)n, n ∈ N.

This follows from Jensen’s inequality and Lemma 1.6.4:

E ln Ẑ0,n
∗ (0, nv) ≤ lnEẐ0,n(0, nv) ≤ n lnλ− (nv)2

2n
− 1

2
ln(2π)− 1

2
lnn,

and the proof is completed. □

Proof of Theorem 1.4.1: Due to Lemma 1.6.2, it is sufficient to prove the theorem

for v = 0. Lemma 1.6.5 and the inequality Ẑ0,n(0, 0) ≥ Ẑ0,n
∗ (0, 0) imply that it suffices to

check

lim sup
n→∞

(
ln Ẑ0,n(0, 0)

n
− ln Ẑ0,n

∗ (0, 0)

n

)
≤ 0. (1.6.3)

For this, we need to see that Ẑ0,n(0, 0)/Ẑ0,n
∗ (0, 0) is bounded by a function that grows

sub-exponentially in n.

First we note that there is q > 0 such that

lim inf
n→∞

Ẑ0,n
∗ (0, 0)

qn
a.s.
> 0. (1.6.4)
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To see this, it is sufficient to notice that for every x, y ∈ [−1/2, 1/2],

Ẑ0,n(x, y) ≥
∫
[−1/2,1/2]

. . .

∫
[−1/2,1/2]

ḡne−
∑n−1

k=0 F̄kdx1 . . . dxn−1,

where

ḡ = g(1) = min
|z1|,|z2|<1/2

g(z1 − z2),

F̄k = max
|z|<1/2

Fk(z), k ≥ 0,

and apply the SLLN to the partial sums of i.i.d. sequence (F̄k)k≥0.

To compare Ẑ0,n(0, 0) to Ẑ0,n
∗ (0, 0), let us take rn = n3/4, introduce sets A−1 = A−1(n) =

(−∞, rn], A0 = A0(n) = [−rn, rn], A1 = A1(n) = [rn,∞), and write

Ẑ0,n(0, 0) =
∑

i,j∈{−1,0,1}

Bn
ij(0, 0),

where

Bn
ij(x, y) =

∫
x1∈Ai

∫
xn−1∈Aj

Ẑ0,1(x, x1)Ẑ
1,n−1(x1, xn−1)Ẑ

n−1,n(xn−1, y)dx1dxn−1.

We need to estimate Bn
ij(0, 0)/Ẑ

0,n
∗ (0, 0) = Bn

ij(0, 0)/Ẑ
0,n(x∗, y∗), where points x∗ and y∗

provide minimum in the definition of Ẑ0,n
∗ (0, 0).

Let us estimate Bn
11(0, 0) and B

n
10(0, 0) first.

By the Fubini theorem and the convolution property of Gaussian densities,

E[Bn
11(0, 0) +Bn

10(0, 0)] ≤ λn
∫
A1

∫
A1∪A0

g(x1)gn−2(xn−1 − x1)g(−xn−1) dx1 dxn−1.
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Since gn−2(z) ≤ 1 for all z ∈ R and g is a probability density, we conclude that

E[Bn
11(0, 0) +Bn

10(0, 0)] ≤ λn
∫
A1

∫
A0∪A1

g(x1)g(−xn−1) dx1 dxn−1

≤ λn
∫
A1

g(x) dx ≤ λnP{N > rn} ≤ λn
1

(2π)1/2rn
e−r2n/2,

where N is a standard Gaussian random variable.

So, for any ρ > 0,

P{Bn
11(0, 0) +Bn

10(0, 0) > ρn} ≤ ρ−nE[Bn
11(0, 0) +Bn

10(0, 0)] ≤
λn

ρn
1

(2π)1/2rn
e−r2n/2.

Here, the last factor decays super-exponentially, and the Borel–Cantelli Lemma implies that

for any ρ > 0,

lim
n→∞

Bn
11(0, 0) +Bn

01(0, 0)

ρn
a.s.
= 0. (1.6.5)

Combining (1.6.5) with (1.6.4) and applying the same reasoning to all terms Bn
ij with

|i|+ |j| ≠ 0, we obtain

lim
n→∞

∑
|i|+|j|̸=0B

n
ij(0, 0)

Ẑ0,n
∗ (0, 0)

a.s.
= 0. (1.6.6)

It remains to estimate B00(0, 0):

Bn
00(0, 0)

Ẑ0,n(x∗, y∗)
≤ Bn

00(0, 0)

Bn
00(x∗, y∗)

≤ max
x1,xn−1∈A0(n)

Ẑ0,1(0, x1)Ẑ
n−1,n(xn−1, 0)

Ẑ0,1(x∗, x1)Ẑn−1,n(xn−1, y∗)

≤ max
x1,xn−1∈A0(n)

g(x1)e
−F0(0)g(−xn−1)e

−Fn−1(xn−1)

g(x1 − x∗)e−F0(x∗)g(y∗ − xn−1)e−Fn−1(xn−1)

≤ max
x1,xn−1∈A0(n)

e−F0(0)+F0(x∗)e(x
2
∗+y2∗)/2e−x∗x1−y∗x2

≤ C1(ω)e
rn (1.6.7)
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for some random constant C1(ω) and all n ≥ 2. □

Combining (1.6.6) and (1.6.7), we obtain (1.6.3) and finish the proof of Theorem 1.4.1.

□

The counterparts of Lemma 1.6.1 and Theorem 1.4.1 for the inviscid case were established

in [Bak16]. Let us briefly summarize them. We recall that Am,n(x, y) defined in (1.2.7). We

have the following:

Theorem 1.6.1. 1. For any l ∈ Z and ∆ ∈ R,

Am+l,n+l(x+∆, y +∆)
d
=Am,n(x, y).

2. For any v ∈ R, −A0,n(0, vn)
d
=− A0,n(0, 0)− v2

2
n.

3. There is a constant α0,0 ∈ R such that for any v ∈ R,

lim
n→∞

−A0,n(0, vn)

n
a.s.
=α0(v) := α0,0 −

v2

2
.

The following lemma is about the smoothness of the point-to-point partition function

with respect to the end points.

Lemma 1.6.6. Let m < n. For all ω and κ > 0, the point-to-point partition function

Zm,n
κ (x, y) is C∞ in x and as smooth as Fn(y) in y. Moreover, partial derivatives of Zm,n

κ (x, y)

can be obtained by differentiation under the integral in (1.4.1).

Proof: For simplicity we set κ = 1. If n−m = 1, the claim is obvious. If n−m ≥ 2, it

suffices to show that

eFn(y)Zm,n
1 (x, y) =

∫
f(x, y, xm+1, . . . , xn−1) dxm+1 . . . dxn−1
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is smooth in x and y, where

f(x, y, xm+1, . . . , xn−1) = e−
1
2
(x−xm+1)2− 1

2
(xn−1−y)2

n−1∏
k=m+1

e−
1
2
(xk+1−xk)

2−Fk(xk).

By (1.2.5), we can find a constant c such that if m+ 1 ≤ k ≤ n− 1, then |Fk(z)| ≤ c(|z|+ 1)

for all z. The lemma follows from

∫ ∣∣∣∣ ∂i∂xi ∂j∂yj f(x, y, xm+1, . . . , xn−1)

∣∣∣∣ dxm+1 . . . dxn−1

≤
∫
cicj
(
|x− xm+1|i + 1

)(
|y − xn−1|j + 1

)
· e−

1
2
(x−xm+1)2− 1

2
(xn−1−y)2

n−1∏
k=m+1

e−
1
2
(xk+1−xk)

2+c(|xk|+1) dxm+1 . . . dxn−1 <∞,

where ci are absolute constants. □

As a corollary, we have

Lemma 1.6.7. Let m,n < k. Then Zm,k
κ (x, z)/Zn,k

κ (y, z) is C∞ in x, y and z.

This means that our asymmetry in defining the action (see also the discussion after (1.2.7))

will not affect the smoothness of expressions of the form Zm,k
κ (x, z)/Zn,k

κ (y, z).

1.7 Concentration inequality for free energy

The aim of this section is to prove Theorem 1.4.2. In conjunction with the convexity of

the shape function, it will help us to establish straightness estimates.

1.7.1 A simpler concentration inequality

The first step in proving Theorem 1.4.2 is to obtain a concentration of pn(κ) around its

expectation.
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Lemma 1.7.1. There are positive constants b0, b1, b2, b3 such that for all n ≥ b0, all κ ∈ [0, 1]

and all u ∈ (b3, n lnn],

P
{
|pn(κ)− Epn(κ)| ≤ u

}
≥ 1− b1 exp

{
−b2

u2

n ln2 n

}
.

The first step is to approximate pn(κ) with a truncated version p̃n(κ) that depends on

the random potential only in a finite box of size O(n). This is done in Lemmas 1.7.2—1.7.8.

The second step is to prove a concentration inequality for p̃n(κ), using the idea of resampling

the potential and Azuma’s inequality, which is done in Lemmas 1.7.9—1.7.12. However,

an important point here is choosing the constants bi uniformly over all κ ∈ [0, 1], though

the event on the left-hand side is still defined for an arbitrary but fixed κ. Moving the

condition κ ∈ [0, 1] inside the event will be done in section 1.7.2.

For m < n, we define

Σm,n(γ) =

[ n∑
j=m+1

(
γj − γj−1

)2 − (γn − γm)
2

n−m

]1/2
.

The function Σm,n(·) compares the action of a path γ between time m and n to the action

of the straight line connecting (m, γm) and (n, γn). It is also easy to check that Σm,n(·) is

invariant under space translations and shear transformations, namely, for any path γ,

Σm,n(γ) = Σm,n(θ0,xγ) = Σm,n(Lvγ), v, x ∈ R.

The next lemma summarizes various estimates which reflect the idea that with high

probability, polymer measures assign small weights to the paths that have large values of

Σm,n(γ), that is, paths with high kinetic energy. To state the lemma, we need some more

notations.
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Let us define the set of paths

Em,n
s =

{
γ ∈ S−∞,∞

∗,∗ :
1√

n−m
Σm,n(γ) ∈ [s, s+ 1)

}
, s ∈ Z. (1.7.1)

For a Borel set B ⊂ Rn−m−1, let us define

Zm,n
x,y;κ(B) =

∫
R×B×R

e−κ−1Am,n(xm,...,xn) δx(dxm)dxm+1 . . . dxn−1δy(dxn). (1.7.2)

Let πm,n denote the restriction of a vector or sequence onto the time interval [m,n]Z. For a

Borel set D ⊂ R∞ = S−∞,∞
∗,∗ , we define

µm,n
x,y;κ(D) = µm,n

x,y;κ(πm,nD), Zm,n
x,y;κ(D) = Zm,n

κ (x, y,D) = Zm,n
x,y;κ µ

m,n
x,y;κ(D).

Lemma 1.7.2. Let n ≥ 2. There are constants d1 > 0, R1 > 0 such that if s, s′ ≥ R1, then

the following statements hold:

P
{
Z0,n

x,y;κ([0, 1]
n−1) > 2−κ−1·sn, x, y ∈ [0, 1], κ ∈ (0, 1]

}
≥ 1− e−d1sn, (1.7.3)

P
{
Z0,n

x,y;κ(E
0,n
s′ ) ≤ 2−κ−1·2s′n−1, x, y ∈ [0, 1], κ ∈ (0, 1]

}
≥ 1− e−d1s′n, (1.7.4)

P
{
Z0,n

x,y;κ

( ⋃
s′≥s

E0,n
s′

)
≤ 2−κ−1·2sn, x, y ∈ [0, 1]; κ ∈ (0, 1]

}
≥ 1− 2e−d1sn, (1.7.5)

P
{
µ0,n
x,y;κ

( ⋃
s′≥s

E0,n
s′

)
≤ 2−κ−1·sn, x, y ∈ [0, 1], κ ∈ (0, 1]

}
≥ 1− 3e−d1sn, (1.7.6)

P

{
µ0,n
x,y;κ

{
γ :

1

n
max
0≤j≤n

|γj| ≥ s
}
≤ 2−κ−1·sn, x, y ∈ [0, 1], κ ∈ (0, 1]

}
≥ 1− 3e−d1sn.

(1.7.7)

Proof: It suffices to show (1.7.3) and (1.7.4). Then (1.7.5) will follow from (1.7.4) by

summing over integer s ≥ s′, and (1.7.6) from (1.7.3) and (1.7.5). Finally, the convexity
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of z 7→ z2 and Jensen’s inequality imply that for all γ ∈ S0,n
x,y and all x, y ∈ [0, 1],

[Σ0,n(γ)
]2 ≥ n∑

j=1

|γj − γj−1|2 −
1

n
≥ 1

n

( n∑
j=1

|γj − γj−1|
)2

− 1

n

≥ 1

n

[
2
(

max
1≤j≤n−1

|γj| − 1
)
+

]2
− 1

n
.

Therefore, when s is large, max
1≤j≤n−1

|γj| ≥ sn implies Σ0,n(γ) ≥ s
√
n, so (1.7.7) holds.

By definition (1.7.2), we have

Z0,n
x,y;κ([0, 1]

n−1) ≥ e−κ−1[n/2+F ∗
ω(0,...,0)], x, y ∈ [0, 1],

where F ∗
ω(i1, ..., in) =

∑n
j=1 F

∗
ω(j, ij) (see (1.2.3) for the definition of F ∗

ω). So, for all x, y ∈

[0, 1], κ ∈ (0, 1],

{
ω : Z0,n

x,y;κ([0, 1]
n−1) < 2−κ−1·sn} ⊂

{
ω : n(s ln 2− 1/2) < F ∗

ω(0, ..., 0)
}
. (1.7.8)

By Markov inequality, we have

P

{
F ∗
ω(0, ..., 0) > r

}
≤ e−ηrEe

∑n
j=1 ηF

∗
ω(j,0) ≤ e−ηr

(
EeηF

∗
ω(0,0)

)n
. (1.7.9)

Combining (1.7.8) and (1.7.9), we obtain (1.7.3): for sufficiently large s,

P
{
Z0,n

x,y;κ([0, 1]
n−1) > 2−κ−1·sn, x, y ∈ [0, 1];κ ∈ (0, 1]

}
≥1− P

{
ω : n(s ln 2− 1/2) < F ∗

ω(0, ..., 0)
}

≥1− e−n·η
(
s ln 2−1/2)

(
EeηF

∗
ω(0,0)

)n
.
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Next we turn to (1.7.4). In proving this, we will write s instead of s′. Let us define

Sn
s = {(i1, ..., in−1) : ∃γ ∈ Ẽ0,n

s , x, y ∈ [0, 1] s.t. [γj] = ij, 1 ≤ j ≤ n− 1},

where Ẽ0,n
s = E0,n

s ∩
(⋃

x,y∈[0,1] S
0,n
x,y

)
. Then we have

Z0,n
x,y;κ(E

0,n
s ) ≤ |Sn

s |e
κ−1
(
− 1

2
s2n+F ∗

ω,n,s

)
, x, y ∈ [0, 1], κ ∈ (0, 1], (1.7.10)

where F ∗
ω,n,s = max{F ∗

ω(i1, .., in−1, 0) : (i1, ..., in−1) ∈ Sn
s }.

We need to estimate the size of Sn
s . For 1 ≤ j ≤ n, let us define kj = γj − γj−1

and k̃j = [γj]− [γj−1]. Clearly, |kj− k̃j| ≤ 2. If γ ∈ Ẽ0,n
s , then the Cauchy–Schwarz inequality

implies
n∑

j=1

|kj| ≤
√
n

√√√√ n∑
j=1

k2j ≤
√

(s+ 1)n2 + n.

Comparing
∑n

j=1 k
2
j and

∑n
j=1 k̃

2
j , we obtain

∣∣∣∣ n∑
j=1

k2j −
n∑

j=1

k̃2j

∣∣∣∣ ≤ n∑
j=1

|kj − k̃j||kj + k̃j| ≤ 2
n∑

j=1

(2|kj|+ 2) ≤ 8sn.

Therefore, γ ∈ Ẽ0,n
s implies that

n∑
j=1

k̃2j ≤ (s+ 1)2n+ 8sn =: [rs(n)]
2. (1.7.11)

The size of Sn
s is bounded by the number of n-vectors (k̃0, ..., k̃n−1) satisfying (1.7.11), which

is then bounded by the volume of n-dimensional ball of radius rs(n) +
√
n
2
. (To obtain this

estimate, we consider unit cubes centered at integer points, with half diagonal lengths
√
n
2
.)
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Hence, when s is large,

|Sn
s | ≤

πn/2

Γ(n/2 + 1)

(
r(n) +

√
n

2

)n
≤ πn/2

Γ(n/2 + 1)
· (K1s

√
n)n ≤ e(ln s+K2)n, (1.7.12)

where K1, K2 are constants and we used ln Γ(z) = z ln z − z +O(ln z), z → ∞.

Combining (1.7.10) and (1.7.12) , we see that for x, y ∈ [0, 1], κ ∈ (0, 1] and large s,

{
ω : Z0,n

x,y;κ(E
0,n
s ) > 2−κ−1·2sn−1

}
⊂
{
ω : −1

2
s2n+ F ∗

ω,n,s + κ ln |Sn
s | > −2sn− κ

}
⊂
{
ω : F ∗

ω,n,s >
1

2
s2n− 2sn− κ(1 + ln |Sn

s |)
}

⊂
{
ω : F ∗

ω,n,s > sn
}
. (1.7.13)

Since the distribution of F ∗
ω(i0, ..., in−1) is independent of the choice of the vector (i0, ..., in−1),

we obtain that for any r > 0,

P{F ∗
ω,n,s > r} ≤ |Sn

s |P{F ∗
ω(0, ..., 0) > r}. (1.7.14)

Combining (1.7.9), (1.7.12), (1.7.10), (1.7.13), and (2.3.49), we see that

P

{
Z0,n

x,y;κ(E
0,n
s ) ≤ 2−κ−1·2sn−1, x, y ∈ [0, 1]; κ ∈ (0, 1]

}
≥1− |Sn

s |P{F ∗
ω,n,s > sn}

≥1− e(ln s+K2)ne−ηsn
(
EeηF

∗
ω(0,0)

)n
Choosing s large enough concludes the proof of (1.7.4). □

Let Em,n
≤R1

=
⋃

s≤R1
Em,n

s . The following lemma states that Z0,n
x,y;κ(E

0,n
≤R1

) cannot be large.
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Lemma 1.7.3. There is some constant d such that for sufficiently large t,

P
{
Z0,n

x,y;κ(E
0,n
≤R1

) ≤ eκ
−1tn−1, x, y ∈ [0, 1]; κ ∈ (0, 1]

}
≥ 1− e−dtn.

Proof: We will continue using the notations from the proof of Lemma 1.7.2. Let us

define Sn
≤R1

=
⋃

s≤R1
Sn
s . Similarly to (1.7.12) and (1.7.10), we have

|Sn
≤R1

| ≤ πn/2

Γ(n/2 + 1)

(
rR1(n) +

√
n/2
)n ≤ eK1n (1.7.15)

for some constant K1, and

Z0,n
x,y;κ(E

0,n
≤R1

) ≤ |Sn
≤R1

|eκ
−1F ∗

ω,n,≤R1 , x, y ∈ [0, 1]; κ ∈ (0, 1], (1.7.16)

where F ∗
ω,n,≤R1

= max{F ∗
ω(i1, ..., in−1) : (i1, ..., in−1) ∈ Sn

≤R1
}. Therefore, for x, y ∈ [0, 1],

κ ∈ (0, 1] and sufficiently large t,

{
ω : Z0,n

x,y;κ(E
0,n
≤R1

) > eκ
−1tn−1

}
⊂
{
ω : F ∗

ω,n,≤R1
+ κ ln |Sn

≤R1
| > tn− κ

}
⊂
{
ω : F ∗

ω,n,≤R1
> tn− κ(ln |Sn

≤R1
|+ 1)

}
⊂
{
ω : F ∗

ω,n,≤R1
> tn/2

}
.

Combining this with (1.7.9) and (1.7.15), we obtain

P
{
Z0,n

x,y;κ(E
0,n
≤R1

) ≤ eκ
−1tn−1, x, y ∈ [0, 1]; κ ∈ (0, 1]

}
≥1− P

{
ω : F ∗

ω,n,≤R1
> tn/2

}
≥1− |Sn

≤R1
|P
{
ω : F ∗

ω(0, ..., 0) > tn/2
}

≥1− e−(ηt/2−K1)n
(
EeηF

∗
ω(0,0)

)n
.
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Choosing t large enough concludes the proof. □

Combining (1.7.5) with s = R1 and Lemma 1.7.3, we obtain the following lemma.

Lemma 1.7.4. There are constants d2, R2 > 0 such that for all t ≥ R2,

P
{
Z0,n

x,y;κ ≤ eκ
−1tn, x, y ∈ [0, 1]; κ ∈ (0, 1]

}
≥ 1− e−d2tn.

Also, as a consequence of (1.7.15), we have the following upper bound for the Lebesgue

measure of E0,n
≤R1

.

Lemma 1.7.5. There is a constant d3 > 0 such that |E0,n
≤R1

| ≤ ed3n.

Using Lemma 1.7.4 and (1.7.3) of Lemma 1.7.2, we have estimates on all moments of the

logarithm of partition functions.

Lemma 1.7.6. There are constants M(p), p ∈ N, such that for all κ ∈ (0, 1] and any Borel

set B satisfying [0, 1]n−1 ⊂ B ⊂ Rn−1,

E|κ lnZ0,n
0,0;κ(B)|p ≤M(p)np.

Let us denote Z0,n
0,0;κ by Zn

κ .

Lemma 1.7.7. There is a constant D1 > 0 such that

0 ≤ κ
(
E lnZn

κ − E lnZn
κ (E

0,n
≤R1

)
)
≤ D1, n ∈ N, κ ∈ (0, 1].

Proof: The first inequality is obvious since Zn
κ (E

0,n
≤R1

) ≤ Zn
κ . Let

Λ = {Zn
κ (E

0,n
≤R1

)/Zn
κ ≤ 1− 2−κ−1R1n}.
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By (1.7.6) of Lemma 1.7.2, P(Λ) ≤ 3e−d1R1n. By Lemma 1.7.6, we have

E|κ lnZn
κ (E

0,n
≤R1

)|2 ≤M(2)n2, E|κ lnZn
κ |2 ≤M(2)n2.

The lemma then follows from

κ
(
E lnZn

κ − E lnZn
κ (E

0,n
≤R1

)
)

≤− κE ln
(
Zn

κ (E
0,n
≤R1

)/Zn
κ

)
1Λc + κE(| lnZn

κ |+ | lnZn
κ (E

0,n
≤R1

)|)1Λ

≤− κ ln(1− 2−κ−1R1n) + κ
√
2(E ln2 Zn

κ + E ln2 Zn
κ (E

0,n
≤R1

))
√
P(Λ)

≤| ln(1− 2−R1)|+
√
4M(2)n2 · 3e−d1R1n.

□

Let us define

p̃n(κ) =


κ lnZn

κ (E
0,n
≤R1

), κ ∈ (0, 1],

−min{A0,n(γ) : γ ∈ S0,n
0,0 ∩ E0,n

≤R1
}, κ = 0.

Clearly, p̃n(·) is continuous on [0, 1]. We recall that pn(·) defined in (1.4.3) is also continuous

on [0, 1]. Since Lemma 1.7.6 implies uniform integrability of
(
pn(κ)

)
κ∈(0,1] and

(
p̃n(κ)

)
κ∈(0,1],

we immediately obtain that both Epn(κ) and Ep̃n(κ) are continuous for κ ∈ [0, 1]. The next

lemma estimates how well p̃n(κ) approximates pn(κ).

Lemma 1.7.8. If n is sufficiently large, then for all κ ∈ [0, 1],

P
{
|pn(κ)− p̃n(κ)| ≤ 1, κ ∈ [0, 1]

}
≥ 1− 3e−d1R1n (1.7.17)
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and

|Epn(κ)− Ep̃n(κ)| ≤ D1, κ ∈ [0, 1]. (1.7.18)

Proof: Due to (1.7.6), we have

P
{
|pn(κ)− p̃n(κ)| ≤ | ln(1− 2−κ−1·R1n)|, κ ∈ (0, 1]

}
≥ P

{
µ0,n
0,0;κ

( ⋃
s′≥R1

E0,n
s′

)
≤ 2−κ−1·R1n, κ ∈ (0, 1]

}
≥ 1− 3e−d1R1n.

Then (1.7.17) follows from this and the continuity of pn and p̃n in κ. The second inequal-

ity (1.7.18) follows from Lemma 1.7.7 and the continuity of Epn and Ep̃n in κ. □

To obtain a concentration inequality for p̃n(κ), we need Azuma’s inequality:

Lemma 1.7.9. Let (Mk)0≤k≤N be a martingale with respect to a filtration (Fk)0≤k≤N . Assume

there is a constant c such that |Mk −Mk−1| ≤ c, 1 ≤ k ≤ N . Then

P {|MN −M0| ≥ x} ≤ 2 exp

(
−x2

2Nc2

)
.

To apply Azuma’s inequality, we need to introduce an appropriate martingale with

bounded increments. The function p̃n(κ) depends only on the potential process on B =

{1, . . . , n}× [−R1n,R1n] since π
1,nEn

≤R1
⊂ [−R1n,R1n]

n, so we need an additional truncation

of the potential on B. Moreover, the truncation should be independent of κ.

Let b > 4/η, where η is taken from the condition (A5). For 1 ≤ k ≤ n and x ∈ [−R1n,R1n],

we define (suppressing the dependence on n for brevity)

ξk = max{F ∗
k (j) : j = −R1n,−R1n+ 1, ..., R1n− 1}, k = 0, . . . , n,
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F̄k(x) =


0, ξk ≥ b lnn,

Fk(x), otherwise,

and setting x0 = xn = 0,

p̃n(κ, F̄ ) =
κ ln

∫
π0,nE

0,n
≤R1

n∏
j=1

gκ(xj − xj−1)e
−κ−1·F̄j(xj)δ0(dx0)dx1 . . . dxn−1δ0(dxn), κ ∈ (0, 1],

− min
(x0,x1,...,xn−1,xn)∈π0,nEn

≤R1
x0=xn=0

n∑
j=1

[
1
2
(xj − xj−1)

2 + F̄j(xj)
]
, κ = 0.

Lemma 1.7.10. For sufficiently large n ∈ N, the following holds true:

E exp
(η
2
ξk1{ξk≥b lnn}

)
≤ 2, (1.7.19)

Eξk ≤ b lnn+ 4/η, (1.7.20)

P{|p̃n(κ)− p̃n(κ, F̄ ))| ≤ x, κ ∈ [0, 1]} ≥ 1− 2e−ηx/2, x > 0, (1.7.21)

|Ep̃n(κ)− Ep̃n(κ, F̄ )| ≤ 4/η, κ ∈ [0, 1]. (1.7.22)

Proof: Since ξk is the maximum of 2R1n random variables with the same distribution, we

have

E exp
(η
2
ξk1{ξk>b lnn}

)
≤ 1 + Ee

η
2
ξk1{ξk>b lnn} ≤ 1 + E

R1n−1∑
j=−R1n

e
η
2
F ∗
k (j)1{F ∗

k (j)>b lnn}

≤ 1 + 2R1nEe
η
2
F ∗
k (0)1{F ∗

k (0)>b lnn} ≤ 1 + 2R1n
EeηF

∗
k (0)

e
bη
2

lnn

≤ 1 +
c

n
bη
2
−1
, (1.7.23)

where c = 2R1Ee
ηF ∗

k (0) is a constant. Now (1.7.19) follows from b > 4/η.
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If x > b lnn, then by Markov inequality and (1.7.19), we have

P{ξk ≥ x} ≤ P{ξk1{ξk≥b lnn} ≥ x} ≤ e−ηx/2E exp
(η
2
ξk1{ξk≥b lnn}

)
≤ 2e−ηx/2

for sufficiently large n. This implies (1.7.20):

Eξk ≤ b lnn+ Eξk1{ξk≥b lnn} ≤ b lnn+

∫ ∞

b lnn

P{ξk ≥ x} dx ≤ b lnn+
4

η
.

It follows from the definition of p̃n(κ, F̄ ) that for all κ ∈ [0, 1],

|p̃n(κ)− p̃n(κ, F̄ )| ≤
n∑

k=1

ξk1{ξk>b lnn}.

By Markov inequality, the i.i.d. property of (ξk) and (1.7.23), we have

P
{
|p̃n(κ)− p̃n(κ, F̄ )| ≤ x, κ ∈ [0, 1]

}
≥ 1− P

{η
2

n∑
k=1

ξk1{ξk>b lnn} >
ηx

2

}
≥ 1− e−ηx/2E exp

(η
2

n∑
k=1

ξk1{ξk>b lnn}

)
= 1− e−ηx/2

(
E exp

(η
2
ξ01{ξ0>b lnn}

))n
≥ 1− e−ηx/2(1 + c/nηb/2−1)n.

Since b > 4/η, (1.7.21) follows. It immediately implies

|Ep̃n(κ)− Ep̃n(κ, F̄ )| ≤ E|p̃n(κ)− p̃n(κ, F̄ )|

=

∫ ∞

0

P{|p̃n(κ)− p̃n(κ, F̄ )| > x} dx ≤ 4/η,

so (1.7.22) is also proved. □
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Lemma 1.7.11. For all n ∈ N, x > 0 and all κ ∈ [0, 1],

P
{
|p̃n(κ, F̄ )− Ep̃n(κ, F̄ )| > x

}
≤ 2 exp

{
− x2

8nb2 ln2 n

}
.

Proof: Let us introduce the following martingale (Mk,Fk)0≤k≤n:

Mk = E(p̃n(κ, F̄ ) | Fk), 0 ≤ k ≤ n,

where

F0 = {∅,Ω}, Fk = σ
(
Fi,ω(x) : 1 ≤ i ≤ k

)
, k = 1, . . . , n.

If we can show that |Mk −Mk−1| ≤ 2b lnn, 1 ≤ k ≤ n, then the conclusion of the lemma

follows immediately from Azuma’s inequality (Lemma 1.7.9).

For a process Ḡ, an independent distributional copy of F̄ , let us define

Z̃n
κ ([F̄ , Ḡ]k) =

∫
|xi|≤R1n

k∏
i=1

gκ(xi − xi−1)e
−κ−1F̄i(xi)

·
n∏

i=k+1

gκ(xi − xi−1)e
−κ−1Ḡi(xi)δ0(dx0)dx1 · · · dxn−1δ0(dxn).

Denoting by Pk the distribution of F̄k(·), we obtain for κ ∈ (0, 1],

|Mk −Mk−1|

=κ

∣∣∣∣∣
∫

ln Z̃n
κ ([F̄ , Ḡ]k)

n∏
i=k+1

Pi

(
dḠi

)
−
∫

ln Z̃n
κ ([F̄ , Ḡ]k−1)

n∏
i=k

Pi

(
dḠi

)∣∣∣∣∣
≤κ
∫ ∣∣∣ ln Z̃n

κ ([F̄ , Ḡ]k)− ln Z̃n
κ ([F̄ , Ḡ]k−1)

∣∣∣ n∏
i=k

Pi

(
dḠi

)
≤
∫ (

sup
|x|≤R1n

|F̄k(x)|+ sup
|x|≤R1n

|Ḡk(x)|
) n∏

i=k

Pi

(
dḠi

)
≤ 2b lnn,
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since |F̄k(x)| and |Ḡk(x)| are bounded by b lnn. By taking κ ↓ 0 in the above inequality (or

using that resampling the potential field
(
Fi(·)

)
at any given i will change the optimal action

by at most 2b lnn), we can see that |Mk −Mk−1| ≤ 2b lnn also holds when κ = 0. This

completes the proof. □

We note that in lemma 1.7.11, we estimate the probability of an event defined for a fixed

κ, since the Azuma inequality applies to a fixed martingale and cannot be immediately used

for uniform concentration of a family of martingales parametrized by κ.

Proof of Lemma 1.7.1: Suppose u ∈
(
3(D1 + 4/η + 3), n lnn

]
. Then

P
{
|pn(κ)− Epn(κ)| > u

}
≤ P

{
|pn(κ)− p̃n(κ)| > 1

}
+ P

{
|p̃n(κ)− p̃n(κ, F̄ )| >

u

3

}
+ P

{
|p̃n(κ, F̄ )− Ep̃n(κ, F̄ )| >

u

3

}
+ P

{
|Ep̃n(κ, F̄ )− Ep̃n(κ)| > 4/η + 1

}
+ P

{
|Ep̃n(κ)− Epn(κ)| > D1 + 1

}
.

By (1.7.22) and (1.7.18), the last two terms equal 0. The first three terms can be bounded

by using (1.7.17), (1.7.21) and Lemma 1.7.11, respectively. Combining all these estimates

together, we obtain

P
{
|pn(κ)− Epn(κ)| > u

}
< 3e−d1R1n + 2e−

ηu
6 + 2e−

u2

72b2n ln2 n ≤ b1e
−b2

u2

n ln2 n ,

for some constants b1, b2 > 0, where in the last inequality we use u ≤ n lnn. □

We also have obtained a similar concentration inequality for p̃n(κ) which will be used in

the next section.

Lemma 1.7.12. Let bi’s be the constants in Lemma 1.7.1. Then for all n ≥ b0, all κ ∈ [0, 1]
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and all u ∈ (b3, n lnn],

P
{
|p̃n(κ)− Ep̃n(κ)| ≤ u

}
≥ 1− b1 exp

{
−b2

u2

n ln2 n

}
.

1.7.2 Uniform continuity of the shape function in temperature

To go from Lemma 1.7.1 to Theorem 1.4.2, we have to estimate the difference of Epn(κ)

and α0;κn, and to move κ ∈ [0, 1] inside the events of interest. The key point is to establish

the continuity of α0;κ for κ ∈ [0, 1].

Lemma 1.7.13. 1. There is a constant b4 such that for sufficiently large n,

|Epn(κ)− α0;κn| ≤ b4n
1/2 ln2 n, κ ∈ [0, 1]. (1.7.24)

2. α0;κ is continuous for κ ∈ [0, 1].

Let us derive Theorem 1.4.2 from 1.7.13 and the results from section 1.7.1 first.

Proof of Theorem 1.4.2: Let us define

qn(κ) = p̃n(κ)− κ ln |E0,n
≤R1

|, κ ∈ [0, 1],

where | · | denotes the Lebesgue measure of a set. When κ > 0, we have

qn(κ) = ln
(∫

E0,n
≤R1

1

|E0,n
≤R1

|
e−κ−1A0,n(γ) dγ

)κ
.

Therefore, by Lyapunov’s inequality, qn(κ) is decreasing in κ. Then by Lemma 1.7.12, for

all n ≥ b0, all κ ∈ [0, 1] and x ∈ [b3, n lnn],

P
{
|qn(κ)− Eqn(κ)| ≤ x

}
≥ 1− b1 exp

{
−b2

x2

n ln2 n

}
. (1.7.25)
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For fixed n, since qn(·) is a continuous decreasing function, we can find M and 0 = κ1 <

κ2 < ... < κM = 1 such that

M ≤ 2n−1/2|Eqn(1)− Eqn(0)|,

and

|Eqn(κi+1)− Eqn(κi)| ≤ n1/2, 1 ≤ i ≤M − 1.

To achieve this, we can choose κi one by one, starting with i = 1, 2. Define the event

Λ(x) = {|qn(κi)− Eqn(κi)| ≤ x, 1 ≤ i ≤M}. Then by (1.7.25),

P
(
Λ(x)

)
≥ 1−M · b1 exp

{
− b2

x2

n ln2 n

}
, x ∈ (b3, n lnn]. (1.7.26)

For ω ∈ Λ(x) and κ ∈ [κi, κi+1], since qn(κ) and Eqn(κ) are both monotone in κ,

|qn(κ)− Eqn(κ)| = |p̃n(κ)− Ep̃n(κ)|

≤ |qn(κi)− Eqn(κi+1)| ∨ |qn(κi+1)− Eqn(κi)|

≤ x+ |Eqn(κi)− Eqn(κi+1)|

≤ x+ n1/2.

Combined with (1.7.26), this implies that

P
{
|p̃n(κ)− Ep̃n(κ)| ≤ x+ n1/2, κ ∈ [0, 1]

}
≥ 1−M · b1 exp

{
− b2

x2

n ln2 n

}
, (1.7.27)

for all x ∈ (b3, n lnn].
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By Lemma 1.7.7 and (1.7.24), we have

|Ep̃n(κ)− α0;κn| ≤ D1 + b3n
1/2 ln2 n, κ ∈ [0, 1]. (1.7.28)

This and Lemma 1.7.5 imply

|Eqn(1)− Eqn(0)| ≤ |Ep̃n(1)− Ep̃n(0)|+ |E0,n
≤R1

|

≤ 2(D1 + b3n
1/2 ln2 n) + n|α0;1 − α0;0|+ d3n

≤ Kn.

Hence M ≤ 2Kn1/2. Using this upper bound on M and (1.7.27), (1.7.28), we complete the

proof. □

Next we turn to the proof of Lemma 1.7.13.

Lemma 1.7.14. There is positive constant b5 such that for all κ ∈ [0, 1] and sufficiently large

n,

|Ep2n(κ)− 2Epn(κ)| ≤ b5n
1/2 ln2 n. (1.7.29)

Proof: Since pn(·) is continuous, it suffices to show (1.7.29) i.e.,

|Eκ lnZ0,2n
0,0;κ − 2Eκ lnZ0,n

0,0;κ| ≤ b5n
1/2 ln2 n,

for κ ∈ (0, 1], and then use continuity of Epn(·).

For R1 introduced in Lemma 1.7.2, define

B = {γ : max
1≤i≤2n−1

|γi| ≤ 2R1n},

C = {γ : |γn − γn+1| ≤ R1

√
2n, |γn − γn−1| ≤ R1

√
2n}.
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Since E0,2n
≤R1

⊂ B ∩ C, Lemma 1.7.7 implies that

|Eκ lnZ0,2n
0,0;κ(B ∩ C)− Eκ lnZ0,2n

0,0;κ| ≤ D1. (1.7.30)

To prove the lemma, we need to bound Eκ lnZ0,2n
0,0;κ(B ∩ C) from above and from below

using 2Eκ lnZ0,n
0,0;κ plus some error terms. First, let us deal with the lower bound. By the

definition of the sets B and C, we have

Z0,2n
0,0;κ(B ∩ C) ≥ Z0,2n

0,0;κ(B ∩ C ∩ {γn ∈ [0, 1)}).

Let us now compare the action of every path γ in B ∩ C ∩ {γn ∈ [0, 1)} to the action of the

modified path γ̄ defined by γ̄n = 0 and γ̄j = γj for j ̸= n. We recall that the action of a path

was defined in (1.2.7). Since |γn+1 − γn| ≤ R1

√
2n, |γn − γn−1| ≤ R1

√
2n, and |γn| ≤ 1, we

get

|A0,2n(γ)− A0,2n(γ̄)| ≤ 1

2

∣∣(γn+1 − γn)
2 − γ2n+1 + (γn−1 − γn)

2 − γ2n−1

∣∣+ 2F ∗
n,ω(0)

≤ 2R1

√
2n+ 1 + 2F ∗

n,ω(0).

So, there is a constant K1 > 0 such that

Z0,2n
0,0;κ(B ∩ C) ≥ Z0,n

0,0;κ(D
−)Zn,2n

0,0;κ(D
+)e−κ−1

(
K1

√
n−2F ∗

n,ω(0)
)
, (1.7.31)

where

D− = {γ : |γn−1| ≤ R1

√
2n+ 1, |γi| ≤ 2R1n, 1 ≤ i ≤ n− 1},

D+ = {γ : |γn+1| ≤ R1

√
2n+ 1, |γi| ≤ 2R1n, n+ 1 ≤ i ≤ 2n− 1}.
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Since E0,n
≤R1

⊂ D− and En,2n
≤R1

⊂ D+, Lemma 1.7.7 implies that

κ|E lnZ0,n
0,0;κ(D

−)− E lnZ0,n
0,0;κ| ≤ D1, κ|E lnZn,2n

0,0;κ(D
+)− E lnZn,2n

0,0;κ| ≤ D1.

Combining this with (1.7.31), we obtain

κE lnZ0,2n
0,0;κ(B ∩ C) ≥ κ

(
E lnZ0,n

0,0;κ(D
−) + E lnZn,2n

0,0;κ(D
+)
)
−K1

√
n− 2EF ∗

n,ω(0)

≥ κ · 2E lnZ0,n
0,0;κ − 2D1 −K1

√
n− 2EF ∗

n,ω(0),

where we used lnZ0,n
0,0;κ

d
= lnZn,2n

0,0;κ in the last inequality.

Next, let us turn to the upper bound. Similarly to (1.7.31), we compare actions of generic

paths in B ∩ C to the actions of the modified paths with integer value at time n:

Z0,2n
0,0;κ(B ∩ C) =

2R1n−1∑
k=−2R1n

Z0,2n
0,0;κ(B ∩ C ∩ {γn ∈ [k, k + 1)})

≤
2R1n−1∑
k=−2R1n

Z0,n
κ (0, k)Zn,2n

κ (k, 0)e
κ−1

(
K1

√
n+2F ∗

n,ω(k)

)

≤ 4R1nmax
k

[Z0,n
κ (0, k)Zn,2n

κ (k, 0)]e
κ−1

(
K1

√
n+2maxk F ∗

n,ω(k)

)
,

where the maxima are taken over −2R1n ≤ k ≤ 2R1n − 1. Taking logarithm and then

expectation of both sides, we obtain

κE lnZ0,2n
0,0;κ(B ∩ C)

≤ κ
(
Emax

k
lnZ0,n

κ (0, k) + Emax
k

lnZn,2n
κ (k, 0)

)
+ κ ln(4R1n) +K1

√
n+ 2Emax

k
F ∗
n,ω(k)

≤ max
k

Eκ lnZ0,n
κ (0, k) + Emax

k
Xk +max

k
Eκ lnZn,2n

κ (k, 0) + Emax
k
Yk +K2(lnn+

√
n+ 1)

≤ 2Eκ lnZ0,n
0,0;κ + E

[
max

k
Xk +max

k
Yk
])

+K2(lnn+
√
n+ 1),
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for some constant K2 > 0, where

Xk = κ
(
lnZ0,n

κ (0, k)− E lnZ0,n
κ (0, k)

)
, Yk = κ

(
lnZn,2n

κ (k, 0)− E lnZn,2n
κ (k, 0)

)
.

In the second inequality, we used (1.7.20) to conclude

E max
−2R1n≤k≤2R1n−1

F ∗
n,ω(k) ≤ b ln(2n) + 4/η,

and in the third inequality, we used the fact that

E lnZ0,n
κ (0, k) ≤ E lnZ0,n

0,0;κ, E lnZn,2n
κ (k, 0) ≤ E lnZn,2n

0,0;κ = E lnZ0,n
0,0;κ.

It remains to bound EmaxkXk and Emaxk Yk. By the shear invariance, all Xk and Yk have

the same distribution, so

EX2
n = EY 2

n = E
(
κ lnZn

κ

)2
≤M(2)n2

by Lemma 1.7.6. Let

Λ =
{
max

k
Xk ≤ rn1/2 ln3/2 n, max

k
Yk ≤ rn1/2 ln3/2 n

}
,

with r to be determined. We have

E
[
max

k
Xk +max

k
Yk

]
≤ E1Λ(max

k
Xk +max

k
Yk) + E1Λc(max

k
Xk +max

k
Yk)

≤ 2rn1/2 ln3/2 n+
√
2P(Λc)E(max

k
X2

k +max
k
Y 2
k )

≤ 2rn1/2 ln3/2 n+
√
16P(Λc)M(2)R1n3.
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To bound the second term by a constant, we use Lemma 1.7.1:

P(Λc) ≤
2R1n−1∑
k=−2R1n

[
P
{
κ| lnZ0,n

κ (0, k)− E lnZ0,n
κ (0, k)| ≥ rn1/2 ln3/2 n

}
+ P

{
κ| lnZn,2n

κ (k, 0)− E lnZn,2n
κ (k, 0)| ≥ rn1/2 ln3/2 n

}]

≤ 8R1nP
{
κ| lnZn

κ − E lnZn
κ | ≥ rn1/2 ln3/2 n

}
≤ 8R1nb1 exp{−b2r2 lnn},

and choose r to ensure b2r
2 > 4. This completes the proof. □

We can now use the following straightforward adaptation of Lemma 4.2 of [HN01] from

real argument functions to sequences:

Lemma 1.7.15. Suppose that number sequences (an) and (gn) satisfy the following conditions:

an/n → ν as n → ∞, |a2n − 2an| ≤ gn for n ≥ n0 and limn→∞ g2n/gn = ψ < 2. Then for

any c > 1/(2− ψ) and for n ≥ n1 = n1

(
n0, (gn), c

)
,

|an − νn| ≤ cgn.

Proof: Let bn = an/n, hn = gn/(2n). Then |b2n−bn| ≤ hn for n > n0 and limn→∞ h2n/hn =

ψ/2.

Since ψ/2 < 1− 1
2c
, there is N > n0 such that h2m/hm ≤ 1− 1

2c
for all m > N . Let us

now fix n > N . Then for k ≥ 0 we have h2kn ≤
(
1− 1

2c

)k
hn. Therefore,

|bn − b2kn| ≤
k−1∑
i=0

|b2i+1n − b2in| ≤
k−1∑
i=0

h2in ≤ 2chn.

We complete the proof by letting k → ∞. □

Proof of Lemma 1.7.13: Thanks to Lemma 1.7.14, we can apply Lemma 1.7.15 to
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an = Epn(κ), gn = b5n
1/2 ln2 n, ν = α0;κ, ψ =

√
2, and some fixed constant c > 1/(2− ψ) to

obtain (1.7.24).

The inequality (1.7.24) implies that 1
n
pn(κ) converge to α0;κ uniformly for all κ ∈ [0, 1].

Since for each n ∈ N, 1
n
pn(·) is continuous and decreasing, the second part follows. □

1.8 Straightness and tightness

1.8.1 Straightness

We will prove the following straightness estimate in this section.

Theorem 1.8.1. There is a full measure set Ω′ such that for every ω ∈ Ω′ the following

holds: if (m,x) ∈ Z× R, v′ ∈ R, and 0 ≤ u0 < u1, then there is a random constant

n0 = n0

(
ω,m, [x], [|v′|+ u1], [(u1 − u0)

−1]
)

(where [·] denotes the integer part) such that

µm,N
x,ν;κ

{
γ : |γm+n − v′n| ≥ u1n

}
≤ ν

(
[(v′ − u0)N, (v

′ + u0)N ]c
)
+ e−κ−1n1/2

(1.8.1)

and

µm,N
x,ν;κ

{
γ : max

1≤i≤n
|γm+i − v′i| ≥ (u1 +R1 + 1)n

}
≤ ν

(
[(v′ − u0)N, (v

′ + u0)N ]c
)
+ 2e−κ−1n1/2

(1.8.2)

hold true for any terminal measure ν, (N −m)/2 ≥ n ≥ n0, and all κ ∈ (0, 1]. Here, we

use R1 that has been introduced in Lemma 1.7.2.
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The inequality (1.8.1) reflects the “approximate straightness” of paths under the polymer

measures. Taking u0 and u1 to be small, we can claim that if a path γ ends at a location γN

near v′N at time N , then at intermediate times, γ typically stays close to a straight line with

slope v′. The second inequality (1.8.2) will give the tightness estimate for polymer measures.

Let us begin with a corollary of Theorem 1.4.2.

Lemma 1.8.1. Let m, p, q ∈ Z and n ∈ N. If n is sufficiently large, then on an event with

probability at least 1− e−n1/3
, it holds that for all x ∈ [p, p+ 1], y ∈ [q, q + 1], and κ ∈ (0, 1],

∣∣κ lnZm,m+n
x,y;κ − ακ(n, x− y)

)∣∣ ≤ n3/4,

where

ακ(k, z) = ακ(z/k) · k = α0;κk −
z2

2k
. (1.8.3)

Proof: Without loss of generality, we can assume m = 0 and p = q = 0. Taking u = n3/4/2,

by Theorem 1.4.2 we have that on an event Λ1 with probability at least 1− c1e
−c2

n1/2

4 ln2 n ,

∣∣κ lnZ0,n
0,0;κ − α0;κn

∣∣ ≤ n3/4/2, κ ∈ (0, 1]. (1.8.4)

We recall the constant R1 in Lemma 1.7.2 and define the following modification of Z0,n
x,y;κ:

Z̄0,n
x,y;κ =

∫
|x1|,|xn−1|≤R1

√
n+1

Z1,n−1
x1,xn−1;κ

dx1dxn−1

· 1

2π · κ
exp

(
− κ−1 ·

[(x1 − x)2

2
+

(xn−1 − y)2

2
+ F1(x1) + Fn(y)

])
.
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For all x, y ∈ [0, 1], we have

κ| ln Z̄0,n
x,y;κ − ln Z̄0,n

0,0;κ| (1.8.5)

≤ max
y∈[0,1]

(
|Fn(0)|+ |Fn(y)|

)
+ max

x,y∈[0,1]
|z|,|w|≤R1

√
n+1

1

2

∣∣(z − x)2 + (w − y)2 − z2 − w2
∣∣

≤ max
y∈[0,1]

(
|Fn(0)|+ |Fn(y)|

)
+ 2R1

√
n+ 3.

Using (1.7.6) in Lemma 1.7.2 and the fact that

µ0,n
x,y;κ

({
γ : |γ1| ∨ |γn−1| > R1

√
n+ 1

})
≤ µ0,n

x,y;κ(∪s≥R1E
0,n
s ), x, y ∈ [0, 1],

we obtain that on an event Λ2 with probability at least 1− 3e−d1R1n,

κ| ln Z̄0,n
x,y;κ − lnZ0,n

x,y;κ| ≤ κ| ln(1− 2−κ−1·R1n)| ≤ | ln(1− 2−R1)|, x, y ∈ [0, 1], κ ∈ (0, 1].

(1.8.6)

Due to assumption (A5) and Markov inequality, there is an event Λ3 with probability at

least 1− eφ−ηn3/4/8 such that

max
x∈[0,1]

|F0(x)| ≤ n3/4/8. (1.8.7)

Also, for all x, y ∈ [0, 1], we have

|α0;κn− ακ(n, x− y)| = 1

2n
(x− y)2 ≤ 1. (1.8.8)

Now consider the event Λ = Λ1 ∩ Λ2 ∩ Λ3 and combine (1.8.4), (1.8.5), (1.8.6), (1.8.7),

and (1.8.8) together. Then P(Λ) ≥ 1− e−n1/3
and if ω ∈ Λ, then

|κ lnZ0,n
x,y;κ − ακ(n, x− y)| ≤ n3/4

2
+ 2 · n

3/4

8
+ 2R1

√
n+ 4 + | ln(1− 2−R1)| ≤ n3/4.
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This concludes the proof. □

For (m,x), (n, y) ∈ Z×R with m < n, we define [(m,x), (n, y)] to be the constant velocity

path connecting (m,x) and (n, y), i.e., [(m,x), (n, y)]k = x + k−m
n−m

(y − x) for k ∈ [m,n]Z.

For (m, p), (n, q) ∈ Z× Z, we define the events

Am,n
p,q =

{
µm,n
x,y;κ

{
max

k∈I(m,n)
|γk − [(m, p), (n, q)]k| ≥ (n−m)8/9

}
≤ e−κ−1(n−m)1/2 ,

x ∈ [p, p+ 1], y ∈ [q, q + 1], κ ∈ (0, 1]
}
, (1.8.9)

where I(m,n) = [3m+n
4
, m+3n

4
]Z, and the events

Bm,n
p,q =

{
µm,n
x,y;κ

{
max

k∈[m,n]Z
|γk − [(m, p), (n, q)]k| ≥ R1(n−m)

}
≤ 2−κ−1R1(n−m),

x ∈ [p, p+ 1], y ∈ [q, q + 1], κ ∈ [0, 1]
}
, (1.8.10)

where R1 is introduced in Lemma 1.7.2. Such events Am,n
p,q and Bm,n

p,q are measurable since for

a fixed Borel set D ∈ S−∞,+∞
∗,∗ , µm,n

x,y;κ(D) is continuous in x, y and κ. Moreover, by translation

and shear invariance, the probability of Am,n
p,q and Bm,n

p,q depends only on n−m.

The events Am,n
p,q and Bm,n

p,q will be shown to have probability close to 1 and thus they

describe the typical behavior of the polymer measures. In particular, Am,n
p,q contains those

point-to-point polymer measures whose paths most likely will deviate from the straight line

connecting the two endpoints by at most O((n−m)8/9). It is important that the exponent

can be chosen to be strictly less than 1, in order to derive the straightness estimate. The

choice of such exponent is made possible by the uniform curvature assumption (1.5.5) or

(1.5.6). The next lemma gives the estimate on the probability of Am,n
p,q .
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Lemma 1.8.2. For some constant k1, if N is large enough, then

P
(
A0,N

0,0

)
≥ 1− k1N

2e−N1/3

.

Proof: By (1.7.7) in Lemma 1.7.2, there is an event Λ1 with P(Λ1) ≥ 1− 3e−d1R1N on

which the following holds:

µ0,N
x,y;κ

(
{γ : max

1≤k≤N−1
|γk| ≤ R1N}

)
≤ 2−κ−1R1n, x, y ∈ [0, 1], κ ∈ (0, 1]. (1.8.11)

Applying Lemma 1.8.1 with (m,n, p, q) running over the set

{(0, k, 0, l) : k ∈ [N
4
, 3N

4
], |l| ≤ R1N} ∪ {(k,N − k, l, 0) : k ∈ [N

4
, 3N

4
], |l| ≤ R1N},

we can obtain an event Λ2 with probability at least 1− C1N
2e−N1/3

on which the following

holds for all x, y ∈ [0, 1]:

|κ lnZ0,k
x,z;κ − ακ(k, z − x)| ≤ k3/4 ≤ N3/4, k ∈ [N

4
, 3N

4
], |z| ≤ R1N, (1.8.12)

|κ lnZk,N
z,y;κ − ακ(N − k, y − z)| ≤ (N − k)3/4 ≤ N3/4, k ∈ [N

4
, 3N

4
], |z| ≤ R1N,

|κ lnZ0,N
x,y;κ − ακ(N, x− y)| ≤ N3/4.
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Using (1.8.12), for ω ∈ Λ2, all k ∈
[
N
4
, 3N

4

]
and all x, y ∈ [0, 1], we have

µ0,N
x,y;κ

(
{γ : |γk| ∈ [N8/9, R1N ]}

)
=
(
Z0,N

x,y;κ

)−1
∫
|z|∈[N8/9,R1N ]

Z0,k
x,z;κZ

k,N
z,y;κ dz

≤ exp
(
κ−1
[
3N3/4 + (x−y)2

2N

]) ∫
|z|∈[N8/9,R1N ]

exp
(
− κ−1

[ (x−z)2

2k
+ (y−z)2

2(N−k)

])
dz

≤ exp
(
κ−1
[
3N3/4 + 1

]) ∫
|z|≥N8/9/2

exp
(
− κ−1 2z2

N

)
dz

≤ N1/9 exp
(
− κ−1

[
N7/9/2− 1− 3N3/4]

)
,

where in the last inequality we use the following bound on the tail of Gaussian integral: for

a, b > 0, ∫
|x|≥b

e−
x2

a dx ≤ a

b
e−

b2

a .

Combining this with (1.8.11), we can conclude that A0,n
0,0 is included in Λ1 ∪ Λ2, which has

probability at least 1− C2N
2e−N1/3

. Here, the constants C1 and C2 are independent of N .

This completes the proof. □

Lemma 1.8.3. Let c > 0, 0 < v0 < v1, v
′ ∈ R and m, p ∈ Z. Suppose |v′|+ v1 < c. There

are constants n1 = n1([|v1−v0|−1]) and k2 such that when n > n1, there is an event Ω
(1)
c,n(m, p)

with probability at least 1−k2cn3e−n1/3
on which the following holds: for all N > 2n, κ ∈ (0, 1],

x ∈ [p, p+ 1] and for any terminal measure ν,

µm,m+N
x,ν;κ π−1

m+n

(
[p+ (v′ − v1)n, p+ (v′ + v1)n]

c
)

≤ ν
(
[p+ (v′ − v0)N, p+ (v′ + v0)N ]c

)
+ e−κ−1n1/2

, (1.8.13)
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and

µm,m+N
x,ν;κ

{
γ : max

1≤i≤n
|γm+i − p− v′i| ≥ (v1 +R1 + 1)n

}
≤ ν

(
[p+ (v′ − v0)N, p+ (v′ + v0)N ]c

)
+ 2e−κ−1n1/2

. (1.8.14)

Proof: We will choose Ω
(1)
c,n(m, p) = θm,pΩ

(1)
c,n (θ is the space-time shift), where

Ω(1)
c,n =

( ⋂
j≥2n

|q|≤(c+1)j

A0,j
0,q

)
∩
( ⋂

|q|≤(c+1)n

B0,n
0,q

)
. (1.8.15)

Due to (1.7.7) in Lemma 1.7.2, P(B0,n
0,q ) ≥ 1 − 3e−d1R1n. This and Lemma 1.8.2 imply

that P(Ω
(1)
c,n) ≥ 1− k2cn

3e−n1/3
for some constant k2.

Without loss of generality, we will assume (m, p) = (0, 0). In showing (1.8.13) and (1.8.14),

we will also assume v′ = 0 for simplicity. The extension to other values of v′ is straightforward.

Let us fix a terminal measure ν and κ ∈ (0, 1], x ∈ [0, 1], N ≥ 2n, and assume ω ∈ Ω
(1)
c,n.

For (1.8.13), it suffices to show that if n is large, then

µ0,N
x,ν;κ

(
{γ : |γN | < Nv0, |γn| ≥ nv1}

)
< e−κ−1n1/2

.

Let k be the unique integer such that 2kn ≤ N < 2k+1n. For l ∈ [0, k]Z, define

il =


n · 2l, 0 ≤ l ≤ k − 1,

N, l = k.

Let us consider the following inequality that appears in the definition of A0,il
0,[γil ]

:

∣∣∣∣[(0, 0), (il, [γil ])]il−1
− γil−1

∣∣∣∣ = ∣∣∣∣[γil ] · il−1

il
− γil−1

∣∣∣∣ ≤ (il)
8/9. (1.8.16)
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If a path γ satisfies (1.8.16) for all l ∈ [l′ + 1, k]Z, then

∣∣∣∣γi′li′l − γN
N

∣∣∣∣ ≤ k∑
l=l′+1

(il)
8/9 + 1

il−1

≤ n−1/9
[ k−1∑
l=l′+1

(
28/9 · 2−

1
9
(l−1) + 2−(l−1)

)
+
(
216/9 · 2−

1
9
(k−1) + 2−(k−1)

)]
≤ K1n

−1/9 (1.8.17)

for some absolute constant K1.

For l′ ∈ [0, k − 1]Z, let us define the set of paths

Λl′ = {γ : (1.8.16) holds for all l ∈ [l′ + 1, k]Z and |γN | < Nv0. }.

We also define Λk = {γ : |γN | < Nv0}. Suppose n ≥
(

K1

|v1−v0|∧(1/2)

)9
. If a path γ ∈ Λl′ \ Λl′−1

(l ∈ [1, k]Z), then (1.8.17) implies |γil′ | < (c+ 1/2)il′ . Therefore,

µ0,N
x,ν;κ

(
Λl′ \ Λl′−1

)
=

∫
ν(dz)

(
Z0,N

x,z;κ

)−1
∫ (c+1/2)il′

−(c+1/2)il′

dw Z0,il′
x,w;κ(Λl′ \ Λl′−1)Z

il′ ,N
x,w;κ(Λl′ \ Λl′−1)

≤
∫
ν(dz)

(
Z0,N

x,z;κ

)−1
∫ (c+1/2)il′

−(c+1/2)il′

dw e−κ−1(il′ )
1/2

Z0,il′
x,w;κZ

il′ ,N
x,w;κ(Λl′ \ Λl′−1)

≤ e−κ−1(il′ )
1/2

.

Here, in the second inequality we used that ω ∈ Ω
(1)
c,n ⊂ A

0,il′
0,[w] for |w| ≤ (c+1/2)il′ , and hence

µ0,il′
x,w;κ(Λl′ \ Λl′−1) ≤ e−κ−1(il′ )

1/2

.

Also, |v0 − v1| > K1n
−1/9 (which holds for large n) and (1.8.17) imply that

Λ0 ∩
{
γ : |γn| > nv1

}
= ∅.
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Combining all these estimates, we have

µ0,N
x,ν;κ

(
{γ : |γN | < Nv0, |γn| ≥ nv1}

)
≤

k∑
l′=1

µ0,N
x,ν;κ

(
Λl′ \ Λi′−1

)
≤

k∑
l′=1

e−κ−1(il′ )
1/2

≤
∞∑

m=2n

e−κ−1m1/2 ≤ e−κ−1n1/2

,

which completes the proof of (1.8.13).

Now we turn to (1.8.14). Let

D =
{
γ : max

1≤i≤n
|γi| ≥ (v1 +R1 + 1)n

}
.

If |z| ≤ v1n, then

µ0,n
x,z;κ(D) ≤ µ0,s

x,z;κ{γ : max
1≤i≤n

|γi − [(0, 0), (n, [z])]i| ≥ R1n}.

For all |z| ≤ v1s, since ω ∈ B0,n
0,[z], we have µ0,n

x,z;κ(D) ≤ 2−κ−1R1n. Therefore,

µ0,N
x,ν;κ

(
D ∩ {|γs| ≤ v1s}

)
≤ 2−κ−1R1n.

Then (1.8.14) follows from this and (1.8.13). □

Proof of Theorem 1.8.1: The Theorem directly follows from Lemma 1.8.3 and the

Borel–Cantelli Lemma. □

1.8.2 Tightness. Existence of infinite-volume polymer measures

In this section we will establish the tightness of polymer measures and then the existence

of their infinite-volume limits. We will also prove parts (1) and (2) of Theorem 1.5.2.

First we recall the notion of tightness. For fixed (m,x) ∈ Z× R, suppose (µk) is a family
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of probability measures such that for each k, µk is defined on Sm,Nk
x,∗ , for some Nk ↑ ∞. We

say that (µk) is tight if for each ε > 0, there is a compact set K ⊂ Rn such that

µkπ
−1
m,m+n(K

c) < ε, Nk > m+ n. (1.8.18)

Recall that Ω′ is the full measure set introduced in Theorem 1.8.1.

Theorem 1.8.2. For all ω ∈ Ω′ the following holds: if a sequence (nk) and a family of

probability measures (νk) satisfy

lim
c→∞

sup
k
νk
(
[−cnk, cnk]

c) = 0, (1.8.19)

then for all (m,x) ∈ Z× R,
(
µm,nk
x,νk;κ

)
is tight.

Proof: Let ω ∈ Ω′. Given any ε > 0, by (1.8.19), there is c such that νk
(
[−cnk, cnk]

c
)
≤ ε

for all k. Choosing v′ = 0, u0 = c, u1 = 2c in Theorem 1.8.1, we see that if

n ≥ n0

(
ω,m, [x], [2c], [c−1]

)
∨ ln2 ε,

then, due to (1.8.2),

µm,nk
x,νk;κ

{
γ : max

m≤i≤m+n
|γi| ≥ (2c+R1 + 1)n

}
≤ νk

(
[−cnk, cnk]

c
)
+ 2e−κ−1√n ≤ 3ε

for all nk ≥ m+ 2n, and tightness follows. □

Lemma 1.8.4. Let κ > 0. For all ω ∈ Ω, if a sequence of polymer measures (at temperature κ)

has a weak limit, then the limiting measure is also a polymer measure (at temperature κ).

Proof: It is sufficient to prove the statement of the lemma for finite volume polymer

measures. We need to prove that µm,n
x,νk;κ

weakly converges to µm,n
x,ν;κ if m,n ∈ Z, x ∈ R, and

68



(νk) is a sequence of distributions on R, weakly convergent to a distribution ν.

It suffices to check that if f(xm+1, . . . , xn) = fm+1(xm+1) . . . fn−1(xn−1)fn(xn) for continu-

ous nonnegative functions fm+1, . . . , fn with bounded support, then

lim
k→∞

∫
µm,n
x,νk;κ

(xm, . . . , dxn)f(xm+1, . . . , xn) =

∫
µm,n
x,ν;κ(dxm, . . . , dxn)f(xm+1, . . . , xn).

Since ∫
µm,n
x,ν;κ(dxm, . . . , dxn)f(xm+1, . . . , xn) =

∫
ν(dxn)G(xn),

where

G(xn) =

∫
µm,n
x,xn;κ(dxm, . . . , dxn)f(xm+1, . . . , xn),

we need to show that G is a continuous function. The latter follows from the definition of

µm,n
x,xn;κ, continuity of Zm,n

x,xn;κ (see Lemma 1.6.6) and gκ(xn − xn−1)fn(xn) with respect to xn,

and the bounded convergence theorem. □

In addition to the terminology and notation from Section 1.4, we say that LLN with slope

v ∈ R holds for an increasing sequence of times (nk) and a sequence of Borel measures (νk)

on R if for all δ > 0,

lim
k→∞

νk([(v − δ)nk, (v + δ)nk]) = 1.

Lemma 1.8.5. For all ω ∈ Ω′ the following holds true. For any κ > 0, any (m,x) ∈ Z× R,

for any v ∈ R , any time sequence (nk) and any sequence of measures (νk) satisfying LLN

with slope v, there is an increasing subsequence (ki)i∈N such that µ
m,nki
x,νki ;κ

converges in the

sense of weak convergence of finite-dimensional distributions to a measure µ on Sm,+∞
x,∗ . The

limiting measure µ is a polymer measure supported on Sm,∞
x,∗ (v) (i.e., µ ∈ Pm,∞

x;κ (v)).

Proof: Since (νk) satisfies LLN with slope v, (1.8.19) is satisfied. By Theorem 1.8.2, the

sequence (µm,nk
x,νk;κ

) forms a tight family, so by the Prokhorov theorem, there is a converging
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subsequence of this sequence. Let µ be the limiting measure of some subsequence (µ
m,nki
x,νki ;κ

). It

is an infinite volume polymer measure due to Lemma 1.8.4. Let us prove that for every ε > 0,

∞∑
n=1

µπ−1
m+n

(
[(v − ε)n, (v + ε)n]c

)
<∞. (1.8.20)

The Borel–Cantelli lemma will imply then that µ is supported on Sm,+∞
x,∗ (v). Fixing ε > 0,

for sufficiently large n and nki −m > 2n, we derive from (1.8.1):

µ
m,nki
x,νki ;κ

π−1
m+n

(
[(v − ε)n, (v + ε)n]c

)
≤ νki

(
[(v − ε/2)nki , (v + ε/2)nki ]

c
)
+ e−κ−1√n.

Since (νk) satisfies LLN with slope v, taking the limit ki → ∞ and using the weak convergence

of finite-dimensional distributions of (µ
n,nki
x,νki ;κ

), we find

µπ−1
m+n

(
[(v − ε)n, (v + ε)n]c

)
≤ e−κ−1√n.

Therefore (1.8.20) holds, and the proof is complete. □

Lemma 1.8.6. Let µκ ∈ Pm,+∞
x;κ (v), κ ∈ (0, 1]. If n > n0(ω,m, [x], [|v| + 1], 2), then for

all κ ∈ (0, 1],

µκ{γ : max
m≤i≤m+n

|γi − vi| ≥ (R1 + 2)n} ≤ 2e−κ−1n1/2

. (1.8.21)

Proof: Applying Theorem 1.8.1 with (v′, u0, u1) = (v, 1/2, 1), when (N −m)/2 > n we

have

µκ{γ : max
m≤i≤m+n

|γi − vi| ≥ (R1 + 2)n}

= µm,N
x,νN ;κ{γ : max

m≤i≤m+n
|γi − vi| ≥ (R1 + 2)n}

≤ µκπ
−1
N

(
[N(v − 1/2), N(v + 1/2)]c

)
+ 2e−κ−1n1/2

.
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Since lim
N→∞

µκπ
−1
N

(
[N(v − 1/2), N(v + 1/2)]c

)
= 0, (1.8.21) follows. □

Proof of parts (1) and (2) in Theorem 1.5.2: Part (1) is proved in Lemma 1.8.5

and part (2) in Lemma 1.8.6. □

1.9 Monotonicity and uniqueness

1.9.1 Monotonicity

The order on the real line plays an important role in our analysis. The goal of this

section is to establish monotonicity of polymer measures with respect to endpoints, along

with some related results. We begin with an auxiliary lemma on a monotonicity property of

the Gaussian kernel. We use essentially the log-concavity of the Gaussian kernel.

Lemma 1.9.1. Suppose ν is a Borel σ-finite measure such that

Z(x) =

∫
R
gκ(z − x)ν(dz)

is finite for all x ∈ R, and let

G(x, y) =

∫
(−∞,y]

gκ(z − x)ν(dz)

Z(x)
, x, y ∈ R.

Then G(x, y) is nondecreasing in y. If ν{(y,∞)} > 0 and ν{(−∞, y]} > 0, then G(x, y) is

strictly decreasing in x.

Proof: The monotonicity in y is obvious. Due to

1

G(x, y)
=

∫
R gκ(z − x)ν(dz)∫

(−∞,y]
gκ(z − x)ν(dz)

= 1 +

∫
(y,∞)

gκ(z − x)ν(dz)∫
(−∞,y]

gκ(z − x)ν(dz)
,
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it remains to prove that for all z ∈ (y,∞),

H(x, y, z) =

∫
(−∞,y]

gκ(z
′ − x)ν(dz′)

gκ(z − x)

decreases in x. We rewrite

H(x, y, z) =

∫
(−∞,y]

e
−(x−z′)2+(x−z)2

2κ ν(dz′) = ez
2/2κ

∫
(−∞,y]

e
2x(z′−z)−z′2

2κ ν(dz′).

Since z′ − z < 0, the integrand e
2x(z′−z)−z′2

2κ decreases in x and so does the integral on the

right-hand side. □

For any d ∈ N, we denote by ⪯ the natural partial order on Rd, i.e., we write x ⪯ y

iff xk ≤ yk for all k = 1, . . . , d. A function f : Rd → R is coordinatewise nondecreasing

if x ⪯ y implies f(x) ≤ f(y). For two Borel probability measures ν1, ν2 on Rd, we write

ν1 ⪯ ν2 (and say that ν1 is stochastically dominated by ν2) iff for any bounded coordinatewise

nondecreasing function f : Rd → R

∫
Rd

f(x)ν1(dx) ≤
∫
Rd

f(x)ν2(dx).

For d = 1, ν1 ⪯ ν2 is equivalent to ν1{(−∞, x]} ≥ ν2{(−∞, x]} for all x ∈ R. There is also a

coupling characterization of stochastic dominance usually called Strassen monotone coupling

theorem (see Theorems 7 and 11 in [Str65] and a discussion in [Lin99]). To state this theorem

and our results on stochastic dominance, we introduce notation that will be used in various

contexts throughout the paper: we use πkx to denote the k-th coordinate of x, where x is

either a vector or an infinite sequence. We also use πm,nx = (xm, . . . , xn).

Lemma 1.9.2 (Monotone coupling). Borel measures ν1, . . . , νn on Rd satisfy ν1 ⪯ . . . ⪯ νn

iff there is a measure ν on (Rd)n such that νk is the k-th marginal of ν, i.e., νk = νπ−1
k ,
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k = 1, . . . , n, and

ν{(x(1), . . . , x(n)) ∈ (Rd)n : x(1) ⪯ . . . ⪯ x(n)} = 1.

Lemma 1.9.3. Let x ≤ x′. Then for any m,n with m < n, any y ∈ R, and all ω, the

polymer measure µm,n
x,y;κ is stochastically dominated by µm,n

x′,y;κ.

Proof: The reasoning does not depend on m, so we set m = 0 for brevity. We prove by

induction in k that for all x < x′ and for any k ∈ (0, n) ∩ N, there is a measure νk on (Rk)2

such that

νk(· × Rk) = µ0,n
x,y;κπ

−1
1,k,

νk(Rk × ·) = µ0,n
x′,y;κπ

−1
1,k,

and

νk{(x, x′) : x ⪯ x′} = 1. (1.9.1)

In particular, taking k = n− 1 we obtain the conclusion of the lemma.

Let us check the case k = 1 first.

µ0,n
x,y;κπ

−1
1

(
(−∞, r]

)
=

1

Z0,n
x,y;κ

∫
(−∞,r]

Z0,1
x,s;κZ

1,n
s,y;κds =

∫
(−∞,r]

gκ(s− x)e−F0(x)Z1,n
s,y;κds∫

R gκ(s− x)e−F0(x)Z1,n
s,y;κds

=

∫
(−∞,r]

gκ(s− x)Z1,n
s,y;κds∫

R gκ(s− x)Z1,n
s,y;κds

.

Introducing ν(ds) = Z1,n
s,y;κds, we can apply Lemma 1.9.1 to see that µ0,n

x,y;κπ
−1
1

(
(−∞, r]

)
is

decreasing in x. Therefore µ0,n
x,y;κπ

−1
1 ⪯ µ0,n

x′,y;κπ
−1
1 for x < x′, which finishes the argument for

the basis of induction.

Suppose for k ≥ 1 the desired νk have been constructed. We will construct νk+1 using νk.
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The basis of induction (the claim for 1-dimensional marginals) implies that for any z, z′ ∈ R

satisfying z ≤ z′, there is a measure νz,z′ on R× R such that

νz,z′(· × R) = µk,n
z,y;κπ

−1
k+1(·),

νz,z′(R× ·) = µk,n
z′,y;κπ

−1
k+1(·),

and νz,z′{(w,w′) : w ≤ w′} = 1. Then the measure νk+1 defined by

νk+1

(
(A1 × · · · × Ak+1)× (A′

1 × · · · × A′
k+1)

)
=

∫
xi∈Ai,x′

i∈A′
i,i≤k

νk
(
dx1, ..., dxk, dx

′
1, ..., dx

′
k

)
νxk,x

′
k

(
Ak+1 × A′

k+1

)
satisfies (1.9.1) with k replaced by k + 1. To see that νk+1 has correct marginals, it suffices

to notice that from the definition of polymer measures, we have

µ0,n
x,y;κ(A1 × · · · × An−1) =

∫
xi∈Ai,i≤k

µ0,n
x,yπ

−1
1,k(dx1, ..., dxk)µ

k,n
xk,y;κ

(Ak+1 × · · · × An−1)

for any x, y and k ≤ n− 1. □

One can also easily obtain a time-reversed version of Lemma 1.9.3:

Lemma 1.9.4. Let y ≤ y′. Then for any m,n with m < n, any x ∈ R, and all ω, the

polymer measure µm,n
x,y;κ is stochastically dominated by µm,n

x,y′;κ.

We can now state the main result of this section. It easily follows from Lemmas 1.9.2,

1.9.3, and 1.9.4.

Lemma 1.9.5 (Main monotonicity lemma). The following holds for all ω ∈ Ω and κ > 0:

1. Let x ≤ x′ and y ≤ y′. Then for any m,n with m < n, the polymer measure µm,n
x,y;κ is

stochastically dominated by µm,n
x′,y′;κ.
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2. If two distributions ν1, ν2 on R satisfy ν1 ⪯ ν2, then, for any x ∈ R and any m,n ∈ Z

satisfying m ≤ n, we have µm,n
x,ν1;κ

⪯ µm,n
x,ν2;κ

.

3. If x ≤ x′, then for any distribution ν on R and any m,n ∈ Z satisfying m ≤ n, we have

µm,n
x,ν;κ ⪯ µm,n

x′,ν;κ.

1.9.2 Uniqueness of infinite-volume polymer measures

In this section we will mainly use monotonicity to prove the uniqueness of a polymer

measure with given endpoint and slope at fixed temperature. We will set κ = 1 and suppress

all the dependence on κ.

Let m ∈ Z and let µ1 and µ2 be two measures on Sm,+∞
∗,∗ . We say that µ1 is stochastically

dominated by µ2 if µ1π
−1
m,n is stochastically dominated by µ2π

−1
m,n for all finite n > m.

Lemma 1.9.6. Let v1 < v2 and (m,x) ∈ Z×R. If µ1 and µ2 are polymer measures on Sm,+∞
x,∗

satisfying LLN with slopes v1 and v2, respectively, then µ2 stochastically dominates µ1.

To prove this lemma, we need the following obvious auxiliary statement.

Lemma 1.9.7. Suppose (µk
1)k∈N and (µk

2)k∈N are sequences of probability measures converging

weakly to probability measures µ1 and µ2, respectively, and such that µk
1 is dominated by µk

2

for all k ∈ N. Then µ1 is dominated by µ2.

Proof of Lemma 1.9.6: Let us take any δ > 0 satisfying v1 + δ < v2 − δ, denote

µi,k := µiπ
−1
k , i = 1, 2, k > m,

and introduce µi,k,δ as µi,k conditioned on [(vi − δ)k, (vi + δ)k]. Then µ1,k,δ is dominated by

µ2,k,δ. Using Lemma 1.9.5 on monotonicity, we obtain that µm,k
x,µ1,k,δ

is dominated by µm,k
x,µ2,k,δ

.
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Therefore, µm,k
x,µ1,k,δ

π−1
m,r is dominated by µm,k

x,µ2,k,δ
π−1
m,r, for any r between m and k. Since, in

addition, the LLN assumption implies

lim
k→∞

∥µiπ
−1
m,r − µm,k

x,µi,k,δ
π−1
m,r∥TV = lim

k→∞
∥µi,k − µi,k,δ∥TV = 0, i = 1, 2,

Lemma 1.9.7 implies that µ1π
−1
m,r is dominated by µ2π

−1
m,r. □

Lemma 1.9.8. Let v ∈ R. Then there is a set Ω̃v of probability 1 such that the following

holds on Ω̃v:

1. For every point (m,x) ∈ Z × Q, the set Pm,+∞
x (v) of all polymer measures on Sm,+∞

x

satisfying SLLN with slope v, contains exactly one element that we denote by µm,+∞
x (v).

2. For every point (m,x) ∈ Z×Q and for every sequence of measures (νn) satisfying LLN

with slope v, µm,n
x,νn weakly converges to µm,+∞

x (v).

This lemma is weaker than Theorem 1.4.3 in two ways: its statements hold only for

rational spatial locations, and only weak convergence is claimed. We study the irrational

points later in this section, and prove the total variation convergence in Section 1.10.

Proof: Let us fix a point (m,x). By Lemma 1.8.5, for each v, the set Pm,+∞
x (v) is non-empty.

For any µ ∈ Pm,+∞
x (v) and any k > m, the measure µπ−1

k is equivalent to Lebesgue measure

(in the sense of absolute continuity), so for any α ∈ (0, 1) the quantile qα(µ) at level α is

uniquely defined by µπ−1
k (−∞, qα(µ)] = α. So let us define

q−α (v) = inf{qα(µ) : µ ∈ Pm
x (v)},

q+α (v) = sup{qα(µ) : µ ∈ Pm
x (v)}.

Let us prove that with probability 1, q−α = q+α . Due to Lemma 1.9.6, if v1 < v2, then

q−α (v1) ≤ q+α (v1) ≤ q−α (v2) ≤ q+α (v2). Therefore, with probability 1, there may be at most
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countably many nonempty intervals Iα(v) = (q−α (v), q
+
α (v)). On the other hand, space-time

shear transformations map polymer measures into polymer measures (on finite or infinite

paths), so P{Iα(v) ̸= ∅} = p does not depend on v. Therefore, we can apply arguments

similar to those in [Bak16] and going back to Lemma 6 in [HN97]. We take an arbitrary

probability density f on R and write

p =

∫
R
P{Iα(v) ̸= ∅}f(v)dv =

∫
R
E1{Iα(v)̸=∅}f(v)dv = E

∫
R
1{Iα(v)̸=∅}f(v)dv = 0,

since Iα(v) ̸= ∅ can be true for at most countably many v. So, for any v ∈ R, P{Iα(v) ̸= ∅} = 0.

This immediately implies that for every v ∈ R,

P{q−α (v) = q+α (v) for all α ∈ Q} = 1.

So, for any µ1, µ2 ∈ Pm,+∞
x (v), the rational quantiles of µ1π

−1
k and µ2π

−1
k coincide. Therefore,

µ1π
−1
k = µ2π

−1
k . In turn, this implies µ1π

−1
m,k = µ1π

−1
m,k. Since this is true for all k, we conclude

that µ1 = µ2.

So we have proved that for a fixed point (m,x) ∈ Z× R, with probability 1, a polymer

measure with specified asymptotic slope is unique. We denote that measure by µm,+∞
x (v).

By countable additivity, this uniqueness statement holds true for all (m,x) ∈ Z×Q at once

on a common set Ω̃v of measure 1, and part 1 is proved.

To prove the second part, we fix any ω ∈ Ω̃v and will use a compactness argument.

Lemma 1.8.5 implies that from any subsequence (µm,n
x,νn) one can choose a convergent sub-

subsequence. Part (1) of this lemma implies that all these partial limits must coincide with

µm,+∞
x (v). Therefore, the entire sequence converges to µm,∞

x (v), which completes the proof of

the lemma. □

Lemma 1.9.9. Let v ∈ R. On Ω̃v, for every m ∈ Z and points x1, x2 ∈ Q satisfying x1 < x2,
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µm,+∞
x1

(v) is dominated by µm,+∞
x2

(v).

Proof: By Lemma 1.9.8, for i ∈ {1, 2}, the sequence of measures (µm,n
xi,vn

)n>m converges to

µm,+∞
xi

(v) as n→ ∞. Since for every n, µm,n
x1,vn

is dominated by µm,n
x2,vn

, the limiting measures

are also related by stochastic dominance. □

Lemma 1.9.10. For every v, the following holds on Ωv. For every m ∈ Z, every x ∈ R and

every x−, x+ ∈ Q such that x− < x < x+, every measure in Pm,+∞
x (v) is dominated by the

(unique) measure µm,+∞
x+

(v) in Pm,+∞
x+

(v) and dominates the (unique) measure µm,+∞
x− (v) in

Pm,+∞
x− (v).

Proof: We take an arbitrary measure µ ∈ Pm,+∞
x (v) and denote νn = µπ−1

n , n > m.

Since νn satisfy LLN with slope v, µm,n
x−,νn and µm,n

x+,νn converge, by Lemma 1.9.8, to µm,+∞
x− (v)

and µm,+∞
x+

(v), respectively. Since µm,n
x,νn coincides with µπ−1

m,n, the lemma follows from the

dominance relation on the pre-limiting measures. □

So now we know that for any x, the measures in Pm,+∞
x (v) are squeezed between measures

µm,+∞
x− (v), x− ∈ Q ∩ (−∞, x) and µm,+∞

x+
(v), x+ ∈ Q ∩ (−∞, x). Now we need to show that

there is a unique measure with this property.

Lemma 1.9.11. Let v ∈ R, m, k ∈ Z, k > m, r ∈ N, y ∈ Q, and a sequence of measures νn

satisfying LLN with slope v. Then there is an event Ωv,m,k,r,y of probability 1 such that on

that event, the family of functions fn : [−r, r] ∩Q → R, n > k, defined by

fn(x) = µm,n
x,νnπ

−1
k ((−∞, y])

is uniformly equicontinuous on [−r, r] ∩Q.

Proof: Without loss of generality, we assume that m = 0. To prove the uniform equiconti-
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nuity, we will check that for every ε ∈ (0, 1/2), there is δ > 0 such that

fn(x0)− fn(x
′
0) ≤ 6ε, |x0|, |x′0| ≤ r, |x0 − x′0| ≤ δ. (1.9.2)

First, we use LLN for (νn) to find L > 0 such that

νn(R \ [−Ln,Ln]) < ε, n ∈ N. (1.9.3)

Then we use monotonicity and tightness to find R > |y| such that

µ0,n
x,yπ

−1
1,k(R

k \Bk
R) < ε, x ∈ [−r, r], n ∈ N, y ∈ [−Ln,Ln], (1.9.4)

where Bk
R = [−R,R]k. Inequality (1.9.3) implies

fn(x0) =

∫
R
νn(dw)µ

0,n
x0,w

π−1
1,k(R

k−1 × (−∞, y])

≤
∫
[−Ln,Ln]

νn(dw)µ
0,n
x0,w

π−1
1,k(R

k−1 × (−∞, y]) + ε.

Introducing Bk
R(y) = [−R,R]k−1 × [−R, y] and BLn = [−Ln,Ln], we can use (1.9.4) to write

fn(x0) ≤
∫
BLn

νn(dw)µ
0,n
x0,w

π−1
1,k(B

k
R(y)) + 2ε,

≤
∫
BLn

νn(dw)

∫
Bk

R(y)
Ẑ(x0, . . . , xk, w) dx1 . . . dxk∫

Bk
R
Ẑ(x0, . . . , xk, w) dx1 . . . dxk

+ 2ε,

where

Ẑ(x0, . . . , xk, w) = e−F0(x0)g(x1 − x0) ·
k−1∏
i=1

e−Fi(xi)g(xi+1 − xi) · Ẑk,n
xk,w

.
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For every δ > 0, let us define

Kδ = sup

{
e−F (x′

0)g(x1 − x′0)

e−F (x0)g(x1 − x0)
: |x0|, |x′0| ≤ r, |x0 − x′0| ≤ δ, |x1| ≤ R

}
.

Then limδ↓0Kδ = 1 with probability 1. Also, we can continue the above sequence of

inequalities, assuming |x0 − x′0| ≤ δ:

fn(x0) ≤ K2
δ

∫
BLn

νn(dw)

∫
Bk

R(y)
Ẑ(x′0, x1 . . . , xk, w) dx1 . . . dxk∫

Bk
R
Ẑ(x′0, x1 . . . , xk, w) dx1 . . . dxk

+ 2ε

≤ K2
δ

∫
R
νn(dw)

∫
Rk−1×(−∞,y]

Ẑ(x′0, x1 . . . , xk, w) dx1 . . . dxk

(1− ε)
∫
Rk Ẑ(x

′
0, x1 . . . , xk, w) dx1 . . . dxk

+ 2ε

≤ K2
δ

1− ε
fn(x

′
0) + 2ε.

Therefore, if δ is chosen so that K2
δ ≤ 1 + ε, we obtain

fn(x0)− fn(x
′
0) ≤

(
K2

δ

1− ε
− 1

)
fn(x

′
0) + 2ε ≤ K2

δ

1− ε
− 1 + 2ε ≤ 1 + ε

1− ε
− 1 + 2ε ≤ 6ε,

and (1.9.2) holds. □

Lemma 1.9.12. Let v ∈ R, m, k ∈ Z, k > m, r ∈ N, y ∈ Q. On Ω̃v ∩Ωv,m,k,r,y, the function

f : [−r, r] ∩Q → R, defined by

f(x) = µm,+∞
x (v)π−1

k ((−∞, y]), (1.9.5)

is uniformly continuous on [−r, r] ∩Q.

Proof: Let us choose any sequence (νn) satisfying LLN with slope v and define fn as in

Lemma 1.9.11. The statement follows then from that lemma since limn→∞ fn(x) = f(x) for
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x ∈ [−r, r] ∩Q. □

We can now prove the complete uniqueness and weak convergence claims of Theorem 1.4.3:

Lemma 1.9.13. Let v ∈ R. Then on Ωv = Ω̃v ∩
⋂

m,k,r,y Ωv,m,k,r,y,

1. For any point (m,x) ∈ Z × R, the set Pm,+∞
x (v) of all polymer measures on Sm,+∞

x

satisfying SLLN with slope v, contains exactly one element, µm,+∞
x (v).

2. For any point (m,x) ∈ Z×R and for every sequence of measures (νn) satisfying LLN with

slope v, µm,n
x,νn converges to µm,+∞

x (v) weakly.

Proof: The second part follows from the first one and the compactness argument explained

in the proof of Lemma 1.9.8.

To prove the first part, it is sufficient to fix (m,x) ∈ Z × R and check that for every

k > m, the marginal measure νk = µπ−1
k does not depend on µ ∈ Pm,+∞

x (v). For that, it

suffices to see that for every choice of y ∈ Q, νk((−∞, y]) does not depend on µ ∈ Pm,+∞
x (v).

If x− < x < x+, then µ
m,n
x−,νn is dominated by µm,n

x,νn which is dominated by µm,n
x+,νn . Therefore,

for every y ∈ R,

µm,n
x−,νnπ

−1
k ((−∞, y]) ≥ µm,n

x,νnπ
−1
k ((−∞, y]) ≥ µm,n

x+,νnπ
−1
k ((−∞, y]).

Since µm,n
x,νnπ

−1
k = νk, we obtain

µm,n
x−,νnπ

−1
k ((−∞, y]) ≥ νk((−∞, y]) ≥ µm,n

x+,νnπ
−1
k ((−∞, y]). (1.9.6)

If additionally x−, x+ ∈ Q, then f.d.d.’s of µm,n
x−,νn and µm,n

x+,νn weakly converge to those of

µm,+∞
x− (v) and µm,+∞

x+
(v), due to Lemma 1.9.8 since (νn)n>m satisfies LLN with slope v. Since

marginals of both µm,+∞
x− (v) and µm,+∞

x+
(v) are absolutely continuous, (1.9.6) implies

µm,+∞
x− (v)((−∞, y]) ≥ νk((−∞, y]) ≥ µm,+∞

x+
(v)((−∞, y]).
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Lemma 1.9.12 implies that

inf
x−∈Q∩(−∞,x)

µm,+∞
x− (v)((−∞, y]) = sup

x+∈Q∩(x,+∞)

µm,+∞
x+

(v)((−∞, y]).

Denoting this common value by c, we conclude that the value of νk((−∞, y]) is uniquely

defined and equals c, which completes the proof. □

1.10 Infinite-volume polymer measures and global so-

lutions

In this section, we will prove Theorems 1.3.1 and 1.3.2 on global solutions of the backward

Burgers equation. These solutions will be constructed and studied via the pullback procedure

with the help of polymer measures.

Throughout this section except in 1.10.1, we will set κ = 1 and suppress all the dependence

on κ.

A function u(n, x) = uω(n, x) is a global solution of the (backward) Burgers equation if

the version of the Hopf–Cole transform defined by

V (n, x) = e−U(n,x) = e−
∫ x
0 u(n,y)dy, (n, x) ∈ Z× R,

satisfies, for all integers m < n and all x ∈ R,

V (m,x) = Cm,n[Ξ
m,n
ω V (n, ·)](x) := Cm,n

∫
Zm,n(y, x)V (n, y)dy, (1.10.1)

where (Cm,n) is a random family of constants such that Cm,nCn,k = Cm,k, m < n < k. We

need to introduce the normalizing constants Cm,n for consistency with the identity V (n, 0) = 1
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holding for all n, because we fix the the lower limit of integration to be zero when defining

the Hopf–Cole transform.

The following computation shows that, given any v ∈ R and N ∈ Z, the functions

V N
v (n, x) = Zn,N

x,Nv/Z
n,N
0,Nv, n < N, x ∈ R, (1.10.2)

and constants

CN
v,m,n = Zn,N

0,Nv/Z
m,N
0,Nv, m < n, (1.10.3)

satisfy (1.10.1) for m < n < N :

CN
v,m,n[Ξ

m,n
ω V N

v (n, ·)](x) = CN
v,m,n

∫
Zm,n(x, y)V N

v (n, y)dy

= Zn,N
0,Nv/Z

m,N
0,Nv

∫
Zm,n

x,y Z
n,N
y,Nv/Z

n,N
0,Nv dy

= (Zm,N
0,Nv)

−1

∫
Zm,n

x,y Z
n,N
y,Nv dy

= (Zm,N
0,Nv)

−1Zm,N
x,Nv = V N

v (m,x).

Therefore, a natural guess for the Hopf–Cole transform of global solutions will be V (n, x) =

Vv(n, x) = lim
N→−∞

V N
v (n, x), along with normalizing constants given by Cm,n = Cv,m,n =

lim
N→∞

CN
v,m,n. This leads to the study of the limits of partition function ratios. On the other

hand, letting uNv (n, x) = − ∂
∂x

lnV N
v (n, x) be the inverse Hope–Cole transform of V N

v (n, x),

we find that

uNv (n, x) = − ∂

∂x
ln

∫
R

1√
2π
e−(x−y)2/2−Fn+1(y)Zn+1,N(y,Nv)dy

=

∫
R(x− y)e−(x−y)2/2−Fn+1(y)Zn+1,N(y,Nv)dy

Zn,N(x,Nv)

=

∫
R
(x− y)µn,N

x,Nvπ
−1
n+1(dy). (1.10.4)
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Taking the limit N → ∞, we expect the global solution to be

uv(n, x) =

∫
R
(x− y)µn,∞

x (v)π−1
n+1(dy), (1.10.5)

To justify this answer, we actually need a stronger statement than weak convergence, namely,

a statement on convergence of the associated densities.

The convergence of densities is also closely related to convergence of partition function

ratios, since the density of µn,N
x,Nvπ

−1
m is precisely

dµn,N
x,νN

π−1
m

dLeb
(y) =

Zm,N
y,Nv

Zn,N
x,Nv

Zn,m
x,y , m > n.

In Section 1.10.1, we will show that both convergences are uniform on compact sets. The

existence of global solutions is then established in Section 1.10.2.

The uniqueness of global solutions relies on the uniqueness of infinite volume polymer

measures with any given slope v. Suppose uv(n, x) ∈ H′(v, v) is a global solution and Vv(n, x)

is its Hopf–Cole transform. For fixed (n, x) ∈ Z× R, we can define a point-to-line polymer

measure µ̄n,∞
x on Sn,+∞

x,∗ :

µ̄n,∞
x (An × An+1...× An+k)

=

∫
An+k

dxn+k · · ·
∫
An+1

dxn+1

∫
An
δx(dxn) Vv(n+ k, xn+k)

n+k−1∏
i=n

Zi,i+1
xi,xi+1∫

R Vv(n+ k, xn+k)Z
n,n+k
x,xn+kdxn+k

. (1.10.6)

This definition is consistent for different choices of k since Vv(n, x) satisfies (1.10.1). Then

the global solution uv(n, x) is uniquely determined by µ̄−∞,n
x through

uv(n, x) =

∫
R
(x− y)µ̄n,∞

x π−1
n+1(dy). (1.10.7)
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We will show that the measures µ̄n,∞
x satisfy LLN with slope v. This will allow us to conclude

that they are are uniquely defined by the potential and coincide with µn,∞
x (v), so the global

solution in H′(v, v) is also uniquely defined by the potential and coincides with uv, see (1.10.5).

This is done in Section 1.10.3.

In Section 1.10.4 we show that global solutions are also pullback attractors. We also

generalize the result on convergence of density functions to certain point-to-line polymer

measures.

1.10.1 Limits of partition function ratios

Let us recall that the locally uniform (LU) topology on C(Rd) is defined by the metric

d(f, g) =
∞∑
k=1

2−k

(
1 ∧ sup

|x|≤k

|f(x)− g(x)|

)
, f, g ∈ C(Rd).

Convergence in this metric (also called LU-convergence) is equivalent to uniform conver-

gence on every compact subset of Rd. LU-precompactness of a family (fn) is equivalent to

equicontinuity and uniform boundedness of (fn) on every compact set.

In this section we will prove a precompactness result on the partition function ratios.

Since this result will also be used in a latter section to obtain the zero-temperature/inviscid

limits, we will temporarily restore the dependency on κ. The key result in this section is the

following lemma.

Lemma 1.10.1. Let ω ∈ Ω′ and m,n ∈ Z with m < n. Suppose a family of probability

measures
(
νNκ
)
N>n,κ∈(0,1] satisfies

νNκ
(
[−cN, cN ]c

)
= 0, N > m ∨ 0, κ ∈ (0, 1] (1.10.8)
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for some constant c. For n < N , let fN
m,n;κ(x, ·) be the density of µm,N

x,νNκ ;κ
π−1
n , namely,

fN
m,n;κ(x, y) =

∫ cN

−cN

Zm,n
x,y;κZ

n,N
y,z;κ

Zm,N
x,z;κ

νNκ (dz).

Then,
(
κ ln fN

m,n;κ(·, ·)
)
N>n, κ∈(0,1]

is an LU-precompact family of continuous functions.

We will first use Lemma 1.10.1 to derive two results before we give its proof. We will

take Ω′
v,κ = Ω′ ∩ Ωv,κ to be the full measure set in the statement of Theorem 1.4.4, where Ω′

and Ωv have been introduced in Theorems 1.8.1 and 1.4.3.

Proof of Theorem 1.4.4: We fix m < n, κ ∈ (0, 1] and let ω ∈ Ω′
v,κ. Let

gNm,n;κ(x, y) =

∫ cN

−cN

Zn,N
y,z;κ

Zm,N
x,z;κ

νNκ (dz)fN
m,n;κ(x, y)/Z

m,n
x,y;κ.

Since lnZm,n
κ (x, y) is bounded on every compact set, Lemma 1.10.1 implies that

(
gNm,n;κ

)
is also

precompact in LU topology. Via a standard diagonal procedure, we can find a sequence (Nk)

such that gNk
m,n;κ(x, y) and f

Nk
m,n;κ(x, y) converge in LU topology to some function g̃(x, y), f̃(x, y),

respectively, Since lnZm,n
κ (x, y) is bounded on every compact set, we see that fNk

m,n;κ(x, y)

converges to f̃(x, y) = Zm,n
κ (x, y)g̃(x, y) uniformly on compact sets.

On the event Ωv,κ, if (νNk
) satisfies LLN with slope v, then µm,Nk

x,νNk
;κπ

−1
n converge weakly

to µm,∞
x;κ (v)π−1

n . Hence f̃(x, ·) must equal fv,m,n;κ(x, ·), the density of µm,∞
x;κ (v)π−1

n . So we have

identified the only possible limit point of any subsequence of
(
fN
m,n;κ

)
is fv,n,m;κ, and similarly

for
(
gNm,n;κ

)
.

Let (yN) be such that yN/N → v. Then νN = δyN satisfy (1.10.8), so

gNm,n;κ(x, y) = Zn,N
y,yN ;κ/Z

n,N
x,yN ;κ →

(
Zm,n

x,y;κ

)−1
fv,n,m;κ(x, y),

where the convergence is in LU topology. Since
(
ln gNn,m;κ

)
is LU-precompact and thus
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uniformly bounded, we see that G is strictly positive. This proves Theorem 1.4.4 for n1 < n2.

For n1 ≥ n2, we can simply use the following two identities:

lim
N→∞

Zn1,N
x1,yN ;κ

Zn2,N
x2,yN ;κ

=
(

lim
N→∞

Zn2,N
x2,yN ;κ

Zn1,N
x1,yN ;κ

)−1

and

lim
N→∞

Zn1,N
x1,yN ;κ

Zn2,N
x2,yN ;κ

= lim
N→∞

Zn1,N
x1,yN ;κ

Zn3,N
x3,yN ;κ

Zn3,N
x3,yN ;κ

Zn2,N
x2,yN ;κ

□

We also prove

Lemma 1.10.2. The density of µm,∞
x;κ (v)π−1

n and can be expressed as

fv,m,n;κ(x, y) = Zm,n
x,y;κGv;κ

(
(n, y), (m,x)

)
. (1.10.9)

Proof of part (2) of Theorem 1.4.3 : Let us take the full measure set Ω′
v. For

every ω ∈ Ω′
v, our goal is to show that for any (m,x) ∈ Z× R and (νN ) satisfying LLN with

slope v, µm,N
x,νN

π−1
n converges to µm,∞

x;κ (v)π−1
n in total variation for all m < n.

Let c > |v|+ 1. Denoting the conditioning of νN on [−c|N |, c|N |] by ν̃N , we get

∥µm,N
x,νN ;κπ

−1
n − µm,∞

x;κ (v)π−1
n ∥TV

≤∥µm,N
x,νN ;κπ

−1
n − µm,N

x,ν̃N ;κπ
−1
n ∥TV + ∥µm,N

x,ν̃N ;κπ
−1
n − µm,∞

x;κ (v)π−1
n ∥TV

≤∥νN − ν̃N∥TV + ∥µm,N
x,ν̃N ;κπ

−1
n − µm,∞

x;κ (v)π−1
n ∥TV.

The first term goes to 0 since (νN) satisfies LLN with slope v. To see that the second term

goes to 0, we notice that
(
ν̃N
)
satisfies LLN with slope v and (1.10.8), a similar argument as

in the proof of Theorem 1.4.4 to conclude that the densities of µm,N
x,ν̃N ;κπ

−1
n converge to that

of µn
x;κ(v)π

−1
n in LU topology, which implies convergence in total variation. This completes
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the proof. □

Proof of Lemma 1.10.1: We define

gNκ (x, y) =
(
Zm,n

x,y;κ

)−1
fN
m,n;κ(x, y) =

∫ cN

−cN

Zm,N
y,z;κ

Zn,N
x,z;κ

νNκ (dz).

It suffices to show that
(
κ ln gNκ (·, ·)

)
N>n,κ∈(0,1]

is LU-precompact.

Let us consider a compact set K = [p, p + 1] × [−k, k]. Denoting r = c + R1 + 2, for

ε ∈ (0, 1/2), let us define

s1 = max
{
n−m, n0(ω, n, p, [c+ 1], 1),

k

r
, ln2 ε

16

}

and

s2 = max
{
n0(ω, n, i, [c+ 1], 1) : |i| ≤ rs1 + 1

}
∨ ln2 ε

16
,

where the random function n0 is introduced in Theorem 1.8.1.

We will need several truncated integrals:

Z̄n,N
y,z;κ =

∫ rs2

−rs2

Zn,n+1
y,w;κ Z

n+1,N
w,z;κ dw =

∫ rs2

−rs2

e−κ−1[
(w−y)2

2
+Fn+1(w)]Zn+1,N

w,z,κ dw,

Z̄m,n
x,y;κ =


Zm,n

x,y;κ, n = m+ 1,∫ rs1
−rs1

Zm,m+1
x,w;κ Zm+1,n

w,y;κ dw, m > n+ 1,

Z̄m,N
x,z;κ =

∫ rs1

−rs1

Z̄m,n
x,y;κZ̄

n,N
y,z;κ dy,

ḡNκ (x, y) =

∫ cN

−cN

Z̄n,N
y,z;κ

Z̄m,N
x,z;κ

νNκ (dz).

For N > n, we also define hNε;κ = κ ln ḡNκ and K̃ = [p, p+ 1]× [−rs1, rs1] ⊃ K. If we can
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show that for every ε > 0, all large N , and all κ ∈ (0, 1],

|κ ln gNκ (x, y)− hNε;κ(x, y)| ≤ ε, (x, y) ∈ K̃, (1.10.10)

and that
(
hNε;κ
)
is precompact in C(K̃), then the lemma will follow since, given any ε > 0,

we will be able to use an ε-net for (hNε;κ) to construct a 2ε-net for (κ ln gNκ ).

Let N > max{m+ 2s1, n+ 2s2}. If |y| ≤ rs1 and |z| ≤ cN , then from (1.8.2) with v′ = 0,

u1 = c+ 1, u0 = c, ν = δz and using δz([−cN, cN ]c) = 0, we obtain

1−
Z̄n,N

y,z;κ

Zn,N
y,z;κ

= µn,N
y,z;κπ

−1
n+1([−rs2, rs2]c) ≤ 2e−κ−1√s2 ≤ ε/8, κ ∈ (0, 1].

Then, using the elementary inequality | ln(1 + x)| ≤ 2|x| for |x| ≤ 1/2 we find

e−ε/4 ≤ Z̄n,N
y,z;κ/Z

n,N
y,z;κ ≤ 1. (1.10.11)

Let

Z̃m,N
x,z;κ =

∫ rs1

−rs1

Z̄m,n
x,y;κZ

n,N
y,z;κdy.

Then (1.10.11) implies

1 ≤ Z̃m,N
x,z;κ/Z̄

m,N
x,z;κ ≤ eε/4. (1.10.12)

Similarly, if x ∈ [p, p+ 1] and |z| ≤ cN , by (1.8.2), we obtain

1−
Z̃m,N

x,z;κ

Zm,N
x,z;κ

≤ µm,N
x,z;κπ

−1
m+1([−rs1, rs1]c) + µm,N

x,z;κπ
−1
n ([−rs1, rs1]c) ≤ 4e−κ−1√s1 ≤ ε/4.

Therefore,

e−ε/2 ≤ Z̃m,N
x,z;κ/Z

m,N
x,z;κ ≤ eε/2. (1.10.13)
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Combining (1.10.11), (1.10.12) and (1.10.13) we obtain

e−ε ≤ ḡNκ (x, y)/gNκ (x, y) ≤ eε,

and (1.10.10) follows.

The next step is to show that
(
hNε;κ
)
is precompact. For any |w| ≤ rs2 and y, y′ ∈

[−rs1, rs1], we have

∣∣∣∣(y − w)2

2
− (y′ − w)2

2

∣∣∣∣ ≤ r(s1 + s2)|y − y′|.

Hence, the definition of Z̄n,N
·,z;κ implies that

∣∣κ ln Z̄n,N
y,z;κ − κ ln Z̄n,N

y′,z;κ

∣∣ ≤ r(s1 + s2)|y − y′|.

Similarly, for all x, x′ ∈ [p, p+ 1], we have

∣∣κ ln Z̄m,N
x,z;κ − κ ln Z̄m,N

x′,z;κ

∣∣ ≤ (rs1 + |p|+ 1)|x− x′|.

Combining these two inequalities we see that

|hNε;κ(x, y)− hNε;κ(x
′, y′)| ≤ L(|x− x′|+ |y − y′|) (1.10.14)

for L = r(s1+s2)+|p|+1. So, hNε;κ are uniformly Lipschitz continuous and hence equicontinuous

on K̃.

It remains to show that hNε;κ are uniformly bounded. Let

f̄N
κ (x, y) =

∫ cN

−cN

Z̄m,n
x,y;κZ̄

n,N
y,z;κ

Z̄m,N
x,z;κ

νNκ (dz) = exp
(
κ−1hNε;κ(x, y)

)
Z̄m,n

x,y;κ.
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For each x ∈ [p, p+ 1], we have
∫ rs1
−rs1

f̄N
κ (x, y′) dy′ = 1. Let

M = sup{|κ ln Z̄m,n
x,y;κ| : κ ∈ (0, 1], (x, y) ∈ K̃}.

It is easy to see that M <∞ a.s. Then, by (1.10.14) we have for y, y′ ∈ [−rs1, rs1],

e−κ−1
(
L·2rs1+M

)
f̄N
κ (x, y′) ≤ eκ

−1hN
ε;κ(x,y) ≤ f̄N

κ (x, y′)eκ
−1
(
L·2rs1+M

)

Integrating this inequality over y′ ∈ [−rs1, rs1] gives us

e−κ−1
(
L·2rs1+M

)
≤ 2rs1e

κ−1hN
ε;κ(x,y) ≤ eκ

−1
(
L·2rs1+M

)
.

Taking the logarithm gives |hNε;κ(x, y)| ≤ L ·2rs1+M + | ln(2rs1)|, so |hNε;κ(x, y)| are uniformly

bounded on K̃. □

1.10.2 Existence of global solutions

In this section, for every v ∈ R, we will prove the existence of global solutions on a full

measure set Ω̃ ∩ Ω′
v. Here, Ω

′
v = Ω′

v;κ has been introduced in the beginning of Section 1.10.1

and Ω̃ is introduced in the following lemma controlling the tail of µn,N
x,Nvπ

−1
n+1.

Lemma 1.10.3. There is a full measure set Ω̄ on which for every c > 0 and (n, q) ∈ Z× Z,

there are constants a1, a2, L0 > 0 and N0 depending on c, n and q such that

µn,N
x,ν π

−1
n+1

(
[−L,L]c

)
≤ ν

(
[−cN, cN ]c

)
+ a1e

−a2
√
L (1.10.15)

for any N ≥ N0, L ≥ L0, x ∈ [q, q + 1] and any terminal measure ν.

A proof of the lemma will be given at the end of this section.
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Let us fix v ∈ R and assume that ω ∈ Ω̄ ∩ Ω′
v throughout this section.

Let us define uNv (n, x), its Hopf–Cole transform V N
v (n, x), and the constants CN

v,m,n

by (1.10.2), (1.10.3), and (1.10.4). We can use the function Gv introduced in Theorem 1.4.4

to define

Vv(n, x) = Gv

(
(n, x), (n, 0)

)
, Cv,m,n = Gv

(
(n, 0), (m, 0)

)
.

Lemma 1.10.4. The functions Vv(n, x) and constants Cv,m,n satisfy (1.10.1).

Proof: Fix m < n and x. We want to show

Gv

(
(m,x), (m, 0)

)
= Gv

(
(n, 0), (m, 0)

) ∫
Zm,n(x, y)Gv

(
(n, y), (m, 0)

)
dy,

which, by (1.4.5), is equivalent to

1 =

∫
Zm,n

x,y Gv

(
(n, y), (m,x)

)
dy.

This identity is true because by Lemma 1.10.2, the integrand is the density of µm,∞
x (v)π−1

n .

□

Let fN
v,n,n+1(x, y) be the density of µn,N

x,Nvπ
−1
n+1. Then (1.10.4) rewrites as

uNv (n, x) =

∫
R
(x− y)fN

v,n,n+1(x, y)dy.

Recalling that we expect the global solution to be given by (1.10.5), we use the limiting

density fv,n,n+1(x, y) from Lemma 1.10.2 to define

uv(n, x) =

∫
R
(x− y)fv,n,n+1(x, y)dy.

Lemma 1.10.5. The functions uNv (n, ·) converge to uv(n, ·) in LU topology as N → ∞, and
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the Hopf–Cole transform of uv(n, ·) is Vv(n, ·).

Proof: Let q ∈ Z. Lemma 1.10.3 implies that for some constants a1, a2, L0 and N0,

µn,N
x,Nvπ

−1
n+1

(
[−L,L]c

)
=

∫
|y|>L

fN
v,n,n+1(x, y)dy ≤ a1e

−a2
√
L, x ∈ [q, q + 1],

for all N ≤ N0 and L ≥ L0, if we take c > |v|. Moreover, by Theorem 1.10.2, fN
v,n,n+1(x, y)

converges to fv,n,n+1(x, y) uniformly on compact sets. Therefore, uNv (n, ·) converges to uv(n, ·)

uniformly on [q, q + 1].

Since uNv (n, ·) and V N
v (n, ·) converge to uv(n, ·) and V N (n, ·) on compact sets, taking the

limit N → ∞ in V N
v (n, x) = e−

∫ x
0 uN

v (n,x′)dx′
, we see that Vv(n, x) is the Hopf–Cole transform

of uv(n, x). □

To show that uv(n, ·) ∈ H′(v, v), we need the following lemma which we will prove in the

end of this section.

Lemma 1.10.6. Given n ∈ Z and a compact set K ⊂ R, the family of random variables{
uNv (n, x) : N < n, x ∈ K

}
is uniformly integrable.

Proof of the existence part of Theorem 1.3.1: By Lemmas 1.10.4 and 1.10.5,

uv(n, x) is a global solution. It remains to show that uv(n, ·) ∈ H′(v, v). All the other

properties are easy to check.

Lemma 1.10.6 implies that

lim
N→∞

EuNv (n, x) = Euv(n, x). (1.10.16)

By Lemma 1.6.2, for any (m1, x1) and (m2, x2) such that m1 < m2, we have

Zm1,m2(x1, x2)
d
= e

− (x1−x2)
2

2(m2−m1)Z0,m2−m1(0, 0).
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Taking logarithm and then expectation, we obtain

E lnZm1,m2(x1, x2) = − (x1 − x2)
2

2(m2 −m1)
+ E lnZ0,m2−m1(0, 0),

so

E lnV N
v (n, x) = E lnZn,N(x,Nv)− E lnZn,N(0, Nv) = −x(2Nv − x)

2(N − n)
. (1.10.17)

For any N , by Hopf–Cole transform we have

∫ x

0

uNv (n, x
′)dx′ = − lnV N

v (n, x).

Taking expectation of both sides, using the Fubini theorem and (1.10.17), we obtain

∫ x

0

EuNv (n, x
′)dx′ =

x(2Nv − x)

2(N − n)
.

Taking the limit N → ∞ and using (1.10.16), we obtain

∫ x

0

Euv(n, x
′)dx′ = vx.

By stationary of uv(n, ·), the left hand side is x · Euv(n, 0). Therefore, Euv(n, 0) = v and

hence by ergodic theorem uv(n, ·) ∈ H′(v, v). □

Now we turn to the proofs of Lemma 1.10.3 and Lemma 1.10.6.

The next lemma is an immediate consequence of (1.7.7) in Lemma 1.7.2.

Lemma 1.10.7. Recall d1, R1 introduced in Lemma 1.7.2. Then for all r ≥ R1, r ∈ N and

for all (m, p), (n, q) ∈ Z× Z (n−m ≥ 2), with probability at least 1− e−3rd1R1,

µm,n
x,y

{
γ : max

m≤i≤n
|γi − [(m,x), (n, y)]i| ≥ r(n−m)

}
≤ e−r(n−m)
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for all x ∈ [p, p+ 1], y ∈ [q, q + 1].

Proof of Lemma 1.10.3: It suffices to prove the statement for fixed c and (n, q). Let

K = 2c + R1 + 1 where R1 is taken from Lemma 1.7.2. Theorem 1.8.1 implies that with

probability one, for some sufficiently large constant n1 = n1(n, q, c), if
N−n
2

≥ n1 = n1(n, q, c),

then for all s satisfying n1 ≤ s ≤ N−n
2

and all x ∈ [q, q + 1],

µn,N
x,ν π

−1
n+1

(
[−Ks,Ks]c

)
≤ ν

(
[−cN, cN ]c

)
+ 2e−

√
s.

This implies that for some k1 > 0 and all L ∈ [Kn1, K(N − n)/2], we have

µn,N
x,ν π

−1
n+1

(
[−L,L]c

)
≤ ν

(
[−cN, cN ]c

)
+ 2e−k1

√
L. (1.10.18)

Noticing that for all L ≥ K(N − n)/2, we have the trivial inequality

µn,N
x,ν π

−1
n+1

(
[−L,L]c

)
≤ µn,N

x,ν π
−1
n+1

(
[−K(N − n)/2, K(N − n)/2]c

)
,

we can extend (1.10.18) to all L ∈ [Kn1, 2R1(N − n)] by adjusting the constant k1 appropri-

ately, using Lemma 1.10.7.

Using Lemma 1.10.7, the Borel–Cantelli lemma implies that with probability one, for

sufficiently large N , we have

µn,N
x,y π

−1
n+1

([
x+

y − x

N − n
− r(N − n), x+

y − x

N − n
+ r(N − n)

]c)
≤ 2−r(N−n)

for all |y| ≤ cN and r ≥ R1. Applying this estimate to y = ±cN and using monotonicity, we
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obtain for r ≥ R1 and sufficiently large N :

µn,N
x,ν π

−1
n+1

(
[−2r(N − n), 2r(N − n)]c

)
≤µn,N

x,ν π
−1
n+1

([
− (|q|+ c+ 2 + r(N − n)), |q|+ c+ 2 + r(N − n)

]c)
≤µn,N

x,ν π
−1
n+1

([
x+

−cN − x

N − n
− r(N − n), x+

cN − x

N − n
+ r(N − n)

]c)
≤ν
(
[−cN, cN ]c

)
+ 2−r(N−n).

Therefore, for some constant k2 > 0 and all L ∈ [2R1(N − n),+∞), we have

µn,N
x,ν π

−1
n+1

(
[−L,L]c

)
≤ ν

(
[−cN, cN ]c

)
+ 2e−k2L. (1.10.19)

Combining the estimates (1.10.18) and (1.10.19), we see that (1.10.15) holds for all L ≥ Kn1,

which completes the proof of the lemma. □

To prove the uniform integrability of uNv (n, x) in Lemma 1.10.6, we need an additional

lemma which is a corollary from (1.8.13) in Lemma 1.8.3.

Lemma 1.10.8. There is a constant s0 such that for N/2 ≥ s ≥ s0,

P
{
µ0,N
0,0 π

−1
1 ([−(R1 + 2)s, (R1 + 2)s]c) ≤ e−

√
s
}
> 1− e−s1/4 .

Proof of Lemma 1.10.6: By Lemma 1.3.1, uNv (n, x)−x is non-increasing in x. Therefore,

it suffices to show the uniform integrability of
(
uNv (n, x)

)
N<n

for fixed (n, x) ∈ Z×R. We also

notice that uNv (0, 0)
d
= uN0 (0, 0)+v. So, without loss of generality, let us assume (n, x) = (0, 0)

and v = 0. Let us write fN
0,0,1(0, y) = fN(y) and uN0 (0, 0) = uN .

Lemma 1.10.8 implies that if L = (R1 + 2)s ∈ [(R1 + 2)s0, (R1 + 2)N/2], then

P
{∫

|y|>L

fN(y)dy ≤ 4e−k1
√
L
}
> 1− e−k2L1/4

(1.10.20)
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for some constants k1 and k2. Using the inequality

∫
|y|>L

fN(y)dy ≤
∫
|y|>(R1+2)N/2

fN(y)dy

for L ≥ (R1+2)N/2 and adjusting the constants k1, k2 appropriately, we can extend (1.10.20)

to all L ∈ [(R1 + 2)s0, R1N ]. Next, Lemma 1.10.7 implies that if L = rN ≥ R1N , then

P
{∫

|y|>L

fN(y)dy ≤ 2−L
}
> 1− 3e−d1L. (1.10.21)

Combining the estimates (1.10.20) and (1.10.21), we can find constants c1, c2, c3, c4, indepen-

dent of N , such that for L ≥ (R + 2)s0,

P
{∫

|y|>L

fN(y)dy ≤ c1e
−c2

√
L
}
> 1− c3e

−c4L1/4

.

This implies that uN = −
∫
R yf

N(y)dy are uniformly integrable. □

1.10.3 Uniqueness of global solutions

The main goal of this section is to finish the proof of Theorem 1.3.1 by establishing the

uniqueness of global solutions.

Let w(x) ∈ H′ and V (x) = e−
∫ x
0 w(x′)dx′

be its Hopf–Cole transform. We can introduce

the following point-to-line polymer measures:

µ̄n,N
x,V (An+1 × ...× AN) =

∫
AN

dxN · · ·
∫
An+1

dxn+1δx(dxn) V (xN)
N−1∏
i=n

Zi,i+1
xi,xi+1∫

R V (xN)Z
n,N
x,xNdxN

.

The fact that w ∈ H′ guarantees that all integrals are finite.

Lemma 1.10.9. Let
(
wN (·)

)
be a stationary sequence of random functions in H′ and

(
VN (·)

)
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be the corresponding Hopf–Cole transforms. Let v ∈ R. Suppose that one of the conditions

(1.3.1), (1.3.2), (1.3.3) is satisfied byW (·) = WN (·) =
∫ ·
0
wN (y

′)dy′ for all N with probability 1.

Then for almost every ω and all n ∈ Z, the probability measures νn,N,x (n < N) defined by

νn,N,x(dy) = µ̄n,N
x,VN

π−1
N (dy) =

Zn,N(x, y)VN(y)∫
R Z

n,N(x, y′)VN(y′)dy′
dy

satisfy

lim inf
N→∞

ehN sup
x∈[−L,L]

νn,N,x([(v − ε)N, (v + ε)N ]c) = 0,

for all L ∈ N and ε > 0, and some constant h(ε) > 0 depending on ε.

First let us derive the uniqueness of the global solution from this lemma.

Proof of the uniqueness part of Theorem 1.3.1: Let v ∈ R and let uv(n, ·) be a

stationary global solution in H′(v, v). We will prove that for almost every ω, uv,ω coincides

with the global solution constructed in Section 1.10.2.

Let Vv(n, ·) be the Hopf–Cole transforms of uv and Cv,m,n be the family of constants such

that (1.10.1) holds true. Let µ̄n,∞
x be defined as in (1.10.6). Then we have (1.10.7).

Since uv(n, x) ∈ H′(v, v), the potential of uv(n, x) satisfies one of the conditions (1.3.1),

(1.3.2), (1.3.3) depending on the value of v. Therefore, by Lemma 1.10.9, we have

lim inf
N→∞

µ̄n,∞
x π−1

N ([(v − ε)N, (v + ε)N ]c) = 0.

By Theorem 1.8.1 we have that for m large enough and N − n ≥ 2m,

µ̄n,∞
x π−1

n+m([(v − 2ε)(n+m), (v + 2ε)(n+m)]c)

≤ µ̄n,∞
x π−1

N ([(v − ε)N, (v + ε)N ]c) + e−
√
m.
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Taking lim inf as N → ∞, we obtain

µ̄n,∞
x π−1

n+m([(v − 2ε)(n+m), (v + 2ε)(n+m)]c) ≤ e−
√
m.

So µ̄n,∞
x satisfies SLLN with slope v and is supported on Sn,∞

x,∗ . Therefore, by Lemma 1.9.13,

we have µ̄n,∞
x = µn,∞

x (v). This shows that uv(n, ·) is exactly what we have constructed in

Section 1.10.2, and the proof of uniqueness is complete. □

To prove Lemma 1.10.9 we start with several auxiliary statements.

Lemma 1.10.10. Let (Xn)n∈N be a stationary sequence of random variables such that

P(Xn <∞) = 1. Then there is a random number k = k(ω) such that

P {ω : Xn(ω) ≤ k(ω) for infinitely many n} = 1.

Proof: Let Ak = {ω : Xn(ω) ≤ k for finitely many n}. Clearly Ak+1 ⊂ Ak for all k ∈ N.

Let A∞ =
∞⋂
k=1

Ak. We want to prove that P(A∞) = 0.

By the ergodic theorem, on A∞ we have

0 = lim
n→∞

1

n

n−1∑
i=0

1Xi≤k = E(1X0≤k|I), k > 0

where I is the invariant σ-algebra for the stationary sequence
(
Xn

)
. Therefore

0 = E
(
1A∞E(1X0≤k|I)

)
= E1A∞1X0≤k.

Since P(X0 <∞) = 1, by the Bounded Convergence Theorem we have

0 = lim
k→∞

E1A∞1X0≤k = P(A∞)
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as desired. □

Recall that λ = Ee−F0(0).

Lemma 1.10.11. There is a full measure set Ω′′ on which the following is true. For

all c > 4
√

ln(2λ/ρ0)) and (n, q) ∈ Z× Z, there is a constant m0 = m0(n, q, c) such that for

all m > m0, we have ∫
|y|≥cm

Zn,n+m(q, y)ec|y|/17dy∫ q+1

q
Zn,n+m(q, y)dy

≤ 2−m (1.10.22)

and ∣∣∣ ln∫
I

Zn,n+m(x, y)H(y)dy − ln

∫
I

eα(m,y−x)H(y)dy
∣∣∣ ≤ 2m3/4, (1.10.23)

for all intervals I ⊂ [−cm, cm], all x ∈ [q, q + 1] and all positive functions H(·). Here, α(·, ·)

has been defined in (1.8.3).

Proof: Let us fix (n, q) and c. Due to the Borel–Cantelli lemma and the fact that for

sufficiently large m,

∫
|y|≥cm

Zn+m,m(q, y)ec|y|/17dy ≤
∫
|y−q|≥cm/2

Zn,n+m(q, y)ec|y−q|/16dy,

the inequality (1.10.22) will follow if we prove that for some constant k > 0 and sufficiently

large m,

P

{
am
bm

> 2−m

}
≤ e−km, (1.10.24)

where

am =

∫
|y−q|≥cm/2

Zn,n+m(q, y)ec|y−q|/16dy, bm =

∫ q+1

q

Zn,n+m(q, y)dy.

By (1.7.3) in Lemma 1.10.12, we have P{bm ≤ ρm0 } ≤ e−k1m for some constants ρ0, k1. By
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Markov inequality,

P
{
am ≥ (ρ0/2)

m
}
≤
( 2

ρ0

)m
Eam =

(2λ
ρ0

)m ∫
|y−q|≥cm/2

1√
2mπ

e−
(y−q)2

2m
+c|y−q|/16dy

≤
(2λ
ρ0

)m ∫
|y−q|≥cm/2

1√
2mπ

e−
(y−q)2

4m dy

≤ 8

c
√
2mπ

e−
(
c2/16−ln(2λ/ρ0)

)
mdy ≤ e−k2m

for a constant k2 > 0 if c > 4
√

ln(2λ/ρ0) and m is sufficiently large. Combining these two

inequalities, we obtain (1.10.24) and complete the proof of (1.10.22).

The second part of Lemma 1.10.11 follows from Lemma 1.8.1. □

We also need a monotonicity statement for point-to-line polymer measures.

Lemma 1.10.12. Let x < x′ and V (x) be a positive function that grows at most exponentially.

Then for any m,n with m < n, the polymer measure µ̄m,n
x,V is stochastically dominated by µ̄m,n

x′,V .

Proof: First, we have

µk,n
y,V (Ak+1 × · · · × An−1) =

∫
An−1

µ̄k,n
y,V π

−1
k+1(dxk+1)µ̄

m,k−1
V,xk+1

(Ak+2 × · · · × An−1).

Therefore, similarly to Lemma 1.9.3, it suffices to show that µ̄m,n
x,V π

−1
m+1 ⪯ µ̄m,n

x′,V π
−1
m+1 and use

an induction argument.

Now we compute the marginals at time n− 1 :

µ̄m,n
x,V {Xm+1 ≤ r} =

∫
R dy

∫
(−∞,r]

dηV (y)Zm+1,n
η,y e−Fm+1(η)g(η − x)∫

R dy
∫
R dηV (y)Zm+1,n

η,y e−Fm+1(η)g(η − x)
.

Let

ν(dη) =

∫
dyV (y)Zm+1,n

η,y e−Fm+1(η)dη.

Then by Lemma 1.9.1, µ̄m,n
x,V {Xm+1 ≤ r} is decreasing in x, so µ̄m,n

x,V π
−1
m+1 is dominated
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by µ̄m,n
x′,V π

−1
m+1. □

Proof of Lemma 1.10.9: We take Ω′′ from the statement of Lemma 1.10.11 and fix an

arbitrary ω ∈ Ω′′.

Fix n and L ∈ N. Since Lemma 1.10.12 implies νn,N,−L ⪯ νn,N,x ⪯ νn,N,L for x ∈ [−L,L],

it suffices to show that for every ε > 0,

lim inf
N→∞

ehN max
a=±L

νn,N,a

(
[(v − ε)N, (v + ε)N ]c

)
= 0,

or, equivalently, that for every ε ∈ (0, 1) there is a random sequence mk = mk(ω, ε) ↑ +∞

such that

0 = lim
k→∞

ehmkνn,n+mk,a

(
[(v − ε)mk, (v + ε)mk]

c
)

= lim
k→∞

ehmk

∫
|y−vmk|>εmk

Zn,n+mk(a, y)Vn+mk
(y)dy∫

R Z
n,n+mk(a, y)Vn+mk

(y)dy
(1.10.25)

for a = ±L.

The proof consists of two steps. The first step is to use (1.3.1), (1.3.2), (1.3.3) and Lemma

1.10.10 to find a random sequence (mk) with certain properties; the second is to combine

those properties and estimates provided by Lemma 1.10.11 to derive (1.10.25).

We can assume that v ≥ 0, since the case v < 0 is totally symmetric to the case v > 0.

Let us fix some δ > 0 such that

δ <


ε/4, v = 0,

(ε/4) ∧ (v/2) ∧ ε2

8v
, v > 0.

(1.10.26)

Step 1 — find (mk): we claim that there is a random constant R = R(ω) and a random
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sequence (mk) such that for every m = mk,

|Wn+m(y)| ≤ R, y ∈ [−L,L+ 1], (1.10.27)

Wn+m(y) ≥ −R(|y|+ 1), y ∈ R, (1.10.28)

and

v = 0,

Wn+m(y) ≥ −δ|y|, |y| ≥ R, (1.10.29a)

or,

v > 0,

|Wn+m(y)− vy| ≤ δ|y|, y < −R, (1.10.29b)

Wn+m(y) ≥ (−v + 2δ)|y|, y > R. (1.10.29c)

To see this, for each m, we let Xm, Ym and Zm be the infimum of R such that (1.10.27),

(1.10.28) and (1.10.29) are satisfied. Due to stationary of WN(·), (Xm), (Ym) and (Zm) are

all stationary sequences of random variables. Also, Xm are a.s. finite because WN(·) are

locally finite; Ym are a.s. finite because WN (·) ∈ H; Zm are a.s. finite due to (1.3.1) or (1.3.2),

depending on v. Therefore, by Lemma 1.10.10, there is a random number R = R(ω) such

that Xm ∨ Ym ∨ Zm ≤ R for infinitely many m almost surely. This proves the claim.

Step 2 — show (1.10.25). For simplicity we will write m = mk in what follows, so
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m→ ∞ actually means m = mk, k → ∞. Let us fix c ≥ 17(v + 1) ∨ 4
√
ln(2λ/ρ0) and write

νn,n+m,a([(v − ε)m, (v + ε)m]c)

=

∫
|y|<cm,|y−vm|>εm

Zn,n+m
a,y e−Wn+m(y)dy∫

R Z
n,n+m
a,y e−Wn+m(y)dy

+

∫
|y|≥cm

Zn,n+m
a,y e−Wn+m(y)dy∫

R Z
n,n+m
a,y e−Wn+m(y)dy

= Am +Bm.

We will show that both Am and Bm decay exponentially.

First we look at Bm. By (1.10.29), ifm is sufficiently large, then−Wn+m(y) ≤ (|v|+δ)|y| ≤

c|y|/17 for all |y| ≥ cm. Due to (1.10.27) we have

∫
R
Zn,n+m(a, y)e−Wn+m(y)dy ≥ e−R

∫ a+1

a

Zn,n+m(a, y)dy.

Therefore, by Lemma 1.10.11 we have

Bm ≤ eR

∫
|y|≥cm

Zn,n+m(a, y)ec|y|/17dy∫ a+1

a
Zn,n+m(a, y)dy

≤ eR

2m

for sufficiently large m.

Next we look at Am. Using Lemma 1.10.11, we obtain that for sufficiently large m,

Am ≤ exp
(
4m3/4

)
·

∫
|y|<cm,|y−vm|>εm

e−
(y−a)2

2m
−Wn+m(y)dy∫ cm

−cm
e−

(y−a)2

2m
−Wn+m(y)dy

≤ exp
(
4m3/4 + L2/m+ 2Lc

)
·

∫
|y−vm|>εm

e−
y2

2m
−Wn+m(y)dy∫ cm

−cm
e−

y2

2m
−Wn+m(y)dy

.

Let us denote the ratio of integrals in the last line by Ãm. It suffices to show that Ãm decays

exponentially. We will consider the cases v = 0 and v > 0 separately.

Suppose v = 0. For sufficiently large m, we have Wn+m(y) ≥ −δ|y| for all |y| > εm by
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(1.10.29a) and Wn+m(y) ≤ R for y ∈ [0, 1] by (1.10.27). Therefore,

Ãm ≤

∫
|y|>εm

e−
y2

2m
+δ|y|dy∫ 1

0
e−

y2

2m
−R

≤ e
1

2m
+R

∫
|y|>εm

e−
y2

2m
+δ|y|dy ≤ e

1
2m

+R · 4
ε
e−

ε2

4
m

as desired. Here, in the last inequality, we used δ < ε/4 to obtain

∫
|y|>εm

e−
y2

2m
+δ|y|dy ≤

∫
|y|>εm

e−
y2

4mdy ≤ 4

ε
e−

ε2

4
m. (1.10.30)

Suppose v > 0. Let Ãm = (A1 + A2 + A3)/A4, where

A1 =

∫
|y−vm|>εm,y≤−R

e−
y2

2m
−Wn+m(y)dy, A2 =

∫ R

−R

e−
y2

2m
−Wn+m(y)dy,

A3 =

∫ ∞

R

e−
y2

2m
−Wn+m(y)dy, A4 =

∫ cm

−cm

e−
y2

2m
−Wn+m(y)dy.

For sufficiently large m, by (1.10.29b), (1.10.30), (1.10.28) and (1.10.29c), we have

A1 ≤
∫
|y−vm|>εm

e−
y2

2m
−(v+δ)ydy

≤ e(
v2

2
+vδ)m

∫
|y′|>εm

e−
y′2
2m

+δ|y′|dy′ ≤ 4

ε
exp
(
(v2/2 + vδ − ε2/4)m

)
,

A2 ≤
∫ R

−R

e−
y2

2m
+R(|y|+1)dy ≤ 2ReR

2+R,

A3 ≤
∫ ∞

R

e−
y2

2m
+(v−2δ)ydy ≤

∫ ∞

∞
e−

y2

2m
+(v−2δ)ydy =

√
2mπ exp

((v − 2δ)2

2
m
)
,

and

A4 ≥
∫ −vm+1

−vm

e−
y2

2m
+(v−δ)ydy ≥ exp

(
(v2/2− vδ)m

)
.
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Therefore,

Ãm ≤ 4

ε
exp
(
−(ε2/4− 2vδ)m

)
+ 2ReR

2+R exp
(
−(v2/2− vδ)m

)
+
√
2mπ exp

(
−(vδ − 2δ2)m

)
,

and the right-hand side decays exponentially due to (1.10.26). □

Proof of Lemma 1.3.1: Let V (·) be the Hopf–Cole transform of w(·). Then

x−Ψn0,n1w(x) = x−
∫
R
(x− y)µ̄m,n

V,x (dy) =

∫
R
yµ̄m,n

V,x (dy).

The conclusion then follows from Lemma 1.10.12. □

1.10.4 Basins of pullback attraction

The global solutions play the role of one-point pullback attractors. The goal of this section

is to prove Theorem 1.3.2.

First we need a version of Lemma 1.10.9 where wN ≡ w are independent of N , which is

the case in Theorem 1.3.2.

Lemma 1.10.13. Let v ∈ R and w(·) ∈ H′. If one of the conditions (1.3.1), (1.3.2), (1.3.3)

is satisfied by W (·) =
∫ ·
0
w(y′)dy′, then for almost every ω and every n ∈ Z, the probability

measures νn,N,x (n < N) defined by

νn,N,x(dy) =
Zn,N(x, y)e−W (y)∫

R Z
n,N(x, y′)e−W (y′)dy′

dy

satisfy

lim
N→∞

ehN sup
x∈[−L,L]

νn,N,x([(v − ε)N, (v + ε)N ]c) = 0,
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for all L ∈ N and ε > 0, and some constant h(ε) > 0 depending on ε.

Proof: The proof is similar to that of Lemma 1.10.9. Because wN (·) ≡ w(·) are independent

of N , there is no need to choose a subsequence (mk) to satisfy (1.10.29), (1.10.27), and

(1.10.28) as we did in the first step of proving Lemma 1.10.9. Therefore, we obtain lim instead

of lim inf in the conclusion. □

Proof of Theorem 1.3.2: We define Ω̂ = Ω̄ ∩ Ω′′ ∩ Ω′
v and let ω ∈ Ω̂. We also define

V (x) = e−
∫ x
0 w(x′)dx′

and consider the measures

νn,N,x(dy) = µ̄n,N
x,V π

−1
N (dy) =

V (y)Zn,N(x, y)∫
R V (y′)Zn,N(x, y′)dy′

dy.

Then we have µ̄n,N
x,V = µn,N

νn,N,x,x
and

Ψn,N
ω w(x) =

∫
R
(y − x)µ̄n,N

x,V π
−1
n+1(dy).

Due to Lemma 1.3.1, it suffices to prove pointwise convergence, i.e., to show that

lim
N→∞

∫
R
(y − x)µ̄n,N

x,V π
−1
n+1(dy) =

∫
R
(y − x)µn,∞

x (v)π−1
n+1(dy), x ∈ R. (1.10.31)

Using Lemmas 1.10.13 and 1.10.3, we obtain that for some constants b1 and b2,

µ̄n,N
x,V π

−1
n+1([−L,L]c) ≤ b1e

−b2
√
L. (1.10.32)

By Lemma 1.10.13, for fixed (n, x) ∈ Z× R, (νn,N,x)N<n is a family of probability measures

satisfying LLN with slope v. Hence by Lemma 1.9.13, µn,N
νn,N,x,x

converges weakly to µn
x(v), so

µ̄n,N
x,V π

−1
n+1 converges weakly to µn

x(v)π
−1
n+1. Now (1.10.31) follows from this and (1.10.32), and

the proof is complete. □
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1.10.5 Overlap of polymer measures

In this section we prove Theorem 1.4.6. We recall that

∥µ− ν∥TV = sup
A∈B(R)

|µ(A)− ν(A)|.

and that Ω′
v = Ω′ ∩ Ωv.

The convergence of polymer measures in total variation distance is a consequence of the

existence of ratios of partition functions and the LLN for polymer measures.

For the rest of this section, we fix v ∈ R and always assume that ω ∈ Ω′
v. We will also

fix (n1, x1) and (n2, x2), and write µN
i = µni,∞

xi
(v)π−1

N , i = 1, 2.

Lemma 1.10.14. Let µ and ν be two probability measures with densities f and g respectively,

such that both f and g are positive on some Borel set C, and zero outside C. Then

∥µ− ν∥TV ≤ 1− inf
x∈C

g(x)

f(x)

Proof: Let A = {x ∈ C : f(x) ≥ g(x)} and d = infx∈C g(x)/f(x). Then

∥µ− ν∥TV =

∫
A

(f(x)− g(x)) dx ≤
∫
A

(1− d)f(x) dx ≤ (1− d)

∫
C

f(x) dx = 1− d.

□

Lemma 1.10.15. There are constants αN , βN depending on ω, xi, ni such that

lim
N→∞

αN

N
= lim

N→∞

βN
N

= v,

lim
N→∞

µN
1 ([αN , βN ]

c) = lim
N→∞

µN
2 ([αN , βN ]

c) = 0.

Proof: Since the measures µN
i satisfy the LLN with slope v, there is a decreasing sequence
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of negative numbers (Nk) such that

µN
i ([(v − 2−k)N, (v + 2−k)N ]c) ≤ 2−k, Nk ≤ N, i = 1, 2.

For every N , let k be such that Nk ≤ N < Nk+1. Then setting

αN = (v − 2−k)N, βN = (v − 2−k)N

completes the proof. □

Let fN
i (x) be the density of µN

i . We will need the following representation of fN
i .

Lemma 1.10.16. Recall the function Vv(n, x) which is the Hopf–Cole transform of the global

solution uv(n, x). Then

fN
i (x) =

Zni,N
xi,x

Vv(N, x)∫
Zni,N

xi,x′ Vv(N, x′) dx′
.

Proof: By (1.10.9) in Theorem 1.10.2 we have

fN
i (x) = Zni,N

xi,x
Gv

(
(N, x), (ni, xi)

)
.

Thus for x ̸= y,

fN
i (x)

fN
i (y)

=
Zni,N

xi,x

Zni,N
xi,y

Gv

(
(N, x), (ni, xi)

)
Gv

(
(N, y), (ni, xi)

) =
Zni,N

xi,x

Zni,N
y,xi

Gv

(
(N, x), (N, 0)

)
Gv

(
(N, y), (N, 0)

) =
Zni,N

xi,x
Vv(N, x)

Zni,N
y,xi Vv(N, y)

,

and our claim follows. □

Proof of Theorem 1.4.6: Let DN
i = µN

i ([αN , βN ]), i = 1, 2, and let

µ̃N
i (A) = (DN

i )
−1µN

i (A ∩ [αN , βN ]).

Then the measures µ̃N
i , i = 1, 2, are supported on [αN , βN ] with densities given by f̃N

i (x) =
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(DN
i )

−1fN
i (x). Also,

∥µ̃N
i − µN

i ∥TV ≤ 1−DN
i . (1.10.33)

Combining this with Lemma 1.10.14 we obtain

∥µN
1 − µN

2 ∥TV ≤ ∥µN
1 − µ̃N

1 ∥TV + ∥µ̃N
1 − µ̃N

2 ∥TV + ∥µ̃N
2 − µN

2 ∥TV

≤ 3−DN
1 −DN

2 − inf
x∈[αN ,βN ]

f̃N
2 (x)

f̃N
1 (x)

.

Since DN
i → 1 as N → ∞, i = 1, 2, it suffices to show

lim
N→∞

inf
x∈[αN ,βN ]

f̃N
2 (x)

f̃N
1 (x)

= 1.

Using the representation of fN
i in Lemma 1.10.16, we see that

f̃N
i =

Zni,N
xi,x

Vv(N, x)∫ βN

αN
Zni,N

xi,x′ Vv(N, x′) dx′
.

and hence

f̃N
2 (x)

f̃N
1 (x)

=
Zn,N2

x2,x

Zn,N1
x1,x

∫ βN

αN
Vv(N, x

′)Zn,N1

x1,x′ dx′∫ βN

αN
Vv(N, x′)Z

n,N2

x2,x′ dx′
≥ mN

MN

,

where

mN = inf
x∈[αN ,βN ]

Zn,N2
x2,x

Zn,N1
x1,x

, Mn = sup
x∈[αN ,βN ]

Zn,N2
x2,x

Zn,N1
x1,x

.

Our goal is to show that limN→∞mN/MN = 1.

Since the partition function is continuous with respect to endpoints, both the supremum

and infimum are achieved at some points x = xN+ and x = xN− . Since limN→∞ xN±/N = v,

Theorem 1.4.4 implies

lim
N→∞

mN = lim
N→∞

MN = lim
N→∞

Zn,N2

x2,xN
±

Zn,N1

x1,xN
±

= Gv

(
(n2, x2), (n1, x1)

)
∈ (0,∞),
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so lim
N→∞

mN/MN = 1. This completes the proof. □

1.11 Zero-temperature and inviscid limits

In this section, we will prove Theorems 1.5.2 and 1.5.3. We will show that Ω′ introduced

in Section 1.8 can be chosen as the full measure set the existence of which is claimed in

Theorem 1.5.2, and that we can take Ω̂v = Ω′ ∩ Ωv;0 ∩
⋂

κ∈D Ωv;κ in Theorem 1.5.3.

Let us fix ω ∈ Ω′ and (m,x) ∈ Z × R. Let µκ ∈ Pm,+∞
x;κ (v), κ ∈ (0, 1]. We first derive

some properties for such a family
(
µκ

)
.

Lemma 1.11.1. For any ε > 0 and κ ∈ (0, 1], if n > n0(ω,m, [x], [|v|+ ε], [2ε−1]), then

µκ

(
[(m+ n)(v − ε), (m+ n)(v + ε)]c

)
≤ e−κ−1n1/2

. (1.11.1)

Proof: The proof is similar to that of Lemma 1.8.6. □

Lemma 1.11.2. There are a constant c > 0 and terminal measures
(
νNκ
)
N>m, κ∈(0,1] satisfy-

ing (1.10.8) such that for each κ, µκ is the weak limit of µm,N
x,νNκ ;κ

as N → ∞.

Proof: Let us define νNκ as follows:

νNκ (A) =
(
DN

κ

)−1
µκπ

−1
N

(
A ∩BN

)
, A ⊂ B(R),

where BN = [N(v − 1), N(v + 1)] and DN
κ = µκπ

−1
N

(
BN). For any n > m and any Borel set

Λ ⊂ B(Rn−m), we have

|µκπ
−1
m,n(Λ)− µm,N

x,νNκ ;κ
π−1
m,n(Λ)|

≤ |µκπ
−1
m,n(Λ)−DN

κ µ
m,N
x,νNκ ;κ

π−1
m,n(Λ)|+ (1−DN

κ )µ
m,N
x,νNκ ;κ

π−1
m,n(Λ)

≤ νNκ (Bc
N) + (1−DN

κ )µ
m,N
x,νNκ ;κ

π−1
m,n(Λ).
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The right hand side goes to zero, since µκ ∈ Pm,+∞
x (v) implies that

1−DN
κ = νNκ (Bc

N) = µκπ
−1
N

(
[N(v − 1), N(v + 1)]c

)
→ 0, N → ∞.

This shows that µκ is the weak limit of µm,N
x,νNκ ;κ

and completes the proof. □

Lemma 1.11.3. Let m ∈ Z. There is an LU-precompact family of continuous functions(
hn;κ(·)

)
n>m

such that the density of µκπ
−1
n can be expressed as

d µκπ
−1
n

dy
=

Zm,n
x,y;κe

−κ−1hn;κ(y)∫
R Z

m,n
x,y′;κe

−κ−1hn;κ(y′) dy′
. (1.11.2)

Proof: By Lemma 1.11.2, there are terminal measures νNκ satisfying (1.10.8) such that µκ is

the weak limit of µm,N
x,νNκ ;κ

. Suppose fN
n;κ(·) is the density of µm,N

x,νNκ ;κ
π−1
n , then by Lemma 1.10.1,(

κ log fN
n;κ

)
N>n,κ∈(0,1] is LU-precompact. Therefore, for each κ, κ log fN

n;κ converge in LU to

some continuous function −h̃n;κ as N → ∞, such that e−κ−1h̃n;κ(y) is the density of µκπ
−1
n .

The family of functions
(
h̃n;κ

)
κ∈(0,1] is also LU-compact. One can then define hn;κ(y) =

h̃n;κ(y)− κ lnZm,n
x,y;κ and the lemma follows. □

We are now ready to prove the rest of Theorem 1.5.2.

Proof of part (3) in Theorem 1.5.2: Let (m,x) ∈ Z × R and µκ ∈ Pm,+∞
x (v).

Then Lemma 1.11.3 implies that, for each n > m, there is an LU-precompact family of

continuous functions hn;κ(y) such that (1.11.2) holds. Suppose µ is the weak limit of µκk

for some sequence κk ↓ 0. Using a diagonal sequence argument, we see that there is a

further subsequence κ′k ↓ 0 such that for every n > m, hn;κ′
k
(y) converge in LU to some hn(y)

as κ′k ↓ 0.

For ε > 0, let us define the set of paths

Λn
ε = {γ ∈ Sm,+∞

x,∗ : Am,n(γ)− Am,n(γm, γn) > ε},
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where An1,n2(x1, x2) denotes the minimal action between (n1, x1) and (n2, x2). Then we have

µκ(Λ
n
ε ) =

∫
Zm,n

x,y;κ(Λ
m
ε )e

−κ−1hn;κ(y) dy∫
Zm,n

x,y;κe−κ−1hn;κ(y) dy
.

For every δ > 0, there exists L > 0 such that µκ

(
Bm,n

L

)
≥ 1− δ for all κ ∈ (0, 1], where

Bn,m
L = {γ : |γi| ≤ L, m ≤ i ≤ n}. Also, when κ′k is sufficiently small, we have

|hn;κ′
k
(y)− hn(y)| ≤ ε/4, |y| ≤ L.

Therefore, when κ′k is small,

µκ′
k
(Λn

ε ) ≤ µκ′
k

(
(Bm,n

L )c
)
+ µκ′

k
(Λn

ε ∩B
m,n
L )

≤ δ +

∫
|y|≤L

Zm,n
x,y;κ′

k
(Λn

ε ∩B
m,n
L )e

−(κ′
k)

−1hn;κ′
k
(y)
dy∫

|y|≤L
Zm,n

x,y;κ′
k
e
−(κ′

k)
−1hn;κ′

k dy

≤ δ + e(κ
′
k)

−1ε/2

∫
|y|≤L

Zm,n
x,y;κ′

k
(Λn

ε ∩B
m,n
L )e−(κ′

k)
−1hn(y) dy∫

|y|≤L
Zm,n

x,y;κ′
k
e−(κ′

k)
−1hn(y) dy

. (1.11.3)

Due to the continuous dependence of action on paths and compactness of the set [−L,L],

there is ε1 > 0 such that, for each minimizer from (m,x) to (n, y), |y| ≤ L, the action of

every path in the ε1-neighborhood of that minimizer is at most Am,n(x, y) + ε/4. (Here, if

γ∗ is a path in Sm,n
∗,∗ , its η-neighborhood is the set {γ ∈ Sm,n

∗,∗ : |γk − γ∗k| ≤ η, m ≤ k ≤ n}.)

Therefore,

Zm,n
x,y;κ′

k
≥ εn−m

1 e−(κ′
k)

−1
(
Am,n(x,y)+ε/4

)
, |y| ≤ L. (1.11.4)

On the other hand, one has

Zm,n
x,y;κ′

k

(
Λn

ε ∩B
m,n
L

)
≤ Ln−me−(κ′

k)
−1
(
Am,n(x,y)−ε

)
, |y| ≤ L. (1.11.5)
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Combining (2.3.2), (2.3.20) and (2.3.32) together, we have

µκ′
k
(Λn

ε ) ≤ δ +
(
L/ε

)n−m
e−(κ′

k)
−1ε/4.

Since Λn
ε is an open set, by weak convergence of µκ′

k
, we have

µ(Λn
ε ) ≤ lim inf

k→∞
µκ′

k
(Λn

ε ) ≤ δ.

Since δ is arbitrary, we obtain µ(Λn
ε ) = 0.

The fact that µ(Λn
ε ) = 0 for every n and ε implies that µ must be a measure on Sm,+∞

x,∗

that concentrates on semi-infinite minimizers. To identify the slope, we use Lemma 1.11.1 and

take κ = κ′k ↓ 0 in (1.11.1) and conclude that for ε > 0 and n > n0(ω,m, [x], [|v|+ ε], [2ε−1]),

µ
(
[(m+ n)(v − ε), (m+ n)(v + ε)]c

)
= 0.

This shows that µ concentrates on the semi-infinite minimizers in Pm,+∞
x;κ (v) and completes

the proof of part (3). □

Proof of Theorem 1.5.3: Part (1) follows from Theorem 1.5.2.

For any p ∈ Z, by (1.8.2) in Theorem 1.8.1, for (N2 − n)/2 ≥ N1 ≥ n1(n, p) =

n0(ω, n, p, [|v|+ 1], 1),

µn,N2
y,ν;κπ

−1
n+1

(
[−(|v|+R1 + 2)N1, (|v|+R1 + 2)N1]

c
)

≤ ν
(
[−(|v|+ 1)N2, (|v|+ 1)N2]

c
)
+ 2e−

√
N1 ,

for every terminal measure ν, all κ ∈ (0, 1] and all y ∈ [p, p + 1]. Taking ν = δN2v and
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letting N2 → ∞, we obtain

µn,+∞
y;v,κ π

−1
n+1

(
[−(|v|+R1 + 2)N1, (|v|+R1 + 2)N1]

c
)
≤ 2e−

√
N1 ,

y ∈ [p, p+ 1], N1 ≥ n1(n, p). (1.11.6)

Combining this estimate with (1.4.7), we see that
(
uv;κ(n, ·)

)
κ∈(0,1] is uniformly bounded on

compact sets.

The first part of the theorem implies that if (n, y) ̸∈ N , then µn,+∞
y;v,κ converges weakly

to δγn,+∞
y (v). Then combining (1.5.3), (1.4.7) and (1.11.6), we obtain that

uv;κ(n, y) =

∫
R
(z − y)πn,+∞

y;v,κ π
−1
n+1(dz) →

∫
R
(z − y)δγn,+∞

y (v)π
−1
n+1(dz) = uv;0(n, y)

for (n, y) ̸∈ N . Since N is at most countable, uv;κ(n, ·) converges to uv;0(n, ·) at a.e. y. This

implies convergence in G and completes the proof of part (2).

Finally we will prove part (3). Since the functions Gv,κ and Bv satisfy the relations (1.4.5)

and (1.5.2), respectively, it suffices to show the following two limits hold:

lim
D∋κ↓0

−κ lnGv,κ

(
(n, x), (n, 0)

)
= Bv

(
(n, x), (n, 0)

)
, n ∈ Z, x ∈ R, (1.11.7)

lim
D∋κ↓0

−κ lnGv,κ

(
(m,x), (n, 0)

)
= Bv

(
(m,x), (n, 0)

)
, n > m, x ∈ R, (1.11.8)

We recall Uv,κ, κ ∈ [0, 1] satisfy the relations in Theorems 1.5.1 and 1.4.5. The limit (1.11.7)

is equivalent to Uv,0(n, x) = limκ↓0 Uv,κ(n, x).

Having shown that
(
uv;κ(n, ·)

)
κ∈(0,1] is uniformly bounded and that uv;κ(n, ·) converge

to uv;0(n, ·) a.e. as κ ↓ 0, we can use bounded convergence theorem to conclude that

Uv;κ(n, x) =

∫ x

0

uv;κ(n, y) dy → Uv;0(n, x) =

∫ x

0

uv;0(n, y) dy, κ ↓ 0.
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This proves (1.11.7), and the convergence is in LU topology.

To prove (1.11.8), we fix n > m and define Hκ(x) = −κ lnGv;κ

(
(m,x), (n, 0)

)
, κ ∈ (0, 1],

and H0(x) = Bv

(
(m,x), (n, 0)

)
. We are going to show that

(
Hκ(·)

)
κ∈D is LU-precompact,

and that limκ↓0Hκ(x) = H0(x) for x ̸∈ N (and hence for a.e. x). Then the the convergence

will hold for all x and (1.11.8) will follow.

As a consequence of Lemma 1.10.1 applied to νN = δvN , we see that the family of functions

(κ lnZn,N
y,vN ;κ/Z

m,N
x,vN ;κ)κ∈D, N>n (as functions in x and y) is LU-precompact in C(R2) in the

variables x and y. Hence, by Theorem 1.4.4 and the condition ω ∈ Ω̂v ⊂ Ωv;κ, we have

that
(
κ lnGv,κ

(
(n, y), (m,x)

))
κ∈D is LU-precompact. This shows the LU-precompactness

of
(
Hκ

)
κ∈D.

Using (1.4.6), we have

Gv;κ

(
(m,x), (n, 0)

)
=

∫
R
Zm,n

x,y;κe
−κ−1Uv;κ(n,y) dy =

∫
γ∈Sm,n

x,∗

e−κ−1
(
Am,n(γ)+Uv;κ(n,y)

)
dγ.

For every δ > 0, there is L > 0 such that µm,+∞
x;v,κ

(
Bm,n

L

)
≥ 1− δ for all κ. Then

∫
γ∈Sm,n

x,∗ ∩Bm,n
L

e−κ−1
(
Am,n(γ)+Uv;κ(n,y)

)
dγ ≥ (1− δ)

∫
γ∈Sm,n

x,∗

e−κ−1
(
Am,n(γ)+Uv;κ(n,y)

)
dγ,

which follows from

µm,+∞
x;v,κ

(
Bm,n

L

)
=

∫
|y|≤L

µm,n
x,y;κ(B

m,n
L )Zm,n

x,y;κe
−κ−1Un,κ(y)dy∫

R Z
m,n
x,y′;κe

−κ−1Un,κ(y′)dy′

=

∫
γ∈Sm,n

x,∗ ∩Bm,n
L

e−κ−1
(
Am,n(γ)+Uv;κ(n,y)

)
dγ∫

γ∈Sm,n
x,∗

e−κ−1
(
Am,n(γ)+Uv;κ(n,y)

)
dγ

.
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Therefore,

Gv;κ

(
(m,x), (n, 0)

)
≤ (1− δ)−1

∫
γ∈Sm,n

x,∗ ∩Bm,n
L

e−κ−1
(
Am,n(γ)+Uv;κ(n,y)

)
dγ

≤ (1− δ)−1Lm−ne−κ−1 inf|y|≤L{Am,n(x,y)+Uv;κ(n,y)}. (1.11.9)

By (1.11.7) and (1.5.4),

lim inf
κ→0

inf
|y|≤L

{Am,n(x, y) + Un,κ(y)} ≥ inf
|y|≤L

{Am,n(x, y) +Bv

(
(n, y), (n, 0)

)
}

≥ Bv

(
(m,x), (n, 0)

)
. (1.11.10)

Taking logarithm and multiplying by −κ in (1.11.9) and using (1.11.10), we obtain that

lim inf
κ→0

Hκ(x) ≥ H0(x).

Let us fix ε > 0 and define

y0 =
(
γm,+∞
x (v)

)
n
= argmin

y
{Am,n

x,y + Un,0(y)}.

There is an ε1-neighborhood of πm,n

(
γm,+∞
x (v)

)
such that for each path γ in this neighborhood,

|Am,n(γ)− Am,n(x, y0)| ≤ ε.

Also, by the continuity of Uv;0(n, ·) and the LU-convergence of Uv;κ(n, ·) to Uv;0(n, ·), there is

ε2 > 0 such that when κ is small enough we have

|Uv;κ(n, y)− Uv;0(n, y0)| ≤ ε
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for every |y − y0| ≤ ε2. Therefore,

Gv;κ

(
(m,x), (n, 0)

)
≥
(
ε1 ∧ ε2

)n−m
e−κ−1

(
Am,n(x,y0)+Uv;0(n,y0)+2ε

)
=
(
ε1 ∧ ε2

)n−m
e−κ−1

(
Bv

(
(m,x),(n,0)

)
+2ε
)
.

This implies that

lim sup
D∋κ→0

Hκ(x) ≤ H0(x) + 2ε.

Since ε is arbitrary, this concludes the proof. □
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Chapter 2

Mixing vector fields without directions

2.1 Introduction

Let v be a smooth vector field on R2. For every z ∈ R2, the integral curve γz : R+ → R2

(here R+ = [0,∞)) is the well-defined unique solution of the autonomous ODE

γ̇z(t) = v
(
γz(t)

)
, (2.1.1)

with initial condition

γz(0) = z. (2.1.2)

Being motivated by homogenization problems for stochastic Hamilton–Jacobi (HJ) type

equations (see [Sou99], [RT00], [NN11], [CS13], [JESVT18]), limit shape problems FPP type

models (see, e.g., [ADH17]), and related straightness properties of random optimal paths in

random environment (see [LN96], [HN01], [Wüt02], [CP11], [CS13], [BCK14], [Bak16]). A

simple argument based on the strong law of large numbers implies that such a straightness

statement holds for vector fields v with bounded nonnegative components and finite depen-

dence range. However, it is not clear how much the finite dependence range requirement can
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be relaxed.

In this chapter we present the construction of random stationary vectors fields whose

integral curves have no asymptotic directions. Namely, let v be a 2-dimensional vector field,

with nonnegative components such that, with probability 1, the following holds for all z ∈ R2:

lim
t→∞

|γz(t)| = ∞, (2.1.3)

lim inf
t→∞

γ2z (t)

γ1z (t)
= 0, lim sup

t→∞

γ2z (t)

γ1z (t)
= ∞. (2.1.4)

In other words, with probability one, none of the integral curves defined by this vector field

have an asymptotic direction. Instead, they sweep through a cone of partial asymptotic

directions. Here is the result:

Theorem 2.1.1. There is a weakly/strongly mixing stationary smooth vector field v on R2

such that with probability 1, for all z ∈ R2,

v1(z), v2(z) ≥ 0, v1(z) + v2(z) = 1, (2.1.5)

and identities (2.1.3), (2.1.4) hold.

This theorem means that mixing is not enough to guarantee the asymptotic straightness of

integral curves. Probably there are conditions on the rate of mixing sufficient for straightness

but this question remains open.

Of course, strong mixing implies weak mixing so the strongly mixing version of Theo-

rem 2.1.1 is a stronger result. However, the constructions of these two versions are based on

totally different ideas and may be of independent interest.

The construction of the weakly mixing example was based on a modification of the discrete

example from [CK16] with similar properties and thus it has only the weak mixing property.
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The strongly mixing example, similar to [CK16], and their FPP predecessor [HM95], traps

the integral curves in long narrow channels each stretched along one of the extreme directions,

so that the curves oscillate between these two directions never settling on any specific one.

However, these channels are built from a Voronoi-type tesselation of the plane with centers of

influence at Poissonian points and hence the vector field is strongly mixing. Each Poissonian

point is equipped with a rectangular domain of influence, a narrow channel with heavy-tailed

random length, and an additional random strength parameter that helps to decide which

influence wins in the case of channel overlaps.

We will give the construction of the weakly mixing example in section 2.2 and the strongly

mixing example in section 2.3.

2.2 Weakly mixing example

2.2.1 Vector field construction from a Z2-arrow field

Let r = (1, 0) and u = (0, 1) be the standard coordinate vectors on the plane pointing

right and up, respectively. On Z2, an (up-right) arrow field is a function α : Z2 → {r, u}, and

the random walk Xz : N → Z2 that starts at z and follows the arrow field α is defined by

Xz(0) = z, Xz(n) = Xz(n− 1) + α
(
Xz(n− 1)

)
.

In [CK16], the authors constructed an ergodic up-right random walk on Z2 such that no

trajectories have asymptotic directions, and hence by the result therein all random walks

must coalesce. More precisely, they proved the following:

Theorem 2.2.1. There is a Z2-ergodic dynamical system ((Tz)z∈Z2 ,Ω,F , ν) and a measurable
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function ᾱ : Ω → {r, u} that defines a stationary Z2-arrow field by

αω(z) = ᾱ(Tzω), ω ∈ Ω, z ∈ Z2,

such that none of the corresponding family of random walks (Xω
z )z∈Z2 have an asymptotic

direction and all the random walks (Xω
z )z∈Z2 coalesce. More precisely, for ν-a.e. ω ∈ Ω,

lim inf
n→∞

Xω
z (n) · u

Xω
z (n) · r

= 0, lim sup
n→∞

Xω
z (n) · u

Xω
z (n) · r

= ∞, z ∈ Z2, (2.2.1)

and

∀z1, z2 ∈ Z2, ∃k1, k2 such that Xω
z1
(k1) = Xω

z2
(k2). (2.2.2)

In fact, the authors in [CK16] constructed the Z2-system as the product of two appro-

priately chosen Z-systems (S1, X,B, λ) and (S2, Y,B, λ), with X = Y = [0, 1), B being

the Borel σ-algebra, and λ the Lebesgue measure. The product Z2-action is defined by

T(a,b)(x, y) = (Sa
1x, S

b
2y). This Z2-system is weakly mixing since both Z-systems are. (See

Section 2.2.3 for a collection of definitions and statements in ergodic theory that will be

used.)

In this section, we will demonstrate how to create a smooth vector field Ψα from any

given up-right Z2-arrow field α, such that the integral curves of Ψα have similar behavior as

the random walks following the arrow field α. When α is given by Theorem 2.2.1, Ψα will

satisfy (2.1.4) (Theorem 2.2.2).

Suppose Vu and Vr are two smooth fixed vector fields on [0, 1]2 roughly behaving like “up

arrow” and “right arrow” that will be specified later. The vector field Ψα, as a functional of

α, is defined by piecing together copies of Vr and Vu:

Ψα(x+ i, y + j) = Vα(i,j)(x, y), (i, j) ∈ Z2, (x, y) ∈ [0, 1)2. (2.2.3)
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Naturally, we assume that Vu and Vr are diagonally symmetric to each other, i.e.,

V 1
u (x, y) = V 2

r (y, x), V 2
u (x, y) = V 1

r (y, x), (x, y) ∈ [0, 1]2. (2.2.4)

To simplify the construction, we also require that that Vr (and hence Vu) is itself diagonally

symmetric near the boundary, that is, there exists δ > 0 such that

Vr(x, y) = Vr(y, x), (x, y) ∈ Γδ, (2.2.5)

where for h ≥ 0, Γh is the region

Γh =
{
(x, y) ∈ [0, 1]2 : min{x, 1− x, y, 1− y} ≤ h

}
, h ≥ 0.

The construction of Vr and Vu is as follows. Let us take any δ < 1/10. Let F̃r be a

potential function in [0, 1]2 as defined in Fig 2.1. The potential F̃r is a piece-wise linear

function so that ∇F̃r is constant in each polygon region. At the four pentagon regions at the

corners F̃r is given by the following:

F̃r(x, y) =


3(x+ y), (x, y) at the SW corner,

3(x+ y)− 1, (x, y) at the SE and NW corners ,

3(x+ y)− 2, (x, y) at the NE corner.

And at the middle non-convex heptagon F̃r(x, y) = 2x+1. The values of F̃r at all the vertices

are then determined, given in boldface, and F̃r in the remaining triangle regions are given by

the linear interpolation of its values at the vertex.
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Figure 2.1: Definition of F̃r in the unit square [0, 1]2. This potential is continuous on [0, 1]2

and linear in every polygonal cell. The values of F̃r at the tesselation vertices are given in
boldface. The arrows indicate the direction of ∇F̃r.

We extend F̃r to R2 by

F̃r(x+ i, y + j) = F̃r(x, y) + 2(i+ j), (i, j) ∈ Z2, (x, y) ∈ [0, 1)2, (2.2.6)

and then by smoothing it we define Fr = η ∗ F̃r, where η ∈ C∞ is a radially symmetric kernel

supported on B0(δ) = {(x, y) : x2 + y2 ≤ δ2}. Finally, we define Vr as the restriction of the

gradient field ∇Fr to [0, 1]2:

Vr(x, y) = (∇Fr)(x, y), (x, y) ∈ [0, 1]2.

We define Vu through diagonal symmetry (2.2.4).
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Lemma 2.2.1. Let Vr and Vu be defined as above. For any arrow field α, the vector field Ψα

as defined in (2.2.3) is smooth and bounded. Moreover,

Ψ1
α ≥ 0, Ψ2

α ≥ 0, Ψ1
α +Ψ2

α ≥ c > 0, (2.2.7)

for some constant c.

Proof: By (2.2.6), ∇F̃r is Z2-periodic, i.e.,

∇F̃r(x+ i, y + j) = ∇F̃r(x, y), (i, j) ∈ Z2,

Hence ∇Fr = η ∗ ∇F̃r is also Z2-periodic. This implies ∇Fr = Ψαr , where αr is the Z2-arrow

field with right arrows only. From the Z2-periodicity of ∇F̃r and Fig. 2.1, it is also easy to

see that

∇F̃r(x, y) = ∇F̃r(y, x), (x, y) ∈ Γ̄2δ,

where

Γ̄h =
⋃

(i,j)∈Z2

{(x+ i, y + j) : (x, y) ∈ Γh}, h ≥ 0.

Since the smoothing kernel η is supported on B0(δ), ∇Fr = η ∗ ∇F̃r will satisfy

∇Fr(x, y) = ∇Fr(y, x), (x, y) ∈ Γ̄δ.

Therefore, Vr satisfies (2.2.5).

Let α be any arrow field. Due to (2.2.5), we have Ψα = Ψαr in Γ̄δ, which implies that Ψα

is smooth in a neighborhood of Γ̄0. Since, in addition, Vr and Vu are smooth in (0, 1)2, Ψα is

smooth everywhere.

Finally, the condition (2.2.7) holds for Ψ since it holds for ∇F̃r. □
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It is also easy to see that we have the following corollary:

Corollary 2.2.1. For any arrow field α, there is a potential Fα such that Ψα = ∇Fα.

Theorem 2.2.2. Let α be the stationary arrow field introduced in Theorem 2.2.1 and Ψα

be the corresponding vector field defined by (2.2.3). Then, with probability one, all integral

curves γz of Ψα will satisfy (2.1.4).

Proof: By Lemma 2.2.1, Ψα is smooth, bounded and nondegenerate, so the integral curves

of Ψα are well-defined.

We can partition R2 into the union of unit squares:

R2 =
⋃

(i,j)∈Z2

S(i,j), S(i,j) = [i, i+ 1)× [j, j + 1).

We say that z ∈ S(i,j) is regular, if the curve γz visit these squares in the order given by the

random walks X(i,j). It suffices to show that with probability one, every curve of Ψα passes

through a regular point. The conclusion of the theorem follows from (2.2.1).

We notice that Vr(x, y) ≡ (2, 0) in the strip

{(x, y) : 0 ≤ x ≤ 1, 2/3− 2δ ≤ y ≤ 2/3− δ}.

This follows from the fact that ∇F̃r ≡ (2, 0) in the strip

{(x, y) : x ∈ R, 2/3− 3δ ≤ y ≤ 2/3}

and that η is a kernel supported on B0(δ). Therefore, all the integral curves of Vr entering

the unit square through the set

s1 = {(0, y) : 0 ≤ y ≤ 2/3− δ} ∪ {(x, 0) : 0 ≤ x ≤ 1}
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have to exit through

s2 = {(1, y) : 0 ≤ y ≤ 2/3− δ}.

Let us define Ω(i,j) ⊂ S(i,j) to be

Ω(i,j) =


{(x, y) : i ≤ x < i+ 1, j ≤ y ≤ j + 2/3− δ}, α(i, j) = r,

{(x, y) : i ≤ x ≤ i+ 2/3− δ, j ≤ y < j + 1}, α(i, j) = u.

We now claim that any point in Ω =
⋃

(i,j)∈Z2 Ω(i,j) is regular.

Suppose (i0, j0) ∈ Z2 and z ∈ Ω(i0,j0). If α(i0, j0) = r, then our construction implies

that after exiting S(i0, j0), γz enters Ω(i0+1,j0) ⊂ S(i0+1,j0). If α(i0, j0) = u, then after exiting

S(i0, j0), γz enters Ω(i0,j0+1) ⊂ S(i0,j0+1), see Fig. 2.2. Applying these steps inductively, we see

that γz indeed “follows the arrows”, so z is regular. This proves the claim.

Ω(i,j) Ω(i,j+1)

(a) Case 1: α(i, j + 1) = r

Ω(i,j)

Ω(i,j+1)

(b) Case 2: α(i, j + 1) = u

Figure 2.2: Illustration of the flow when α(i, j) = r.

Furthermore, since all walks coalesce due to Theorem 2.2.1, any up-right curve (i.e., γ(t)

such that γ′(t) · r ≥ 0, γ′(t) · u ≥ 0, γ′(t) · (r + u) > 0) must intersect Ω. This implies that

any integral curve of Ψα passes through some regular point. The proof is complete. □

2.2.2 Weakly mixing vector field

The vector field Ψα constructed in the previous section has all the properties that are

required in Theorem 2.1.1 except R2-stationarity and weak mixing, although its distribution
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is invariant under Z2-shifts. The goal of this section is to modify the vector field and gain

those properties.

To obtain an R2-stationary and ergodic random vector field without requiring the weak

mixing property, we could introduce a simple randomization by adding an independent

[0, 1]2-uniformly distributed random shift to Ψα. To obtain a weakly mixing vector field we

need to apply an additional random deformation that we proceed to describe.

Let µ =
∑

i δai and ν =
∑

j δbj be two Poissonian point processes on R and fix a family

of positive C∞-functions (ϕ∆)∆>0 with the following properties:

1. ϕ∆(x) ≡ 1 near x = 0 and x = ∆,

2.
∫ ∆

0
ϕ∆(x) dx = 1,

3. (∆, x) 7→ ϕ∆(x) is continuous (and hence measurable).

We define

φµ,ν(x, y) =
(
µ((0, x]) +

∫ x−a

0

ϕā−a(t) dt, ν((0, y]) +

∫ y−b

0

ϕb̄−b(t) dt
)
,

where

ā = ā(x) = inf{ai : ai < x}, a = a(x) = sup{ai : ai ≤ x},

b̄ = b̄(y) = inf{bj : bj < x}, b = b(y) = sup{bj : bj ≤ x},

and µ((0, x]) (resp. ν((0, y])) is the number of Poissonian points in the interval (0, x]

(resp. (0, y]), with a “−” sign if x < 0 (resp. y < 0). If we order the Poisson points in

the following way:

a : · · · < a−1 < a0 ≤ 0 < a1 < · · · , b : · · · < b−1 < b0 ≤ 0 < b1 < · · · ,
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then ϕµ,ν is a C∞-automorphism of R2 and satisfies

φµ,ν({x = ai}) = {x = i}, φµ,ν({y = bj}) = {y = j}, i, j ∈ Z. (2.2.8)

In particular, φµ,ν maps the rectangle R(i,j) = [ai, ai+1)× [bj, bj+1) to the unit square S(i,j).

Let us consider the pushforward of Ψα under the map φ−1, i.e., the vector field

Φ(x) = Dφ−1
µ,ν

(
φ(x)

)
·Ψα

(
φµ,ν(x)

)
=
(
Dφµ,ν(x)

)−1

Ψα

(
φµ,ν(x)

)
, x ∈ R2,

where Df denotes the Jacobian matrix of f and Ψα is introduced in section 2.2.1. Due

to (2.2.8), in each rectangle R(i,j), the vector field Φ is a “deformation” of either Vr or Vu,

depending on whether α(i, j) = u or r.

We will show that if α, µ and ν are independent, then Φ is stationary and weakly mixing.

We start by a formal construction of an appropriate R2-system. Let ((Lv)v∈R,M,PM) be

a R1-system where M is the space of locally finite configurations of points on R (they can

be identified with integer-valued measures such that masses of all atoms equal 1), PM is

the Poisson measure on M with intensity 1, and the R1-action Lv acting on µ =
∑
δai

by Lvµ =
∑
δai−v. We also recall the Z1-systems (S1, X, λ) and (S2, Y, λ) from Section 2.2.1.

Let us consider the following skew-products

((Lv)v∈R,M×X,PM ⊗ λ), Lv(µ, x) = (Lvµ, S
µ((0,v])
1 x), (2.2.9)

and

((Lv)v∈R,M× Y,PM ⊗ λ), Lv(ν, y) = (Lvν, S
ν((0,y])
2 y). (2.2.10)
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Let us take the product of (2.2.9) and (2.2.10):

(
(L̂v,w)(v,w)∈R2 , Ω̂,P

)
=
(
(Lv × Lw)(v,w)∈R2 ,M2 ×X × Y,P2

M ⊗ λ2). (2.2.11)

For Ω̂ ∋ ω̂ = (µ, ν, x, y), one can check that the vector field Φ satisfies

Φω̂(v, w) =
(
Dφµ,ν(v, w)

)−1

Ψα(x,y)

(
φµ,ν(v, w)

)
= α̂(L̂v,w ω̂), (2.2.12)

where

α̂(µ, ν, x, y) =
(
Dφµ,ν(0, 0)

)−1

Vᾱ(x,y)(φµ,ν(0, 0)).

The definition (2.2.12) implies that Φ is stationary. The following theorem states that it is

weakly mixing.

Theorem 2.2.3. The R2-system (2.2.11) is weakly mixing. Moreover, with probability one,

all integral curves of the vector field Φω̂ satisfy (2.1.4).

The fact that (2.2.11) is weakly mixing is implied by the following and Theorem 2.2.5.

Lemma 2.2.2. The R1-systems (2.2.9) and (2.2.10) are weakly mixing.

Proof: We will only show that (2.2.9) is weakly mixing. By Definition 2.2.2, this is

equivalent to the ergodicity of its direct product with itself, i.e., the R1-system

((L2
v)v∈R,M2 ×X2,P2

M ⊗ λ2). (2.2.13)

For (µ, µ′, x, x′) ∈ M2 × X2, let us write L2
v(µ, µ

′, x, x′) = (µv, µ
′
v, xv, x

′
v). We notice

that under the measure P2
M × λ2, (xv, x

′
v)v∈R is a Markov jump process on X2 starting from

λ2, jumping from (x, x′) to (x, S1x
′) with rate 1 at times recorded by µ′ and from (x, x′)

to (S1x, x
′) with rate 1 at times recorded by µ. The R1-action L2

v acting on M2 ×X2 is the

time shift of this Markov process.
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Therefore, the ergodicity of (2.2.13) is equivalent to the ergodicity of the stationary

Markov process (xv, x
′
v)v∈R. The ergodicity of a stationary Markov process can be described

in terms of the associated semigroup and invariant measure. We recall that for a Markov

semigroup P = (Pt)t≥0 and a P-invariant measure ν (i.e., satisfying νPt = ν for all t ≥ 0), a

set A is called (almost) P-invariant if for all t, Pt1A = 1A ν-a.s. The pair (P, ν) is ergodic if

and only if ν(A) = 0 or 1 for all invariant sets A.

Suppose that A ⊂ X2 is an invariant set for the Markov semigroup P associated with the

process (xv, x
′
v)v∈R. Then, for any t > 0,

Pt1A(x, x
′) =

∞∑
a,b=0

pt(a, b)1A(S
a
1x, S

b
1x

′),

where pt(a, b) is the probability that the two independent rate 1 Poisson processes make a

and b jumps respectively between times 0 and t. This implies that A is an invariant set for

the Z2-system

((Sa
1 × Sb

1)(a,b)∈Z2 , X2, λ2).

By Theorem 2.2.4, since (S1, X) is ergodic, this product system is also ergodic. This implies

that λ2(A) = 0 or 1 and completes the proof. □

Proof of Theorem 2.2.3: The weak mixing will follow from Definition 2.2.2 and

Lemma 2.2.2. Since all integral curves of Φ are images of those of Ψα under the map φ−1
µ,ν ,

(2.1.4) follows from Theorem 2.2.2 and SLLN for i.i.d. exponential random variables. □

2.2.3 Auxiliary results

Here we give some standard definitions and facts from the ergodic theory.

Let G be a group. We call ((Tg)g∈G, X,B, µ) a G-system if (Tg)g∈G is a measure preserving

action of the group G on a probability space space (X,B, µ). When G = Z, we will write
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(S,X,B, µ) where S = T1. We may omit the σ-algebra B along with the measure µ if the

context is clear.

The product of two systems, ((Tg)g∈G, X,B, µ) and ((T ′
h)h∈H , Y,B′, ν), is a (G×H)-system

((Tg × T ′
h)(g,h)∈G×H , X × Y,B ⊗ B′, µ⊗ ν). The group action is defined by

(Tg × T ′
h)(x, y) = (Tgx, T

′
hy), g ∈ G, h ∈ H. (2.2.14)

The direct product of two G-systems ((Tg)g∈G, X,B, µ) and ((T ′
g′)g′∈G, Y,B′, ν) is again a

G-system ((Tg × T ′
g)g∈G, X × Y,B ⊗B′, µ⊗ ν), where Tg × T ′

g is defined according to (2.2.14)

with h = g ∈ G, so this is the diagonal group action of G on X × Y .

In the rest of the section and in the paper, the group we are dealing with will always be

Rd or Zd, d ∈ N. For g = (g1, ..., gd) ∈ G, |g| = max
1≤i≤d

|gi| its L∞-norm. We use dg to denote

the Haar measure, i.e., the Lebesgue measure if G = Rd and counting measure if G = Zd.

The following are standard definitions on ergodicity and weak mixing for group actions

(see [BG04]).

Definition 2.2.1. We say that a G-system ((Tg)g∈G, X,B, µ) is ergodic if and only if one of

the following equivalent conditions holds true:

1) If a set A is almost G-invariant, i.e., µ(A∆TgA) = 0 for all g ∈ G, then µ(A) = 0 or

µ(A) = 1.

2) For any bounded measurable function f ,

lim
R→∞

1

(2R)d

∫
|g|≤R

f(Tgx) dg =

∫
f(x)µ(dx), µ-a.s. x. (2.2.15)

Definition 2.2.2. We say that a G-system ((Tg)g∈G, X,B, µ) is weakly mixing if and only if

one of the following equivalent conditions holds true:
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1) For any two sets A and B,

lim
R→∞

1

(2R)d

∫
|g|≤R

|µ(TgA ∩B)− µ(A)µ(B)| dg = 0.

2) The direct product ((Tg × Tg)g∈G, X ×X) is ergodic.

Theorem 2.2.4. The product of two ergodic systems is ergodic.

Proof: Let ((Tg)g∈G, X,B, µ) and ((T ′
h)h∈H , Y,B′, ν) be two ergodic systems. It suffices

to show that (2.2.15) holds true for the product system with f(x, y) = 1A×B(x, y) for any

A ∈ B and B ∈ B′.

We can use the ergodicity of ((Tg)g∈G, X) and ((T ′
h)h∈H to see that

lim
R→∞

1

(2R)2d

∫
|(g,h)|≤R

1A×B(Tgx, T
′
hy) dg dh

= lim
R→∞

(
1

(2R)d

∫
|g|≤R

1A(Tgx) dg · 1

(2R)d

∫
|h|≤R

1B(T
′
hy) dh

)
= µ(A)ν(B)

holds for µ-a.e. x and ν-a.e. y, i.e., for µ× ν-a.e. (x, y). The proof is complete. □

Theorem 2.2.5. The product of two weakly mixing systems is weakly mixing.

Proof: Let ((Tg)g∈G, X) and ((T ′
h)h∈H , Y ) be two weakly mixing systems. Their product

((Tg × T ′
h)(g,h)∈G×H , X × Y ) is weakly mixing if and only if

(((Tg × T ′
h)× (Tg × T ′

h))(g,h)∈G×H , (X × Y )× (X × Y )) (2.2.16)

is ergodic. The latter is isomorphic to the product of ((Tg × Tg)g∈G, X × X) and ((T ′
h ×

T ′
h)h∈H , Y ×Y ), and both of these systems are ergodic. So (2.2.16) is ergodic by Theorem 2.2.4

and this completes the proof. □
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2.3 Strongly mixing example

We describe our construction and prove the strong mixing property in section 2.3.1. We

study the flow generated by our random vector field in section 2.3.2.

2.3.1 Construction and strong mixing

Our construction is based on a Poissonian point field. Let (Ω0,F0,P0) be a complete

probability space, where Ω0 is identified as the space of all locally finite configurations

ω = {ηi = (xi, ri, ξi, σi), i ∈ N} in X = R2 × R × R × Σ where Σ = {1, 2}. Configurations

ω are sets, with no canonical enumeration. As usual, we use an arbitrary enumeration for

convenience.

The σ-algebra F0 is generated by all the maps ω 7→ n(ω ∩B), where B is any bounded

Borel set in X and n(·) counts the number of points in a set. The measure P0 is the

distribution of a Poisson point field with the following intensity µ:

µ(dx× dr × dξ × dσ) =
1

2

αe−r

ξα+1
1{r≥0, ξ≥1} dx dr dξ dσ := f(x, σ, r, ξ) dx dr dξ dσ. (2.3.1)

where 1 < α < 2 is a fixed number, and on the right hand side dx, dr, dξ are the Lebesgue

measure and dσ is the counting measure. Since µ has no atoms when projected onto the

x-component or ξ-component, we see that with probability one,

xi ̸= xj, ξi ̸= ξj, i ̸= j. (2.3.2)

This allows us to work on a modified probability space Ω with full measure:

Ω = {ω : (2.3.2) holds true}.
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Let us denote by F and P the restriction of F0 and P0 onto Ω. From now on we will work

with the probability space (Ω,F ,P). We will also denote the components of η ∈ X by x(η),

ξ(η), etc. We can interpret this Poisson point field as a compound Poisson point process in

the usual way: the spatial footprints xi form a homogeneous Poisson point process in R2 with

Lebesgue intensity; each xi is equipped with labels ri, ξi, σi that are mutually independent

and independent of labels of other points, with distributions Exp(1), Par(α), and uniform

on Σ. Here we denote by Exp(λ) the exponential distribution with parameter λ > 0, with

Lebesgue density λe−λr1{r≥0}, and by Par(α) the Pareto distribution with parameter α, with

density a
ta+11{t≥1}.

In the rest of the section we will construct a random vector field given any fixed config-

uration ω. Let e1, e2 be the standard basis in R2. We often write x = (x1, x2) for a point

in R2. For each ηi ∈ ω, let us associate with xi a domain of influence Di, which is a rectangle

of length riξi and width 1 in the direction of eσi
. More precisely, we define

D : X −→ rectangles in R2,

η = (x1, x2, r, ξ, σ) 7−→


[x1, x1 + rξ]× [x2, x2 + 1], σ = 1,

[x1, x1 + 1]× [x2, x2 + rξ], σ = 2.

and let Di = D(ηi). We call ηi the base point and ξi the strength of the domain Di. For any

region R ⊂ R2, we also define D−1(R) ⊂ X as

D−1(R) = {η ∈ X : D(η) ∩R ̸= ∅}.

Lemma 2.3.1. With probability one, every bounded set in R2 intersects with a finite number

of domains of influence.

Proof: It suffices to show that for all m,n ∈ Z, with probability one the unit square
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R = [m,m+ 1]×[n, n+ 1] intersects with a finite number of Di’s. This is equivalent to

µ(D−1(R)) <∞. Without loss of generality let us assume R = [0, 1]2. We have

D−1(R) = {η = (x1, x2, r, ξ, σ) : σ = 2, x2 ≤ 1, −1 ≤ x1 ≤ 1, 0 ≤ x2 + rξ}

∪ {η = (x1, x2, r, ξ, σ) : σ = 1, x1 ≤ 1, −1 ≤ x2 ≤ 1, 0 ≤ x1 + rξ}

and

µ(D−1(R)) = 2

∫
{σ=2, x2≤1,−1≤x1≤1, 0≤x2+rξ}

f(x, r, ξ, σ)dx dr dξ dσ

=

∫ 1

−1

dx1
∫ 1

−∞
dx2

∫ ∞

1

α

ξα+1
dξ

∫ +∞

(−x2)+/ξ

e−r dr

= 2 + 2

∫ 0

−∞
dx2

∫ ∞

1

α

ξα+1
dξ · e

x2

ξ

= 2 + 2

∫ ∞

1

α

ξα
dξ <∞,

where we used
∫ 1

−∞ =
∫ 0

−∞+
∫ 1

0
in the third line, and α > 1 in the last line. □

For Λ ⊂ X , we denote by FΛ the σ-algebra generated by all the maps ω 7→ n(ω ∩ B),

where B ⊂ Λ is any bounded Borel set. Let Θ be a special element and for µ(Λ) < ∞ we

define ϕ(Λ) ∈ X ∪ {Θ} as

ϕ(Λ) =


Θ, Λ ∩ ω = ∅,

argmax{ξ(η) : η ∈ Λ ∩ ω}, Λ ∩ ω ̸= ∅.

In other words, when there is at least one Poisson point in Λ, ϕ(Λ) gives the one with

highest strength. For convenience we also assign a strength to the special element Θ by

setting ξ(Θ) = 0. It is clear that ϕ(Λ) is measurable with respect to FΛ. For x ∈ R2, we also
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abuse the notation to write

ϕ(x) := ϕ(D−1({x})).

The meaning of ϕ should be clear from the context.

Let ρ be a smooth probability density supported on [−1/3, 0]2. The desired vector field is

constructed as a convolution v = ρ ∗ ṽ, where

ṽ(x) =


eσ(ϕ(x)), ϕ(x) ̸= Θ

1
2
(e1 + e2), ϕ(x) = Θ.

Clearly, ṽ satisfies (2.1.5) with v replaced by ṽ. Therefore, v = ρ ∗ ṽ also satisfies (2.1.5). In

the rest of this section we will state and prove the strong mixing property of v.

For z ∈ R2, let us define the shift operator θ̃z acting on X by

θ̃z(x, r, ξ, σ) = (x− z, r, ξ, σ).

This induces the shift operator θzω = θz{ηi} := {θ̃zηi} defined on Ω. Since (θ̃z)z∈R2 preserves

the measure µ, {θz}z∈R2 is a measure-preserving R2-action on (Ω,F ,P).

We temporarily write v(x) = vω(x) to stress its dependence on the Poisson point configu-

ration. The map V : ω 7→ vω(·) is measurable from (Ω,F) to (M,B(M)), where M is the

space of continuous vector fields on R2, and B(M) is the Borel σ-algebra induced by the LU

metric

d(u, v) =
+∞∑
n=1

∥u− v∥C([−n,n]2) ∧ 1

2n
,

Let PM = PV −1 be the push-forward of P. Since vω(x) = vθxω
(
(0, 0)

)
, {θz}z∈R2 is also a

measure preserving R2-action on (M,B(M),PM).

Lemma 2.3.2. The R2-system ({θz}z∈R2 ,M,B(M),PM) is strongly mixing.
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Proof: We need to show that for any A,B ∈ B(M),

PM(A ∩ θzB) → PM(A)PM(B), |z|1 = |z1|+ |z2| → ∞. (2.3.3)

It suffices to prove (2.3.3) for A,B ∈ B(MN ), where MN is the space of vector fields restricted

to LN = [−N,N ]2, since B(M) =
∨∞

N=1 B(MN). Let us write

1A(vω) = h(ω1, ω0), 1θzB(vω) = g(ω2, ω0),

where ωi = ω ∩ Λi and

Λ0 = D−1(LN) ∩ θ̃zD−1(LN), Λ1 = D−1(LN) \ Λ0, Λ2 = θ̃zD−1(LN) \ Λ0.

Here, for simplicity we have suppressed the dependence on z of g, h and ωi’s. Let h̄(ω0) =

E
[
h(ω1, ω0)|ω0

]
and ḡ(ω0) = E

[
g(ω2, ω0)|ω0

]
. By independence of ωi’s,

PM(A ∩ θzB) = Eh(ω1, ω0)g(ω2, ω0) = Eh̄(ω0)ḡ(ω0)

= h̄(∅)ḡ(∅)P(ω0 = ∅) + Eh̄(ω0)ḡ(ω0)1ω0 ̸=∅.

Using this and noting that 0 ≤ ḡ, h̄ ≤ 1, we obtain

∣∣∣PM(A ∩ θzB)− h̄(∅)ḡ(∅)
∣∣∣ ≤ 2P(ω0 ̸= ∅). (2.3.4)

We also have

PM(A)PM(B) = Eh̄(ω0)Eḡ(ω0)

=
(
h̄(∅) + E(h̄(ω0)− 1)1ω0 ̸=∅

)(
ḡ(∅) + E(ḡ(ω0)− 1)1ω0 ̸=∅

)
,
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and therefore ∣∣∣PM(A)PM(B)− h̄(∅)ḡ(∅)
∣∣∣ ≤ 3P(ω0 ̸= ∅). (2.3.5)

So if we show that

lim
|z|1→∞

P(ω0 ̸= ∅) = 0, (2.3.6)

then this and (2.3.4), (2.3.5) will imply (2.3.3). The limit (2.3.6) is equivalent to

µ(Λ0) = µ
(
D−1(LN) ∩ θ̃zD−1(LN)

)
→ 0, |z|1 → ∞.

Let |z|1 > 4N , and without loss of generality assume z1 ≥ z2 > 0. Then

Λ0 ⊂ {η : σ = 1, x1 < −z1 +N, |x2| ≤ N + 1, x1 + rξ ≥ −N}.

Therefore,

µ(Λ0) ≤ (N + 1)

∫ −z1+N

−∞
dx1

∫ ∞

1

α

ξα+1
dξ

∫ +∞

−N−x1

ξ

e−r dr

= (N + 1)

∫ ∞

0

dy

∫ ∞

1

α

ξα+1
dξe−

y+z1−2N
ξ

= (N + 1)

∫ ∞

1

α

ξα
e−

z1−2N
ξ .

Since α > 1 and e−
z1−2N

ξ → 0 as |z|1 → ∞, the last line indeed goes to 0 by dominated

convergence theorem. This completes the proof. □

2.3.2 Long-term behavior of integral curves

In this section we will show that the integral curves of the vector field v constructed in

the previous section satisfy (2.1.4).
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Suppose a domain of influence Di intersects the line {xσi = L}. We say that another

domain of influence Dj is a successor of Di at level L if

ϕ(x1, x2) = ηi, ∀(x1, x2) : L− 1 ≤ xσi ≤ L, xσ̂i
i ≤ xσ̂i ≤ xσ̂i

i + 1, (2.3.7)

and

ϕ(x1, x2) = ηi, L < xσi < xσi
j , x

σ̂i
i ≤ xσ̂i ≤ xσ̂i

i + 1, (2.3.8a)

ξi < ξj, σj = σ̂i, (2.3.8b)

ϕ(x1, x2) = ηj, xσi
j ≤ xσi ≤ xσi

j + 1, xσ̂i
i − 1 ≤ xσ̂i ≤ xσ̂i

i + 1, (2.3.8c)

where 1̂ = 2 and 2̂ = 1. (See also Figure 2.3.) Although (2.3.8a) is almost the same condition

as (2.3.7) except in a slightly different region, it is natural to separate these two conditions

as the reader can see later in this section.

(x1i , x
2
i )

Di

(x1j , x
2
j)

Dj

y

line: x1 = L

S1

S2

(2.3.8)

(2.3.8)

(2.3.8c)

(2.3.16)

Figure 2.3: Dj is the successor of Di at level L (σi = 1).

If Dj is the successor of Di at level L, then we have control on the behavior of all the

integral curves starting from {xσi = L} ∩Di. The proof of the next lemma shows that the

numbers L− 1 and xσ̂i
i − 1 in (2.3.7) and (2.3.8c) can be replaced by L− δ and xσ̂i

i − δ for

any δ > 1/3 but we choose δ = 1 for convenience.
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Lemma 2.3.3. Suppose Dj is the successor of Di at level L and y ∈ {xσi = L} ∩Di. Then

the integral curve γy must cross the line segments S1 = {xσi = xσi
j } ∩Di and S2 = {xσ̂i =

xσ̂i
i + 1} ∩Dj.

Proof: Without loss of generality assume σi = 1. Since the density ρ is supported

on [−1/3, 0]2, we have v(x) = e1 for all x ∈ {(x1, x2) : x2 = x2i + 1, L ≤ x1 ≤ x1j}, so no

integral curve can cross this line segment. Since v(x) satisfies (2.1.5), γy must cross S1.

Similarly, v(x) = e2 for all x ∈ {(x1, x2) : x1 = x1j + 1, x2i ≤ x2 ≤ x2i + 1}; so after crossing S1,

γy must cross S2. This completes the proof. □

Let y ∈ R2 and n ∈ N ∪ {∞}. We define An,y, n ≥ 0 to be the event on which there is a

chain of successors starting from y, formed by n+ 1 domains; more precisely, on An,y, there

is a sequence of points (ηkl)0≤l≤n from the Poissonian configuration ω such that

1. ϕ(y) = ηk0 , σk0 = 1 and ξ(ϕ(z)) ≤ ξ(ϕ(y)) for all z ∈ [y1 − 1, y1]× [y2 − 1, y2] (recalling

that ξ(Θ) = 0);

2. ϕ(z) = ηk0 for all z ∈ [y1 − 1, y1]× (y2, x2k0 + 1];

(the first two conditions describe A0,y, the next condition is for n ≥ 1)

3. (when n ≥ 1,) Dk1 is a successor of Dk0 at level y1, and for 1 ≤ l ≤ n− 1, Dkl+1
is a

successor of Dkl at level x
σkl
kl1

.

We really need the desired behavior in a region [y1− 1, y1]× (x2k0 , x
2
k0
+1] that is smaller than

the one described by parts (1) and (2) but our definition helps to simplify certain arguments.

We are interested in infinite chains of successors since we have the following results:

Theorem 2.3.1. For any y ∈ R2, P(A∞,y) > 0.

Theorem 2.3.2. Let y ∈ R2. For almost all ω ∈ A∞,y, γy satisfies (2.1.3) and (2.1.4).

141



We can now prove our main result:

Derivation of Theorem 2.1.1 from Theorems 2.3.1 and 2.3.2: Let v be constructed

as in section 2.3.1. Then v satisfies (2.1.5) for all z ∈ R since ṽ does. Clearly, v is bounded,

C∞-smooth, and (2.1.3) holds for all starting points z ∈ R2. It remains to check (2.1.4)

Let us denote S(ω) = {y ∈ R2 : ω ∈ A∞,y and γy satisfies (2.1.3)–(2.1.4)}. Theorems 2.3.1

and 2.3.2 along with the ergodic theorem and ergodicity of the Poisson point process with

respect to spatial shifts imply that for almost every ω, the following holds: for all i ∈ Z,

there are infinitely many j ∈ N such that (i, j) ∈ S(ω), and for all j ∈ Z, there are infinitely

many i ∈ N such that (i, j) ∈ S(ω). Therefore, with probability 1, for every y ∈ R2 there are

x1, x2 ∈ S(ω) such that x11 < y1 < x12 and x22 < y2 < x21. The integral curves do not intersect,

which along with (2.1.5) implies that γy is squeezed between γx1 and γx2 , so (2.1.4) for γy

follows. □

The rest of this section we will prove Theorems 2.3.1 and 2.3.2. We will need some

notations and definitions.

We introduce a partial order “≺” on R2: x ≺ y if and only if x1 ≤ y1 and x2 ≤ y2. We

then write F̄z = F{x:x≺z}×R2×Σ for z ∈ R2.

We will work with measurable maps (random variables or vectors) defined not on the entire

Ω but on smaller measurable subsets of Ω. Let A ∈ F and T be an R2-valued measurable map

defined on a subset of Ω containing A. We say that (T,A) is a (two-dimensional) stopping

time, or T is a stopping time w.r.t. the set A, if for any z ∈ R2, {T ≺ z} ∩ A ∈ F̄z. With

each stopping time (T,A), we associate a σ-algebra F̄A
T :

F̄A
T := {Λ ∈ F : Λ ∩ {T ≺ z} ∩ A ∈ F̄z for all z ∈ R2}. (2.3.9)

Lemma 2.3.4. Let (T,A) and (S,B) be two stopping times such that B ⊂ A and B ∈ F̄A
T .

Assume that T ≺ S holds on B. Then F̄A
T ⊂ F̄B

S .
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The proof of this lemma and the next one will be given in section 2.3.3

Let

H = {(x1, x2, r, ξ, σ) : x1 > 0 or x2 > 0}. (2.3.10)

We also have the following version of the strong Markov property for our Poisson point

process.

Lemma 2.3.5. Let (T,A) be a stopping time. Then for any bounded open sets B1, ..., Bk ⊂ H

and n1, ..., nk ∈ N,

P
(
n(θTω ∩Bj) = nj, j = 1, ..., k, ω ∈ A|F̄A

T

)
= P

(
n(ω ∩Bj) = nj, j = 1, ..., k

)
1A.

This result can be interpreted as conditional independence as the following corollary

shows:

Corollary 2.3.1. Let (T,A) be a stopping time. Then θTω|H and F̄A
T are independent on

the restricted probability space (A,FA,PA) where FA = {Λ ∩ A : Λ ∈ F} and PA(·) = P(· ∩A)
P(A)

.

Equivalently, for any two random variables X = Ψ(θTω|H) and Y measurable with respect to

F̄A
T , their restrictions onto A are conditionally independent on (A,FA,PA).

Proof: Let M be a F̄A
T -measurable r.v. and N = {n(θTω ∩ Bj) = nj, j = 1, ..., k} for

Bj ⊂ H and nj ∈ N. We need to show that PA(M ∩N) = PA(M)PA(N) or, equivalently,

P(M ∩N ∩ A)P(A) = P(M ∩ A)P(N ∩ A).

This identity is trivial if P(N) = 0. If P(N) > 0, then it follows from P(N) = P
(
n(ω ∩Bj) =
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nj, j = 1, ..., k
)
and identities

P(M ∩N ∩ A) = P
(
n(ω ∩Bj) = nj, j = 1, ..., k

)
P(M ∩ A),

P(N ∩ A) = P
(
n(ω ∩Bj) = nj, j = 1, ..., k

)
P(A),

which are due to Lemma 2.3.5. □

Corollary 2.3.2. Let (T,A) be a stopping time and let l : Ω × Rd → R be a bounded

measurable function that depends on ω ∈ Ω only through ω|H . Then for any FA
T -measurable

random vector X = (X1, ..., Xd),

E
(
l
(
θTω,X

)
1A|FA

T

)
= 1A

(
El(ω, x)

)∣∣∣
x=X

. (2.3.11)

Proof: The proof is standard. We first treat the case where l is of the form

l(ω, x) = l1(ω)l2(x)

using Corollary 2.3.1, then we use an approximation argument. □

Remark 2.3.1. Our definition of stopping times is quite delicate. We emphasize that it is

the pairing of the random vector T and the domain A that is important. Even a constant

time T ≡ (0, 0) may fail to be a stopping time with respect to a domain like

A =
{
ω : n

(
ω ∩ [−1, 0]2 × R× R× Σ

)
= n

(
ω ∩ [0, 1]2 × R× R× Σ

)}
.

In this specific example, the definition fails because if z = (1/2, 1/2), then {T ≺ z} ∩ A =

Ω ∩ A = A ̸∈ F̄z. As a consequence, the strong Markov property does not hold for (T,A).

Since the shift operators (θz)z∈R2 are measure-preserving transformations of (Ω,F ,P), the
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statement of Theorems 2.3.1 and 2.3.2 do not depend on y. Hereafter we will fix y ∈ R2 and

write An = An,y. The following lemma makes precise the construction of the events An.

Lemma 2.3.6. There exist events of positive probability (Bn)n≥0 and random vectors

Z̃n =


(U0, V0), n = 0,

(Um − 1, Vm), n = 2m− 1,

(Um, Vm+1 − 1), n = 2m,

Zn =


(U0, V1), n = 0,

(Um, Vm), n = 2m− 1,

(Um, Vm+1), n = 2m.

such that the following is true:

1) B0 ⊃ A0 ⊃ · · · ⊃ Bn ⊃ An ⊃ · · · , y = Z̃0 ≺ Z0 ≺ · · · ≺ Z̃n ≺ Zn · · · .

2) For each n ≥ 0, Z̃n, Zn are stopping times w.r.t. An−1 (with A−1 := Ω); we also have Bn ∈

F̄An−1

Z̃n
, An ∈ F̄An−1

Zn
.

3) For each n ≥ 0, ηkn (i.e., the base point of Dkn) is defined on Bn and measurable

w.r.t. F̄An−1

Z̃n
.

4) The following recurrence relation holds true:

1A0 = 1B0 · g0(ω, ηk0 , V1), (2.3.12a)

1An = 1Bn · gi
(
θZ̃nω, ξkn

)
, (2.3.12b)

where i = 1 for odd n and i = 2 for even n, and the functions g0, g1 and g2 are given by

g0(ω, ζ, V ) = 1{
ξ(η)≤ζ for all η∈D−1

(
[y1−1,y1]×(y2,V ]

)}, (2.3.13a)

g1(ω, ζ) = 1{
ξ(η)≤ζ for all η∈H∩D−1

(
(0,1]×[−2,0]

)}, (2.3.13b)
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g2(ω, ξ) = 1{
ξ(η)≤ζ for all η∈H∩D−1

(
[−2,0]×(0,1]

)}. (2.3.13c)

Here, it is important to note that g1 and g2 depend on ω only through ω|H . (See also

Figure 2.4.)

x1

x2

Dk0

Z̃0 = y

U0 = y1

V0 = y2

Z0
V1

xk1
Dk1

Z̃1

Ũ1(=U0+τ0)

Z1

U1

xk2

Dk2 Z̃2
Ṽ2

Z2
V2

U0+τ1U0+τ2 U0+τ3

Figure 2.4: The stopping times Zm and Z̃m. The random variables τi, i = 0, 1, 2, 3, will be
used in Lemma 2.3.7.

Remark 2.3.2. In fact, in the remainder of the paper we will use not only the existence

result of this lemma but the explicit construction given in the proof.

Proof of the lemma: We construct Bn, Z̃n, Zn and ηkn with the described properties

inductively. We only give the construction for n = 0, 1, 2 since the cases for n = 2m− 1 and

n = 2m with m ≥ 2 are similar to those for n = 1 and n = 2, respectively.
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First, Z̃0 = (U0, V0) := y is a stopping time w.r.t. A−1 = Ω since it is constant. We define

B0 =
{
ϕ(y) ̸= Θ, σ(ϕ(y)) = 1, ξ(ϕ(z)) ≤ ξ(ϕ(y)) for all z ∈ [y1 − 1, y1]× [y2 − 1, y2]

}
,

and on B0, we define ηk0 = ϕ(y). Clearly, 1B0 and ηk0 are measurable with respect

to F̄y = F̄A−1

Z̃0
. Next, we set V1 = x2k0 + 1. Then Z0 = (U0, V1) is also a stopping time

w.r.t. A−1. It is easy to see that (2.3.12a) is true, since the definitions of B0 and g0 match

the conditions (1) and (2), respectively. Finally, we have A0 ∈ F̄A−1

Z0
, since (2.3.12a) holds

and 1B0 , ηk0 , and V1 are all FA−1

Z̃0
-measurable and hence F̄A−1

Z0
-measurable by Lemma 2.3.4.

Let n = 1. We define

Ũ1 = sup
{
t ≥ U0 : ϕ(z) = ηk0 for all z ∈ [U0, t]× [V1 − 1, V1]

}
. (2.3.14)

If follows from the definition of Ũ1 that Z̃1 = (Ũ1, V1) is a stopping time w.r.t. A0. If Ũ1 =

x1k0 + rk0ξk0 , then there is no successor of Dk0 at level y1; otherwise, Ũ1 < x1k0 + rk0ξk0 and Dk0

is “blocked” by some other domains, and one of them may be a successor of Dk0 ; see the

shaded rectangles in Figure 2.4 as an illustration. In the latter case, we order these domains by

the 1-coordinate of their base points, and let ηp be the base point with smallest 1-coordinate.

By (2.3.2), it is uniquely determined and measurable as a function of ω. Throughout the

paper, we prefer defining points like ηp to defining their indices like p in order to avoid

measurability problems since there is no canonical enumeration of Poissonian points. Then

Ũ1 = x1p = x1(ηp).

We aim to find a successor of Dk0 . The only candidate for the successor will be D(ηp).

We define the event B1

B1 = A0 ∩ {Ũ1 < x1k0 + rk0ξk0} ∩
{
σp = 2, x2p ≤ V1 − 2, x2p + rpξp ≥ V1

}
. (2.3.15)
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and let ηk1 = ηp on B1. If ω ∈ B1, then (2.3.7), (2.3.8a), and (2.3.8b) are satisfied with i = k0,

j = k1 but instead of (2.3.8c), the following weaker condition holds (see also Fig. 2.3):

ϕ(x1k1 , x
2) = ηk1 , x2k0 − 1 ≤ x2 ≤ x2k0 + 1. (2.3.16)

We say that Dk0 is “completely” blocked if (2.3.8b) and (2.3.16) are satisfied. For example,

in Figure 2.4, the longest shaded rectangle completely blocks Dk0 , while the others do not.

Noting that 1A0 , Ũ1 are F̄A0

Z̃1
-measurable, and that ηk0 , V1 are F̄A−1

Z0
-measurable and hence

are also F̄A0

Z̃1
-measurable by Lemma 2.3.4, it is clear that 1B1 and ηk1 are F̄A0

Z̃1
-measurable.

Also, letting U1 = Ũ1 + 1, we define Z1 = (U1, Ṽ1) = Z̃1 + e1, a stopping time w.r.t. A0 by

Lemma 2.3.4.

Finally, we verify (2.3.12b) for n = 1. If ω ∈ A1, since the successor of Dk0 is the first

domain that blocks it after level y1 and the blocking is complete, we must have that ω ∈ B1

and Dk1 , defined on B1, is the successor. Then, (2.3.8c) implies g1(θ
Z̃1ω, ξk1) = 1. Therefore,

1A1 ≤ 1B1 · g1
(
θZ̃1ω, ξk1

)
.

To prove the reverse inequality 1B1 · g1
(
θZ̃1ω, ξk1

)
≤ 1A1 , we must assume that ω ∈ B1

and g1(θ
Z̃1ω, ξk1) = 1 and check (2.3.8c). Let z ∈ (Ũ1, Ũ1 +1]× [V1 − 2, V1] and η ∈ D−1({z}).

If η ∈ θZ̃1H, then ξ(η) ≤ ξk1 by the definition of g1 in (2.3.13b). If η ∈ θZ̃1Hc, then ξ(η) ≤ ξk0 ,

otherwise D(η) will block Dk0 before Dk1 does, which contradicts the definition of Dk1 . In

both cases, we have ξ(η) ≤ ξk1 . Therefore, ϕ(z) = ηk1 for all z ∈ [Ũ1, Ũ1 + 1]× [V1 − 2, V1],

which implies (2.3.8c) and completes the proof of (2.3.12b) for n = 1.

We also have A1 ∈ F̄A0
Z1

by (2.3.12b) with n = 1 and the fact that 1B1 , Z̃1, ξk1 are F̄A0

Z̃1
-

measurable and hence F̄A0
Z1

-measurable.

The case n = 2 is almost the same as n = 1, except for interchanging the roles of two
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coordinates, so we will just give the construction without verification. We define

Ṽ2 = sup{t ≥ V1 : ϕ(z) = ηk1 ,∀z ∈ [U1 − 1, U1]× [V1, t]},

and if Ṽ2 < x2k1 + rk1ξk1 , then we denote by ηq the base point of the “first” domain that blocks

Dk1 . Let

B2 = A1 ∩ {Ṽ1 < x2k1 + rk1ξk1} ∩ {σq = 1, x1q ≤ U1 − 2, x1q + rqξq ≥ U1}

and on B2 we set ηk2 = ηq, Ṽ2 = x2q = x2(ηq) and V2 = Ṽ2 + 1. Similarly to the first case, we

have B2 ∈ FA1

Z̃2
, ηk2 is F̄A1

Z̃2
-measurable and Z̃2 = (U1, Ṽ2), Z2 = (U1, V2) are stopping times

w.r.t. A1. Also, (2.3.12b) with n = 2 holds true and A2 ∈ F̄A1
Z2

. □

On Bn let us define

Ln =


(ξkn)

−1(x
σkn
kn

− Um) + rkn , n = 2m,

(ξkn)
−1(x

σkn
kn

− Vm) + rkn , n = 2m− 1.

Let Gn = σ(1Ai
, xki , ξki , 0 ≤ i ≤ n) and G̃n+1 = σ(Gn,1Bn+1). The next lemma is the key in

proving Theorems 2.3.1 and 2.3.2. We use the notation PG(·) = P(·|G) for any sub-σ-algebra G.

Lemma 2.3.7. Let n ≥ 0 and c1, c2 be some positive constants. The following holds:

PGn(Ln ≥ a) = e−a1An , a ≥ 0, (2.3.17)

PG̃n+1
(ξkn+1 ≥ aξkn) =

∫∞
a
e
− 1

a′ξkn da′

(a′)α∫∞
1
e
− 1

a′ξkn da′

(a′)α

1Bn+1 , a ≥ 1, (2.3.18)

and

PGn(An+1) ≥ e−2ξ−1
kn (1− c1ξ

α−2
kn

)EG̃n+1
e
−c2ξ

−α+1
kn+1 . (2.3.19)
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Proof: We begin with (2.3.17) with n = 0. Let us first show that

P(L0 ≥ a|1B0 , xk0 , ξk0) = e−a1B0 a ≥ 0. (2.3.20)

This means that conditioned on B0, r.v.’s L0 and (xk0 , ξk0) are independent.

To see (2.3.20), let us consider ω|Γ, where Γ = D−1({y}) ∩ {σ = 1}. By part (1) in

Lemma 2.3.13, ω|Γ is again a Poisson point process with intensity 1Γµ; by part (2) of that

lemma, the process ω ∩ Γ can be regarded as a compound Poisson process that has ground

process {(xi, ξi)} and marks ri. The mark kernel F
(
· |(x, ξ)

)
is given by

F
(
dr|(x, ξ)

)
∼ 1Γf(x, r, ξ, 1) dr∫∞

0
1Γf(x, r′, ξ, 1) dr′

.

We also have ηk0 = ϕ(Γ) on {ϕ(Γ) ̸= Θ} and

1B0 = 1{ϕ(Γ)̸=Θ} · l(ω|Γc , ξk0), (2.3.21)

where

l(ω|Γc , ζ) =


1, ξ(η) ≤ ζ for all η ∈ ω ∩

(
D−1

(
[y1 − 1, y1]× [y2 − 1, y2]

)
\ Γ
)
,

0, else.

150



Since the marks are independent,

P(L0 ≥ a|1{ϕ(Γ)̸=Θ}, xk0 , ξk0)

=1{ϕ(Γ)̸=Θ}F
(
{rk0 ≥ a+ h}

∣∣∣(xk0 , ξk0))
=1{ϕ(Γ)̸=Θ}

∫∞
a+h

1Γf(xk0 , r, ξk0 , 1) dr∫∞
0

1Γf(xk0 , r, ξk0 , 1) dr

=1{ϕ(Γ)̸=Θ}

∫∞
a+h

1{y1≤x1
k0

+rξk0 ,x
1
k0

≤y1,y2−1≤x2
k0

≤y2}
1
2
αe−r

ξα+1
k0

dr∫∞
0

1{y1≤x1
k0

+rξk0 ,x
1
k0

≤y1,y2−1≤x2
k0

≤y2}
1
2
αe−r

ξα+1
k0

dr

=1{ϕ(Γ)̸=Θ}

∫∞
a+h

e−r dr∫∞
h
e−r dr

= 1{ϕ(Γ)̸=Θ}e
−a, (2.3.22)

where h = (ξk0)
−1(y1 − x1k0). This and (2.3.21) imply (2.3.20) since by independence of ω|Γc

and ξk0 , for any Borel set C ⊂ R3,

E
(
1{L0≥a}1{(xk0

,ξk0 )∈C}1B0

)
= E

(
1{L0≥a}1{(xk0

,ξk0 )∈C}1{ϕ(Γ)̸=Θ}
(
El(ω|Γc , ζ)

)
|ζ=ξk0

)
= E

(
e−a1{(xk0

,ξk0 )∈C}1{ϕ(Γ)̸=Θ}
(
El(ω|Γc , ζ)

)
|ζ=ξk0

)
= E

(
e−a1{(xk0

,ξk0 )∈C}1B0

)
.

The equation (2.3.17) with n = 0 follows from (2.3.20) and (2.3.12a).

Next we will assume (2.3.17) with n = n′ is true, and show that it implies (2.3.18)

and (2.3.19) with n = n′ and (2.3.17) with n = n′ + 1.

For simplicity of notation we assume n′ = 2m is even so that σkn′ = 1. The argument is

exactly the same for n′ odd, up to reflecting everything with respect to the diagonal {x1 = x2}.

For ζ ≥ 1, T > 0, let us define Λj(ζ, T ), j = 0, 1, 2, 3, to be the following subsets of H
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defined in (2.3.10):

Λ0(ζ, T ) = {η : 0 < x1 ≤ T, ζ < ξ, σ = 2, x2 ≤ −2 < 0 ≤ x2 + rξ},

Λ1(ζ, T ) = {η : 0 < x1 ≤ T, ζ < ξ, σ = 2, x2 ≤ −2 < −1 < x2 + rξ < 0},

Λ2(ζ, T ) = {η : 0 < x1 ≤ T, ζ < ξ, σ = 2, −2 < x2 < 0, −1 ≤ x2 + rξ},

Λ3(ζ, T ) = {η : 0 < x1 ≤ T, ζ < ξ, σ = 1, −2 ≤ x2 ≤ 0}.

For any t0, . . . , t3 > 0, the sets Λ0(ζ, t0), . . . ,Λ3(ζ, t3) are disjoint. Let

τj = inf{T > 0 : ω ∩ θZ2mΛj(ξk2m , T ) ̸= ∅}, j = 0, 1, 2, 3.

The numbers U2m+ τj , j = 1, 2, 3, 4, are the first times that different types of blocking appear,

illustrated in Figure 2.4 by the shaded rectangles; U2m + τ0 corresponds to complete blocking.

Noting that U2m + ξ2mL2m = x1k2m + rk2mξk2m , we have

B2m+1 = {τ0 = min(ξk2mL2m, τj, j = 0, 1, 2, 3)}. (2.3.23)

(The definition of Bn for n ≥ 2 is just a proper generalization of the n = 1 case defined

in (2.3.15)).

We claim that conditioned on A2m and ξk2m , the r.v.’s L2m and τj, j = 0, 1, 2, 3, are inde-

pendent exponential random variables. First, conditioned on A2m, (2.3.17) implies that L2m is

independent of ξk2m , and Corollary 2.3.1 implies that it is independent of θZ2m(ω|H). Since τj ,

j = 0, 1, 2, 3, are some functionals of ξk2m and θZ2m(ω|H), τj’s and L2m are independent

conditioned on A2m. Moreover, conditioned on A2m, the r.v. L2m is an exponential random

variable with rate 1 by (2.3.17).
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Next, we have

µ
(
Λj(ζ, T )

)
= λj(ζ)T, j = 0, 1, 2, 3, (2.3.24)

where

λ0(ζ) =
1

2

∫ +∞

ζ

α

ξα+1
dξ

∫ −2

−∞
dx2

∫ +∞

−ξ−1x2

e−rdr (2.3.25)

=
1

2

∫ +∞

ζ

α

ξα+1
dξ

∫ +∞

2

dy

∫ +∞

y/ξ

e−r dr

=
1

2

∫ +∞

ζ

e−
2
ξ
α

ξα
dξ;

λ1(ζ) =
1

2

∫ +∞

ζ

α

ξα+1
dξ

∫ ∞

2

dy

∫ y/ξ

(y−1)/ξ

e−r dr

=
1

2

∫ +∞

ζ

(e−
1
ξ − e−

2
ξ )
α

ξα
dξ;

λ2(ζ) =
1

2

∫ +∞

ζ

α

ξα+1
dξ
[ ∫ 2

1

dy

∫ ∞

(y−1)/ξ

e−r dr +

∫ 1

0

dy

∫ ∞

0

e−r dr
]

=
1

2

∫ +∞

ζ

(1− e−
1
ξ )
α

ξα
dξ +

1

2
ζ−α.

(we used the change of variable y = −x2) and

λ3(ζ) =
1

2
· 2
∫ +∞

ζ

α

ξα+1
dξ = ζ−α. (2.3.26)

Let tj ≥ 0, j = 0, 1, 2, 3. The function l(ω, ζ) = 1{n(ω∩Λj(ζ,tj))=0, j=0,1,2,3} depends only

on ω|H . Since (Z2m, A2m−1) is a stopping time and the r.v.’s 1A2m , ξk2m are measurable

w.r.t. F̄A2m−1

Z2m
, by Corollary 2.3.2 we have

E1{τj≥tj , j=0,1,2,3}1A2m1{ξk2m∈C} = El(θZ2mω, ξk2m)1A2m1{ξk2m∈C}

= E
(
El(ω, ζ)

)∣∣
ζ=ξk2m

1A2m1{ξk2m∈C} = Ee
−

3∑
j=0

λj(ξk2m )tj
1A2m1{ξk2m∈C},
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where C is any Borel set in R. In the last identity, we have used (2.3.24) and the disjointness of

Λj(ξk2m , tj), j = 0, 1, 2, 3, to compute El(ω, ζ). This shows that conditioned on A2m and ξk2m ,

the τj’s are independent exponential r.v.’s and finishes the proof of the claim. We have also

found that the rates of these exponential r.v.’s are λj(ξk2m), j = 0, 1, 2, 3, respectively.

By (2.3.23) and our claim on independent exponential variables, we have

PG2m(B2m+1) =
λ0(ξk2m)

3∑
j=0

λj(ξk2m) + ξ−1
k2m

≥ e−2ξ−1
k2m (1− c1ξ

α−2
k2m

) (2.3.27)

for some constant c1 > 0, where we used

3∑
j=0

λj(ξk2m) =
α

2(α− 1)
ξ−α+1
k2m

+
3

2
ξ−α
k2m

, λ0(ξk2m) ≥
α

2(α− 1)
e−2ξ−1

k2mξ−α+1
k2m

which follows from (2.3.25), (2.3.26) and ξ−1
k2m

≤ ξα−2
k2m

.

Next, we will show (2.3.17) with n = n′ + 1 = 2m+ 1. For any z ∈ R2, b > 1, we have

1B2m+11{xk2m+1
≺z+Z2m,ξk2m+1

≤b} = 1A2ml1(θ
Z2mω, ξk2m , L2m), (2.3.28)

1{L2m+1≥a}1B2m+11{xk2m+1
≺z+Z2m,ξk2m+1

≤b} = 1A2ml2(θ
Z2mω, ξk2m , L2m),

where l1(ω, ζ, L) and l2(ω, ζ, L) are defined as follows: for j = 0, 1, 2, 3, we write

ω ∩
(
Λj(ζ,+∞)

)
= {η(j)k }∞k=1

such that the x1-coordinates of η
(j)
k are in ascending order. Then

l1(ω, ζ, L) = 1{x1(η
(0)
1 )=min{x1(η

(j)
1 ),j=0,1,2,3}<ζL}1{x̂≺z,ξ̂≤b}, (2.3.29)

l2(ω, ζ, L) = 1{ x̂2

ξ̂
+r̂>a} · l1(ω, ζ, L), (2.3.30)
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where η
(0)
1 = (x̂, r̂, ξ̂, 2). Since Λj(ζ,+∞) are disjoint, {η(j)k } are independent Poisson processes.

Moreover, for each j = 0, 1, 2, 3, we can view {η(j)k = (x
(j)
k , r

(j)
k , ξ

(j)
k , σ

(j)
k )} as a compound

Poisson process that has ground process {(x(j)k , ξ
(j)
k )}, marks r

(j)
k (noting that σ

(j)
k ≡ σ(j) is

constant), and the mark kernel given by

F j(dr|(x, ξ)) =
1Λj(ζ,+∞)f(x, r, ξ, σ

(j)) dr∫∞
0

1Λj(ζ,+∞)f(x, r′, ξ, σ(j)) dr′
(2.3.31)

By part (2) of Lemma 2.3.13 and (2.3.31), we have

P

(
x̂2

ξ̂
+ r̂ > a

∣∣∣ (x(j)k , ξ
(j)
k ), j = 0, 1, 2, 3, k ≥ 1

)
= F 0

([
a− x̂

ξ̂
,+∞

)
|(x̂, ξ̂)

)

=

∫∞
a− x̂2

ξ̂

1Λ0(ζ̂,+∞)(x̂, r, ξ̂, 2)f(x̂, r, ξ̂, 2)dr∫∞
0

1Λ0(ζ̂,+∞)(x̂, r, ξ̂, 2)f(x̂, r, ξ̂, 2)dr
=

∫∞
a− x̂2

ξ̂

1{r≥− x̂2

ξ̂
}f(x̂, r, ξ̂, 2)dr∫∞

0
1{r≥− x̂2

ξ̂
}f(x̂, r, ξ̂, 2)dr

=

∫∞
a− x̂2

ξ̂

e−rdr∫∞
− x̂2

ξ̂

e−rdr
= e−a.

Then by (2.3.30) we have

El2(ω, ζ, L) = e−aEl1(ω, ζ, L). (2.3.32)

We claim that

E
(
1{L2m+1≥a}1B2m+11{xk2m+1

≺z+Z2m,ξk2m+1
≤b}|G2m

)
= e−aE

(
1B2m+11{xk2m+1

≺z+Z2m,ξk2m+1
≤b}|G2m

)
. (2.3.33)

To see this, we note that since (Z2m, A2m−1) is a stopping time and G2m ⊂ F̄A2m−1

Z2m
, we can

insert conditional expectation with respect to F̄A2m−1

Z2m
, use (2.3.28) and the fact that the

functions li’s depend only on ω|H to apply Corollary 2.3.2 and (2.3.32).
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Since Z2m is measurable w.r.t. G2m, (2.3.33) implies

E
(
1{L2m+1≥a}|G2m,1B2m+1 , xk2m+1 , ξk2m+1

)
= e−a1B2m+1 . (2.3.34)

Finally, we use (2.3.12b) to derive (2.3.17) with n = 2m + 1 from (2.3.34). Let C be an

arbitrary set in σ(G2m, xk2m+1 , ξk2m+1). We have

E
(
1{L2m+1≥a}1C1A2m+1

)
= E

(
1{L2m+1≥a}1C1B2m+1g1(θ

Z̃2m+1ω, ξk2m+1)
)

= E
(
1{L2m+1≥a}1C1B2m+1E

(
g1(θ

Z̃2m+1ω, ξk2m+1)|F̄A2m

Z̃2m+1

))
= E

(
1{L2m+1≥a}1C1B2m+1

(
Eg1(ω, ζ)

)
|ζ=ξk2m+1

)
= E

(
e−a1C1B2m+1

(
Eg1(ω, ζ)

)
|ζ=ξk2m+1

)
= E

(
e−a1C1A2m+1

)
.

Here, the first identity follows from (2.3.12b), the second from the fact that 1{L2m+1≥a}, 1C

and 1B2m+1 are measurable w.r.t. F̄A2m

Z̃2m+1
, the third from Corollary 2.3.2 with the stopping

time (Z̃2m+1, A2m), the fourth identity from (2.3.34), and the last identity follows from the

same reasoning in the first three lines except replacing 1{L2m+1≥a} by e
−a. This proves (2.3.17).

To see (2.3.18), for fixed a > 1 we can write τ0 = τ+0 ∧ τ−0 , where τ+0 (τ−0 ) is the first time

that a complete block occurs with strength bigger (smaller) than aξk2m . Conditioned on ξk2m

and Z2m, τ
±
0 are independent exponential random variables with rates

λ+0 =
1

2

∫ +∞

aξk2m

e−
2
ξ
α

ξα
dξ, λ−0 =

1

2

∫ aξk2m

ξk2m

e−
2
ξ
α

ξα
dξ, (2.3.35)

where the computation is the same as that of λ0(ζ). This gives (2.3.18).
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Finally, we have

PG2m(A2m+1) = PG2m(B2m+1)EG̃2m+1
g1(θ

Z̃2m+1ω, ξk2m+1). (2.3.36)

Since G̃2m+1 ⊂ FA2m

Z̃2m+1
and ξ2m+1 is measurable w.r.t. FA2m

Z̃2m+1
, using Corollary 2.3.2 with the

stopping time (Z̃2m+1, A2m), we have

EG̃2m+1
g1(θ

Z̃2m+1ω, ξk2m+1) = EG̃2m+1

[(
Eg1(ω, ζ)

)∣∣
ζ=ξk2m+1

]
. (2.3.37)

By the definition of g1 in (2.3.13b), we have

Eg1(ω, ζ) = P(n(ω ∩ Λ) = 0) = e−µ(Λ), (2.3.38)

where

Λ =D−1
(
(0, 1]× [−2, 0]

)
\H

={η : σ = 1, 0 < x1 ≤ 1,−3 ≤ x2 ≤ 0, ξ > ζ}

∪ {η : σ = 2, 0 < x1 ≤ 1, x2 ≤ 0, x2 + rξ ≥ −2, ξ > ζ}.

By a direct computation, we have for some constant c2 > 0,

µ(Λ) =
1

2

∫ 1

0

dx1
∫ 0

−3

dx2
∫ ∞

ζ

αdξ

ξα+1

+
1

2

∫ 1

0

dx1
∫ 0

−∞
dx2

∫ ∞

ζ

αdξ

ξα+1

∫
r≥ξ−1(−2−x2)+

e−r dr ≤ c2ξ
−α+1 (2.3.39)

Combining (2.3.27), (2.3.36), (2.3.38) and (2.3.39), we prove (2.3.19) with n = 2m+ 1. □

Corollary 2.3.3. Conditioned on B0, the distribution of ξk0 has a density with respect to the
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Lebesgue measure, and its support is [1,∞).

Proof: By (2.3.21) and the independence of ω|Γc and ξk0 , for any Borel set C ⊂ [1,∞), we

have

E
(
1{ξk0∈C}1B0

)
= E

(
1{ξk0∈C}1{ϕ(Γ)̸=Θ}

(
El(ω|Γc , ζ)

)
|ζ=ξk0

)
.

Since El(ω|Γc , ζ) is continuous in ζ and positive for ζ ≥ 1, it suffices to show that the

conditional distribution of ξk0 given {ϕ(Γ) ̸= Θ} is absolutely continuous and supported

on [1,+∞). The projection of ω ∩ Γ onto the ξ-coordinate is again a Poisson process with

intensity that is absolutely continuous and supported on [1,+∞). The claim of the lemma

follows since ξk0 is the maximum point of the projected Poisson process. □

Corollary 2.3.4. The conditional probability PGn(An+1) = p(ξkn) is a function of ξkn.

Proof: From (2.3.36) and (2.3.37) we have

PGn(An+1) = PGn(Bn+1)EG̃n+1

(
Egi(ω, ζ)

)∣∣∣
ζ=ξkn+1

, (2.3.40)

where i = 1 if n is even and i = 2 if n is odd. The right-hand side is a function of ξkn due

to (2.3.27) and (2.3.18). □

On An, n ≥ 1, we introduce

Rn =


Ũm+1 − Um, n = 2m+ 1,

Ṽm+1 − Vm, n = 2m,

and en = Rn/r(ξkn) where

r(ξ) =
( α

2(α− 1)
ξ−α+1 +

3

2
ξ−α + ξ−1

)−1

=

(
3∑

j=0

λj(ξ) + ξ−1

)−1

.
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We also let e0 = 0.

Recalling that ξkn , en are defined on An, we can introduce an artificial cemetery state ∆

and define the following process (Xn)n≥0 on R2 ∪ {∆}:

Xn =


(ξkn , en), ω ∈ An,

∆, ω /∈ An.

Lemma 2.3.8. The process (Xn)n≥0 is a Markov chain on R2 ∪ {∆} with the following

transition kernel P
(
(ζ, e), ·

)
supported on [ζ,+∞)× [0,+∞) ∪ {∆}:

P
(
(ζ, e), {∆}

)
= 1− p(ζ), (2.3.41)

P
(
(ζ, e), [c,+∞)× [b,+∞)) = e−bQ(ζ, [c,+∞))p(ζ)

where

Q
(
ζ, [aζ,+∞)

)
=

∫∞
a
e
− 2

a′ζ da′

(a′)α∫∞
1
e
− 2

a′ζ da′

(a′)α

, a ≥ 1. (2.3.42)

Proof: We notice that (ξkn , en) is measurable with respect to Gn. To prove the Markov

property and verify the expression for the transition kernel, it suffices to show

PGn(An+1) = Pξkn
(An+1) = p(ξkn) (2.3.43)

and

PGn

(
An+1 ∩ {aξkn ≤ ξkn+1 , r(ξkn)b ≤ Rn}

)
= e−bQ

(
ξkn , [aξkn ,+∞)

)
Pξkn

(An+1). (2.3.44)

The first identity (2.3.43) is true due to Corollary 2.3.4. For (2.3.44), similarly to the
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derivation of (2.3.40), we can rewrite its left-hand side as (i = 1 for even n and 2 for odd n)

PGn

(
Bn+1 ∩ {aξkn ≤ ξkn+1 , r(ξkn)b ≤ Rn}

)
· EG̃n+1

(
Egi(ω, ζ)

)
|ζ=ξkn+1

= PGn

(
τ+0 = min{ξknLn, τ

+
0 , τ

−
0 , τ1, τ2, τ3}, r(ξkn)b ≤ τ+0

)
· EG̃n+1

(
Egi(ω, ζ)

)
|ζ=ξkn+1

.

Noting that conditioned on Gn, the r.v.’s ξknLn, τ
±
0 , τ1, τ2, τ3 are independent exponential with

rates ξ−1
kn
, λ±0 , λ1, λ2, λ3, respectively, and the sum of these rates is r(ξkn), we obtain that

the last line of the last display equals

e−bλ
+
0

λ0
· λ0
r(ξk0)

· EG̃n+1

(
Egi(ω, ζ)

)
|ζ=ξkn+1

= e−bQ
(
ξkn , [aξkn ,+∞)

)
p(ξkn),

where we used (2.3.40) and that Q
(
ξkn , [aξkn ,+∞)

)
= λ+0 /λ0 by (2.3.42) and (2.3.35). This

completes the proof. □

Let (Wn) be a Markov chain on [1,+∞) with transition kernel Q in (2.3.42). We denote

the distribution of this Markov chain started from ζ by Pζ and the expectation with respect

to it by Eζ .

Lemma 2.3.9. Let h(ζ) = Eζ
∞∏
j=0

p(Wj). Then we have

PX0=(ζ,e)(Xn ̸= ∆, n ≥ 0) = h(ζ) (2.3.45)

and

h(ζ) ≥ Eζ

∞∏
j=0

e−2W−1
j −c2W

−α+1
j (1− c1W

α−2
j ). (2.3.46)

Moreover, h(ζ) is increasing in ζ.

Proof: From the transition kernel (2.3.41), we see that after projecting (Xn)n≥0 onto its
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first coordinates, the resulting process (X1
n)n≥0 is still a Markov chain on [1,+∞] ∪ {∆1},

where ∆1 is the cemetery state, with transition kernel

Q1
(
ζ, {∆1}

)
= 1− p(ζ), Q1

(
ζ, [aζ,+∞)

)
= p(ζ)Q(ζ, [aζ,+∞)).

Then, for N ≥ 1,

PX0=(ζ0,e)(Xn ̸= ∆, 0 ≤ n ≤ N)

= PX1
0=ζ0(X1

n ̸= ∆1, 0 ≤ n ≤ N)

=

∫
[1,+∞)

Q1(ζ0, dζ1)

∫
[1,+∞]

Q1(ζ1, dζ2) · · ·
∫
[1,+∞)

Q1(ζN−2, dζN−1)p(ζN−1)

=

∫
[1,+∞)

Q(ζ0, dζ1)

∫
[1,+∞]

Q(ζ1, dζ2) · · ·
∫
[1,+∞)

Q(ζN−2, dζN−1)
N−1∏
j=0

p(ζj)

= Eζ0

N−1∏
j=0

p(Wj).

Letting N → ∞ we prove (2.3.45). Now (2.3.19) implies

p(ζ) ≥ e−2ζ−1

(1− c1ζ
α−2)Eζe−c2W

−α+1
1 ,

and (2.3.46) follows.

To see that h(ζ) is increasing, we notice that p(ζ) is increasing as can be seen from (2.3.27)

and (2.3.40), and that Q(ζ1, ·) is stochastically dominated by Q(ζ2, ·) for ζ1 < ζ2. □

Lemma 2.3.10. There are i.i.d. Par(α− 1) random variables (χn)n≥1 such that for each n,

χn is a measurable function of Wn−1 and Wn, and Wn ≥ χnWn−1.
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Proof: For all a > 1 and x ≥ 1, we have

∫∞
a

da′

(a′)α∫ a

1
da′

(a′)α

≤
∫∞
a
e−

2
a′x da′

(a′)α∫ a

1
e−

2
a′x da′

(a′)α

=
Q(x, [ax,∞))

Q(x, [x, ax))
.

This means that for all x ≥ 1, the Par(α − 1) distribution is stochastically dominated

by the conditional distribution of Wn

Wn−1
given Wn−1 = x. Therefore, one can define a

measurable function z(a, x) ≤ a such that if U ∼ Q(x, ·), then z(U/x, x) ∼ Par(α − 1).

Setting χn = z( Wn

Wn−1
,Wn−1) finishes the proof. □

Lemma 2.3.11. For all ζ ≥ 1, h(ζ) > 0.

Proof: Let W0 = W0 and Wn = W0χn · · ·χ1 for n ≥ 1 where (χn)n≥1 are introduced in

Lemma 2.3.10. We have Wn ≤ Wn, n ≥ 0 and hence (2.3.46) implies

h(ζ) ≥ Eζ

∞∏
j=0

e−2W−1
j −c2W−α+1

j (1− c1Wα−2
j ).

For t ∈ [0, 1/2] we have ln(1 − t) ≥ −(2 ln 2)t. Assuming first ζ ≥ (2c1)
1

2−α , since Wn ≥

W0 = ζ, we have 1− c1Wα−2
n ≥ e−(2 ln 2)c1Wα−2

n . Using this and Jensen’s inequality, we have

h(ζ) ≥ Eζ

∞∏
n=0

exp
[
− 2W−1

n − c2W−α+1
n − (2 ln 2)c1Wα−2

n )
]

≥ exp
[
− Eζ

( ∞∑
n=0

2W−1
n + c2W−α+1

n + (2 ln 2)c1Wα−2
n |W0

)]
= e−Cζ

where the last identity holds since for any γ < 0,

Eζ

∞∑
n=0

Wγ
n = ζ

∞∑
n=0

(
Eζχ1

)γn
= Cγζ.
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For general ζ, it suffices to notice that after one step, the distribution of W1 is supported

on [ζ,+∞). This completes the proof. □

Proof of Theorem 2.3.1: The theorem follows from Corollary 2.3.3 and Lemmas 2.3.9

and 2.3.11. □

Recall that we have A∞ = {Xn ̸= ∆, n ≥ 0}. Let P̃ be the conditional law of (Xn)n≥0

on A∞. Then by Doob’s transform, under P̃ the process (Xn)n≥0 is a Markov chain on

[1,+∞)× [0,∞) with transitional kernel

P̃
(
(ζ, s), dζ ′ × ds′

)
=
h(ζ ′)P

(
(ζ, s), dζ ′ × ds′

)
h(ζ)

=
h(ζ ′)Q(ζ, dζ ′)

h(ζ)
e−s′ ds′. (2.3.47)

Lemma 2.3.12.

P̃
(
lim inf
m→∞

R1 + · · ·R2m+κ−1

R2m+κ
= 0
)
= 1, κ = 0, 1. (2.3.48)

Proof: Without loss of generality we assume κ = 1. Let us denote Xn = (ζn, en).

From (2.3.47), we see that under the conditional law P̃, (ζn)n≥0 is a Markov chain with

transition kernel

Q̃(ζ, [aζ,+∞)) =

∫∞
a
h(a′ζ)e

− 2
a′ζ da′

(a′)α

h(ζ)
∫∞
ζ
e
− 2

a′ζ da′

(a′)α

and (en)n≥1 are i.i.d. Exp(1) random variables that are independent of (ζn).

Since h(ζ) is increasing, we see that

∫∞
a

da′

(a′)α∫ a

1
da′

(a′)α

≤
∫∞
a
h(a′ζ)e

− 2
a′ζ da′

(a′)α∫ a

1
h(a′ζ)e−

2
a′x da′

(a′)α

=
Q̃(ζ, [aζ,∞))

Q̃(ζ, [ζ, ax))
.

So analogously to Lemma 2.3.10, we can couple with (ζn)n≥1 a sequence of i.i.d. Par(α− 1)

r.v.’s (χn)n≥1 such that χn depends on ζn and ζn−1, and ζn ≥ χnζn−1. Hence, ζn ≥

ζjχj+1 · · ·χn. Also, there are constants k1, k2 > 0 such that k1r̄(ξ) ≤ r(ξ) ≤ k2r̄(ξ),
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where r̄(ξ) = ξα−1. Therefore, using this with n = 2m and j = 0, . . . , 2m− 1,

R1 + · · ·+R2m

R2m+1

≤ k2
k1

r̄(ζ0)e1 + · · ·+ r̄(ζ2m−1)e2m
r̄(ζ2m)e2m+1

≤ k2
k1

Fm

e2m+1

, (2.3.49)

where

Fm =
Πα−1

1 e1 + · · ·Πα−1
2m e2m

Πα−1
2m+1

,

and Π1 = 1, Πi = χ1 · · ·χi−1, i ≥ 1. If we can show that lim inf
m→∞

Fm = 0 a.s., then we have

lim inf
m→∞

Fm/e2m+1 = 0 a.s. since e2m+1 is independent of Fm. The lemma will then follow

from (2.3.49).

Let Hm = σ(χ1, ..., χ2m−1, e1, ..., e2m) and H≥m = σ(χ2m, χ2m+1, ..., e2m+1, ...) For 0 ≤

M < m, we define

FM
m =

Πα−1
2M+1e2M+1 + · · ·Πα−1

2m e2m

Πα−1
2m+1

.

Then FM
m ∈ H≥M and has the same distribution as Fm−M . Moreover, since Π2m+1 → +∞

a.s., we have lim inf
m→∞

Fm = lim inf
m→∞

FM
m a.s. for all M .

Therefore, lim inf
m→∞

Fm is measurable with respect to the tail σ-algebra
⋂

m≥0

H≥m. But the

tail σ-algebra is trivial since all χi’s and ei’s are independent, so Kolmogorov’s zero-one law

applies and thus P̃(lim inf
m→∞

Fm = a) = 1 for some constant a ∈ [0,∞]. We need to show

that a = 0.

By Fatou’s lemma,

Ẽ lim inf
m→∞

Fm ≤ lim inf
m→∞

ẼFm ≤ lim inf
m→∞

2m∑
i=0

(Ẽχ1−α
1 )2m+1−i <∞.

Therefore, a <∞.

Suppose that a > 0. Then there is an infinite sequence of stopping times (mk) with
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respect to (Hm) such that Fmk
≤ 3

2
a, that is,

Πα−1
1 e1 + ...+Πα−1

2mk
e2mk

≤ 3

2
a · Πα−1

2mk+1, k ∈ N.

Since χ2mk+1, χ2mk+2 take arbitrarily large values, the events

Ek =

{
χ1−α
2mk+2

(
χ1−α
2mk+1

(3
2
a+ e2mk+1

)
+ e2mk+2

)
≤ a/2

}

are of positive probability (which does not depend on k) and independent, so, almost surely,

infinitely many of them happen. Since on Ek we have

Πα−1
1 e1 + ...+Πα−1

2mk
e2mk

+Πα−1
2mk+1e2mk+1 +Πα−1

2mk+2e2mk+2

≤ Πα−1
2mk+1

[
3

2
a+ e2mk+1 + χα−1

2mk+1e2mk+2

]
≤ a

2
Πα−1

2mk+3,

this inequality holds for infinitely many k. Therefore, lim inf
m→∞

Fm ≤ a
2
which is a contradiction.

Hence a = 0 and the proof is completed. □

Proof of Theorem 2.3.2: Suppose ω ∈ Ay,∞. By Lemma 2.3.3, γy will cross

all the line segments {Um − 1} × [Vm − 1, Vm], [Um − 1, Um] × {Vm+1 − 1}, m ≥ 1. Let

γ(tm) ∈ {Um − 1} × [Vm − 1, Vm]. Recalling the definition of Rn, we have

γ1(tm) = Um − 1 ≥ R2m−1 + U0, γ2(tm) ≤ Vm ≤
m−1∑
k=0

(R2k + 1) + V0.

As in the proof of Lemma 2.3.12, Rn ≥ k1(ζ0χ1 · · ·χn−1)
α−1en, so limn→∞

n
Rn

= 0. This and

Lemma 2.3.12 imply that

lim inf
m→∞

γ2(tm)

γ1(tm)
≤ lim inf

m→∞

m+ V0 +
∑m−1

k=0 R2k

R2m−1 + U0

≤ lim inf
m→∞

∑2m−2
k=0 Rk

R2m−1

= 0, (2.3.50)
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which shows that lim inft→∞
γ2(t)
γ1(t)

= 0. Similarly one can show lim inf
t→∞

γ1(t)
γ2(t)

= 0. This concludes

the proof. □

2.3.3 Auxiliary results

We recall the following results for Poisson processes (see [DVJ03]).

Lemma 2.3.13. Let X ,K be complete separable metric spaces equipped with their Borel

σ-algebras.

1) Let N be a Poisson process on X with intensity µ(dx) and A is a Borel set. Then N ∩ A

is a Poisson process on X with intensity 1A(x)µ(dx).

2) ([DVJ03, Section 6.4]) A marked point process, with locations in X and marks in K, is a

point process {(xi, κi)} on X ×K with the additional property that the ground process Ng =

{xi} is also itself a point process, i.e., for bounded A ∈ B(X ), Ng(A) = N(A×K) <∞.

A compound Poisson process is a marked point process N = {(xi, κi)} such that Ng is

a Poisson process, and given Ng, the {κi} are mutually independent random variables,

the distribution of κi depending only on the corresponding location xi. The mark kernel,

denoted by {F (K|x) : K ∈ B(K), x ∈ X}, is the conditional distribution of the mark,

given the location x. Let µ(·) be the intensity measure of Ng. Then ([DVJ03, Lemma

6.4.VI]) N is a Poisson process on the product space X × K with intensity measure

Λ(dx× dκ) = µ(dx)F (dκ|x).

Proof of Lemma 2.3.4: Take any Λ ∈ F̄A
T . Since B ∈ F̄A

T , we have Λ ∩ B ∈ F̄A
T , and

hence for all t ∈ R2,

Λ ∩ {T ≺ t} ∩B = [Λ ∩B] ∩ {T ≺ t} ∩ A ∈ F̄t.
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Therefore, for all t ∈ R2,

Λ ∩ {S ≺ t} ∩B = [Λ ∩ {T ≺ t} ∩B] ∩ [{S ≺ t} ∩B] ∈ F̄t.

This shows Λ ∈ F̄B
S and completes the proof. □

Proof of Lemma 2.3.5: Let f(z, ω) = 1{n(θzω∩Bj)=nj ,j=1,2,...,k}. Since Bj ⊂ H, for fixed

z ∈ R2, f(z, ω) is independent of F̄z. Moreover, f(z, ω) is stationary in z.

By the definition of conditional expectation, we need to verify that for Λ ∈ F̄A
T ,

Ef(T, ω)1Λ∩A =
[
Ef
(
(0, 0), ω

)]
· P(Λ ∩ A). (2.3.51)

We assume first that T takes values in a countable set {tn}∞n=1 ⊂ R2. Then

Ef(T, ω)1Λ∩A =
∞∑
n=1

Ef(tn, ω)1Λ∩A∩{T=tn}

=
∞∑
n=1

Ef(tn, ω)P(Λ ∩ A ∩ {T = tn})

=
∞∑
n=1

Ef
(
(0, 0), ω

)
P(Λ ∩ A ∩ {T = tn})

=
[
Ef
(
(0, 0), ω

)]
· P(Λ ∩ A),

In the second identity we have used that Λ ∩ A ∩ {T = tn} ∈ F̄tn by (2.3.9), and hence is

independent of f(tn, ω). The third identity follows from the stationarity of f(·, ω).

For z = (z1, z2) ∈ R2, we write ⌈z⌉ = (⌈z1⌉, ⌈z2⌉) and [z] = ([z1], [z2]). If T is not discrete,

we can approximate it on A by Tm = ⌈2mT ⌉/2m. For every m, (Tm, A) is a stopping time

and F̄A
T ⊂ F̄A

Tm
, since for all Γ ∈ F̄A

T ,

Γ ∩ {Tm ≺ z} ∩ A = Γ ∩ {T ≺ [2mz]/2m} ∩ A ∈ F̄[2mz]/2m ⊂ F̄z,
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where, the first identity holds since both events are equal to the intersection of Γ∩A with the

event where there are n1, n2 ∈ Z such that the point w = (n1/2
m, n2/2

m) satisfies T ≺ w ≺ z.

Therefore, (2.3.51) holds true for T replaced by Tm. Noticing that Tm → T and Bj’s are

open, we have f(Tm, ω) → f(T, ω) for every ω. This allows us to pass to the limit using the

bounded convergence theorem. □
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